دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [2 ed.] نویسندگان: Umesh R. Hodeghatta, Ph.D Umesha Nayak سری: ISBN (شابک) : 9781484287538, 9781484287545 ناشر: Apress سال نشر: 2023 تعداد صفحات: 711 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 32 Mb
در صورت تبدیل فایل کتاب Practical Business Analytics Using R and Python: Solve Business Problems Using a Data-driven Approach به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تجزیه و تحلیل عملی کسب و کار با استفاده از R و Python: حل مشکلات تجاری با استفاده از رویکرد داده محور نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب نشان می دهد که چگونه داده ها می توانند در حل مشکلات تجاری مفید باشند. تکنیکهای تحلیلی مختلف برای استفاده از دادهها برای کشف الگوها و روابط پنهان، پیشبینی نتایج آینده، بهینهسازی کارایی و بهبود عملکرد سازمانها را بررسی میکند. شما یاد خواهید گرفت که چگونه داده ها را با استفاده از مفاهیم آمار، نظریه احتمالات و جبر خطی تجزیه و تحلیل کنید. در این نسخه جدید، هم از R و هم پایتون برای نشان دادن این تحلیل ها استفاده می شود. تجزیه و تحلیل عملی کسب و کار با استفاده از R و Python همچنین دارای فصل های جدیدی است که پایگاه های داده، SQL، شبکه های عصبی، تجزیه و تحلیل متن و پردازش زبان طبیعی را پوشش می دهد. بخش اول با مقدمه ای بر تجزیه و تحلیل، مبانی مورد نیاز برای انجام تجزیه و تحلیل داده ها آغاز می شود و اصطلاحات و مفاهیم مختلف تجزیه و تحلیل مانند پایگاه های داده و SQL، آمار پایه، نظریه احتمال و کاوش داده ها را توضیح می دهد. بخش دوم مدل های پیش بینی با استفاده از یادگیری ماشین آماری را معرفی می کند و مفاهیمی مانند رگرسیون، طبقه بندی و شبکه های عصبی را مورد بحث قرار می دهد. بخش سوم دو مورد از محبوبترین تکنیکهای یادگیری بدون نظارت، خوشهبندی و تداعی کاوی، و همچنین متن کاوی و پردازش زبان طبیعی (NLP) را پوشش میدهد. این کتاب با مروری بر تجزیه و تحلیل داده های بزرگ، موارد ضروری R و Python برای تجزیه و تحلیل از جمله کتابخانه هایی مانند پانداها و NumPy به پایان می رسد. پس از تکمیل این کتاب، نحوه بهبود نتایج کسب و کار را با استفاده از R و Python برای تجزیه و تحلیل داده ها خواهید فهمید. آنچه می آموزید تسلط بر مبانی ریاضی مورد نیاز برای تجزیه و تحلیل کسب و کار بدانید مدل های تجزیه و تحلیل مختلف و تکنیک های داده کاوی مانند رگرسیون، الگوریتم های یادگیری ماشین نظارت شده برای مدل سازی، تکنیک های مدل سازی بدون نظارت، و نحوه انتخاب الگوریتم صحیح برای تجزیه و تحلیل در هر کار داده شده استفاده از R. و Python برای توسعه مدلهای توصیفی، مدلهای پیشبینیکننده و بهینهسازی مدلها تفسیر و توصیهکردن اقدامات مبتنی بر نتایج مدل تحلیلی این کتاب برای متخصصان نرمافزار و توسعهدهندگان، مدیران و مدیرانی است که میخواهند اصول تحلیل را با استفاده از R و Python درک کنند و یاد بگیرند. .
This book illustrates how data can be useful in solving business problems. It explores various analytics techniques for using data to discover hidden patterns and relationships, predict future outcomes, optimize efficiency and improve the performance of organizations. You’ll learn how to analyze data by applying concepts of statistics, probability theory, and linear algebra. In this new edition, both R and Python are used to demonstrate these analyses. Practical Business Analytics Using R and Python also features new chapters covering databases, SQL, Neural networks, Text Analytics, and Natural Language Processing. Part one begins with an introduction to analytics, the foundations required to perform data analytics, and explains different analytics terms and concepts such as databases and SQL, basic statistics, probability theory, and data exploration. Part two introduces predictive models using statistical machine learning and discusses concepts like regression, classification, and neural networks. Part three covers two of the most popular