دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Houman Dallali (editor), Emel Demircan (editor), Mo Rastgaar (editor) سری: ISBN (شابک) : 0128174501, 9780128174500 ناشر: Academic Pr سال نشر: 2020 تعداد صفحات: 270 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 16 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Powered Prostheses: Design, Control, and Clinical Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب پروتزهای برقی: طراحی، کنترل و کاربردهای بالینی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
پروتزهای برقی: طراحی، کنترل و کاربردهای بالینی بهروزترین فناوری را در طراحی، کنترل و کاربرد فنآوریهای کمکی مورد استفاده در توانبخشی، از جمله پروتزهای برقی مورد استفاده در قسمتهای تحتانی و فوقانی ارائه میدهد. قطع عضو و ارتز در توانبخشی اختلالات مفصلی مختلف استفاده می شود. پیشرفت های حاصل شده در این زمینه در دهه گذشته به قدری گسترده است که هر محقق جدیدی در این زمینه باید سال ها صرف هضم دستاوردها و چالش های اصلی باقی مانده باشد. این کتاب چشماندازی جامع از پیشرفتها، همراه با چالشهایی که در مسیر توسعه فناوری بیونیک واقعی باقی میمانند، ارائه میکند.
Powered Prostheses: Design, Control, and Clinical Applications presents the state-of-the-art in design, control and application of assistive technologies used in rehabilitation, including powered prostheses used in lower and upper extremity amputees and orthosis used in the rehabilitation of various joint disorders. The progress made in this field over the last decade is so vast that any new researcher in this field will have to spend years digesting the main achievements and challenges that remain. This book provides a comprehensive vision of advances, along with the challenges that remain on the path to the development of true bionic technology.
Cover Title Copyright Contributors Chapter 1 - Control of transhumeral prostheses based on electromyography pattern recognition: from amputees to deep learning 1 - Introduction 2 - Unmet needs for transhumeral amputees 3 - Available upper limb prostheses 4 - Myoelectric prosthesis, how does it work? 5 - EMG pattern recognition 6 - Deep learning 7 - Usability instead of accuracy 8 - Latest trend for transhumeral prosthesis 9 - Discussion 10 - Conclusion References Chapter 2 - The 2-DOF mechanical impedance of the human ankle during poses of the stance phase 1 - Introduction 2 - Methods 2.1 - Subjects 2.2 - Experimental setup 2.3 - Experimental protocol 2.4 - Dynamic simulation with Simulink multibody 2.5 - Analysis methods 2.5.1 - Apparatus dynamics 2.5.2 - Ankle impedance estimation 3 - Results and discussion 3.1 - Range of ankle torque and angle 3.2 - Dynamics of the experimental apparatus 3.3 - Mechanical impedance of the human ankle 3.4 - Validation using the simulation 4 - Conclusions References Chapter 3 - Task-dependent modulation of multi-dimensional human ankle stiffness 1 - Introduction 1.1 Importance of human ankle stiffness 1.2 Quasi-stiffness of the human ankle 1.3 - Quantification of single-dimensional human ankle stiffness 2 - Task-dependent modulation of multi-dimensional human ankle stiffness 2.1 - Importance of multi-dimensional human ankle stiffness 2.2 - Quantification of 2-dimensional human ankle stiffness during seated tasks 2.3 - Quantification of 2-dimensional human ankle stiffness during walking tasks 2.4 - Quantification of 2-dimensional human ankle stiffness during standing tasks 3 - Summary References Chapter 4 - Kriging for prosthesis control 1 - Related work 2 - Locomotion envelopes 2.1 - Noise modeling 2.1.1 - Complex noise models 2.2 - Gait cycle stride-time regression 2.3 - Analysis of human ambulation 2.4 - Experimental data 3 - Simulation setup 3.1 - Impedance control 4 - Prosthesis impedance controller 5 - Empirical evaluation 5.1 - Kernel design 5.2 - Accelerating and decelerating 5.3 - Torque-angle relationship at test points 5.3.1 - Nearest neighbor interpolation 5.3.2 - Linear regression 5.3.3