unsupervised learning techniques, clustering and association mining, as well as text mining and natural language processing (NLP). The book concludes with an overview of big data analytics, R and Python essentials for analytics including libraries such as pandas and NumPy. Upon completing this book, you will understand how to improve business outcomes by leveraging R and Python for data analytics. What You Will Learn Master the mathematical foundations required for business analytics Understand various analytics models and data mining techniques such as regression, supervised machine learning algorithms for modeling, unsupervised modeling techniques, and how to choose the correct algorithm for analysis in any given task Use R and Python to develop descriptive models, predictive models, and optimize models Interpret and recommend actions based on analytical model outcomes Who This Book Is For Software professionals and developers, managers, and executives who want to understand and learn the fundamentals of analytics using R and Python.
Table of Contents About the Authors Preface Foreword Chapter 1: An Overview of Business Analytics 1.1 Introduction 1.2 Objectives of This Book 1.3 Confusing Terminology 1.4 Drivers for Business Analytics 1.4.1 Growth of Computer Packages and Applications 1.4.2 Feasibility to Consolidate Data from Various Sources 1.4.3 Growth of Infinite Storage and Computing Capability 1.4.4 Survival and Growth in the Highly Competitive World 1.4.5 Business Complexity Growing Out of Globalization 1.4.6 Easy-to-Use Programming Tools and Platforms 1.5 Applications of Business Analytics 1.5.1 Marketing and Sales 1.5.2 Human Resources 1.5.3 Product Design 1.5.4 Service Design 1.5.5 Customer Service and Support Areas 1.6 Skills Required for an Analytics Job 1.7 Process of an Analytics Project 1.8 Chapter Summary Chapter 2: The Foundations of Business Analytics 2.1 Introduction 2.2 Population and Sample 2.2.1 Population 2.2.2 Sample 2.3 Statistical Parameters of Interest 2.3.1 Mean 2.3.2 Median 2.3.3 Mode 2.3.4 Range 2.3.5 Quantiles 2.3.6 Standard Deviation 2.3.7 Variance 2.3.8 Summary Command in R 2.4 Probability 2.4.1 Rules of Probability 2.4.1.1 Probability of Mutually Exclusive Events 2.4.1.2 Probability of Mutually Nonexclusive Events 2.4.1.3 Probability of Mutually Independent Events 2.4.1.4 The Probability of the Complement 2.4.2 Probability Distributions 2.4.2.1 Normal Distribution 2.4.2.2 Binomial Distribution 2.4.2.3 Poisson Distribution 2.4.3 Conditional Probability 2.5 Computations on Data Frames 2.6 Scatter Plot 2.7 Chapter Summary Chapter 3: Structured Query Language Analytics 3.1 Introduction 3.2 Data Used by Us 3.3 Steps for Business Analytics 3.3.1 Initial Exploration and Understanding of the Data 3.3.2 Understanding Incorrect and Missing Data, and Correcting Such Data 3.3.3 Further Exploration and Reporting on the Data 3.3.3.1 Additional Examples of the Useful SELECT Statements 3.4 Chapter Summary Chapter 4: Business Analytics Process 4.1 Business Analytics Life Cycle 4.1.1 Phase 1: Understand the Business Problem 4.1.2 Phase 2: Data Collection 4.1.2.1 Sampling 4.1.3 Phase 3: Data Preprocessing and Preparation 4.1.3.1 Data Types 4.1.3.2 Data Preparation Handling Missing Values Handling Duplicates, Junk, and Null Values 4.1.3.3 Data Transformation Normalization 4.1.4 Phase 4: Explore and Visualize the Data 4.1.5 Phase 5: Choose Modeling Techniques and Algorithms 4.1.5.1 Descriptive Analytics 4.1.5.2 Predictive Analytics 4.1.5.3 Machine Learning Supervised Machine Learning Unsupervised Machine Learning 4.1.6 Phase 6: Evaluate the Model 4.1.7 Phase 7: Report to Management and Review 4.1.7.1 Problem Description 4.1.7.2 Data Set Used 4.1.7.3 Data Cleaning Steps Carried Out 4.1.7.4 Method Used to Create the Model 4.1.7.5 Model Deployment Prerequisites 4.1.7.6 Model Deployment and Usage 4.1.7.7 Handling Production Problems 4.1.8 Phase 8: Deploy the Model 4.2 Chapter Summary Chapter 5: Exploratory Data Analysis 5.1 Exploring and Visualizing the Data 5.1.1 Tables 5.1.2 Describing Data: Summary Tables 5.1.3 Graphs 5.1.3.1 Histogram 5.1.3.2 Box Plots Parts of Box Plots Box Plots Using Python 5.1.3.3 Bivariate Analysis 5.1.3.4 Scatter Plots 5.1.4 Scatter Plot Matrices 5.1.4.1 Correlation Plot 5.1.4.2 Density Plots 5.2 Plotting Categorical Data 5.3 Chapter Summary Chapter 6: Evaluating Analytics Model Performance 6.1 Introduction 6.2 Regression Model Evaluation 6.2.1 Root-Mean-Square Error 6.2.2 Mean Absolute Percentage Error 6.2.3 Mean Absolute Error (MAE) or Mean Absolute Deviation (MAD) 6.2.4 Sum of Squared Errors (SSE) 6.2.5 R2 (R-Squared) 6.2.6 Adjusted R2 6.3 Classification Model Evaluation 6.3.1 Classification Error Matrix 6.3.2 Sensitivity Analysis in Classification 6.4 ROC Chart 6.5 Overfitting and Underfitting 6.5.1 Bias and Variance 6.6 Cross-Validation 6.7 Measuring the Performance of Clustering 6.8 Chapter Summary Chapter 7: Simple Linear Regression 7.1 Introduction 7.2 Correlation 7.2.1 Correlation Coefficient 7.3 Hypothesis Testing 7.4 Simple Linear Regression 7.4.1 Assumptions of Regression 7.4.2 Simple Linear Regression Equation 7.4.3 Creating a Simple Regression Equation in R 7.4.4 Testing the Assumptions of Regression 7.4.4.1 Test of Linearity 7.4.4.2 Test of Independence of Errors Around the Regression Line 7.4.4.3 Test of Normality 7.4.4.4 Equal Variance of the Distribution of the Response Variable 7.4.4.5 Other Ways of Validating the Assumptions to Be Fulfilled by a Regression Model Using the gvlma Library Using the Scale-Location Plot Using the crPlots(model name) Function from library(car) 7.4.5 Conclusion 7.4.6 Predicting the Response Variable 7.4.7 Additional Notes 7.5 Using Python to Generate the Model and Validating the Assumptions 7.5.1 Load Important Packages and Import the Data 7.5.2 Generate a Simple Linear Regression Model 7.5.3 Alternative Way for Generation of the Model 7.5.4 Validation of the Significance of the Generated Model 7.5.5 Validating the Assumptions of Linear Regression 7.5.6 Predict Using the Model Generated 7.6 Chapter Summary Chapter 8: Multiple Linear Regression 8.1 Using Multiple Linear Regression 8.1.1 The Data 8.1.2 Correlation 8.1.3 Arriving at the Model 8.1.4 Validation of the Assumptions of Regression 8.1.5 Multicollinearity 8.1.6 Stepwise Multiple Linear Regression 8.1.7 All Subsets Approach to Multiple Linear Regression 8.1.8 Multiple Linear Regression Equation 8.1.9 Conclusion 8.2 Using an Alternative Method in R 8.3 Predicting the Response Variable 8.4 Training and Testing the Model 8.5 Cross Validation 8.6 Using Python to Generate the Model and Validating the Assumptions 8.6.1 Load the Necessary Packages and Import the Data 8.6.2 Generate Multiple Linear Regression Model 8.6.3 Alternative Way to Generate the Model 8.6.4 Validating the Assumptions of Linear Regression 8.6.5 Predict Using the Model Generated 8.7 Chapter Summary Chapter 9: Classification 9.1 What Are Classification and Prediction? 9.1.1 K-Nearest Neighbor 9.1.2 KNN Algorithm 9.1.3 KNN Using R 9.1.4 KNN Using Python 9.2 Naïve Bayes Models for Classification 9.2.1 Naïve Bayes Classifier Model Example 9.2.2 Naïve Bayes Classifier Using R (Use Same Data Set as KNN) 9.2.3 Advantages and Limitations of the Naïve Bayes Classifier 9.3 Decision Trees 9.3.1 Decision Tree Algorithm 9.3.1.1 Entropy 9.3.1.2 Information Gain 9.3.2 Building a Decision Tree 9.3.3 Classification Rules from Tree 9.3.3.1 Limiting Tree Growth and Pruning the Tree 9.4 Advantages and Disadvantages of Decision Trees 9.5 Ensemble Methods and Random Forests 9.6 Decision Tree Model Using R 9.7 Decision Tree Model Using Python 9.7.1 Creating the Decision Tree Model 9.7.2 Making Predictions 9.7.3 Measuring the Accuracy of the Model 9.7.4 Creating a Pruned Tree 9.8 Chapter Summary Chapter 10: Neural Networks 10.1 What Is an Artificial Neural Network? 10.2 Concept and Structure of Neural Networks 10.2.1 Perceptrons 10.2.2 The Architecture of Neural Networks 10.3 Learning Algorithms 10.3.1 Predicting Attrition Using a Neural Network 10.3.2 Classification and Prediction Using a Neural Network 10.3.3 Training the Model 10.3.4 Backpropagation 10.4 Activation Functions 10.4.1 Linear Function 10.4.2 Sigmoid Activation Function 10.4.3 Tanh Function 10.4.4 ReLU Activation Function 10.4.5 Softmax Activation Function 10.4.6 Selecting an Activation Function 10.5 Practical Example of Predicting Using a Neural Network 10.5.1 Implementing a Neural Network Model Using R 10.5.1.1 Exploring Data 10.5.1.2 Preprocessing Data 10.5.1.3 Preparing the Train and Test Data 10.5.1.4 Creating a Neural Network Model Using the Neuralnet() Package 10.5.1.5 Predicting Test Data 10.5.1.6 Summary Report 10.5.1.7 Model Sensitivity Analysis and Performance 10.5.1.8 ROC and AUC 10.6 Implementation of a Neural Network Model Using Python 10.7 Strengths and Weaknesses of Neural Network Models 10.8 Deep Learning and Neural Networks 10.9 Chapter Summary Chapter 11: Logistic Regression 11.1 Logistic Regression 11.1.1 The Data 11.1.2 Creating the Model 11.1.3 Model Fit Verification 11.1.4 General Words of Caution 11.1.5 Multicollinearity 11.1.6 Dispersion 11.1.7 Conclusion for Logistic Regression 11.2 Training and Testing the Model 11.2.1 Example of Prediction 11.2.2 Validating the Logistic Regression Model on Test Data 11.3 Multinomial Logistic Regression 11.4 Regularization 11.5 Using Python to Generate Logistic Regression 11.5.1 Loading the Required Packages and Importing the Data 11.5.2 Understanding the Dataframe 11.5.3 Getting the Data Ready for the Generation of the Logistic Regression Model 11.5.4 Splitting the Data into Training Data and Test Data 11.5.5 Generating the Logistic Regression Model 11.5.6 Predicting the Test Data 11.5.7 Fine-Tuning the Logistic Regression Model 11.5.8 Logistic Regression Model Using the statsmodel() Library 11.6 Chapter Summary Chapter 12: Time Series: Forecasting 12.1 Introduction 12.2 Characteristics of Time-Series Data 12.3 Decomposition of a Time Series 12.4 Important Forecasting Models 12.4.1 Exponential Forecasting Models 12.4.2 ARMA and ARIMA Forecasting Models 12.4.3 Assumptions for ARMA and ARIMA 12.5 Forecasting in Python 12.5.1 Loading the Base Packages 12.5.2 Reading the Time-Series Data and Creating a Dataframe 12.5.3 Trying to Understand the Data in More Detail 12.5.4 Decomposition of the Time Series 12.5.5 Test Whether the Time Series Is “Stationary” 12.5.6 The Process of “Differencing” 12.5.7 Model Generation 12.5.8 ACF and PACF Plots to Check the Model Hyperparameters and the Residuals 12.5.9 Forecasting 12.6 Chapter Summary Chapter 13: Cluster Analysis 13.1 Overview of Clustering 13.1.1 Distance Measure 13.1.2 Euclidean Distance 13.1.3 Manhattan Distance 13.1.4 Distance Measures for Categorical Variables 13.2 Distance Between Two Clusters 13.3 Types of Clustering 13.3.1 Hierarchical Clustering 13.3.2 Dendrograms 13.3.3 Nonhierarchical Method 13.3.4 K-Means Algorithm 13.3.5 Other Clustering Methods 13.3.6 Evaluating Clustering 13.4 Limitations of Clustering 13.5 Clustering Using R 13.5.1 Hierarchical Clustering Using R 13.6 Clustering Using Python sklearn() 13.7 Chapter Summary Chapter 14: Relationship Data Mining 14.1 Introduction 14.2 Metrics to Measure Association: Support, Confidence, and Lift 14.2.1 Support 14.2.2 Confidence 14.2.3 Lift 14.3 Generating Association Rules 14.4 Association Rule (Market Basket Analysis) Using R 14.5 Association Rule (Market Basket Analysis) Using Python 14.6 Chapter Summary Chapter 15: Introduction to Natural Language Processing 15.1 Overview 15.2 Applications of NLP 15.2.1 Chatbots 15.2.2 Sentiment Analysis 15.2.3 Machine Translation 15.3 What Is Language? 15.3.1 Phonemes 15.3.2 Lexeme 15.3.3 Morpheme 15.3.4 Syntax 15.3.5 Context 15.4 What Is Natural Language Processing? 15.4.1 Why Is NLP Challenging? 15.5 Approaches to NLP 15.5.1 WordNet Corpus 15.5.2 Brown Corpus 15.5.3 Reuters Corpus 15.5.4 Processing Text Using Regular Expressions 15.5.4.1 re.search() Method 15.5.4.2 re.findall() 15.5.4.3 re.sub() 15.6 Important NLP Python Libraries 15.7 Important NLP R Libraries 15.8 NLP Tasks Using Python 15.8.1 Text Normalization 15.8.2 Tokenization 15.8.3 Lemmatization 15.8.4 Stemming 15.8.5 Stop Word Removal 15.8.6 Part-of-Speech Tagging 15.8.7 Probabilistic Language Model 15.8.8 N-gram Language Model 15.9 Representing Words as Vectors 15.9.1 Bag-of-Words Modeling 15.9.2 TF-IDF Vectors 15.9.3 Term Frequency 15.9.4 Inverse Document Frequency 15.9.5 TF-IDF 15.10 Text Classifications 15.11 Word2vec Models 15.12 Text Analytics and NLP 15.13 Deep Learning and NLP 15.14 Case Study: Building a Chatbot 15.15 Chapter Summary Chapter 16: Big Data Analytics and Future Trends 16.1 Introduction 16.2 Big Data Ecosystem 16.3 Future Trends in Big Data Analytics 16.3.1 Growth of Social Media 16.3.2 Creation of Data Lakes 16.3.3 Visualization Tools at the Hands of Business Users 16.3.4 Prescriptive Analytics 16.3.5 Internet of Things 16.3.6 Artificial Intelligence 16.3.7 Whole Data Processing 16.3.8 Vertical and Horizontal Applications 16.3.9 Real-Time Analytics 16.4 Putting the Analytics in the Hands of Business Users 16.5 Migration of Solutions from One Tool to Another 16.6 Cloud Analytics 16.7 In-Database Analytics 16.8 In-Memory Analytics 16.9 Autonomous Services for Machine Learning 16.10 Addressing Security and Compliance 16.11 Big data Applications 16.12 Chapter Summary Chapter 17: R for Analytics 17.1 Data Analytics Tools 17.2 Data Wrangling and Data Preprocessing Using R 17.2.1 Handling NAs and NULL Values in the Data Set 17.2.2 Apply() Functions in R 17.2.3 lapply() 17.2.4 sapply() 17.3 Removing Duplicate Records in the Data Set 17.4 split() 17.5 Writing Your Own Functions in R 17.6 Chapter Summary Chapter 18: Python Programming for Analytics 18.1 Introduction 18.2 pandas for Data Analytics 18.2.1 Data Slicing Using pandas 18.2.2 Statistical Data Analysis Using pandas 18.2.3 Pandas Database Functions 18.2.4 Data Preprocessing Using pandas 18.2.5 Handling Data Types 18.2.6 Handling Dates Variables 18.2.7 Feature Engineering 18.2.8 Data Preprocessing Using the apply() Function 18.2.9 Plots Using pandas 18.3 NumPy for Data Analytics 18.3.1 Creating NumPy Arrays with Zeros and Ones 18.3.2 Random Number Generation and Statistical Analysis 18.3.3 Indexing, Slicing, and Iterating 18.3.4 Stacking Two Arrays 18.4 Chapter Summary References Dataset CITATION Index Capture.PNG Capture.PNG Capture.PNG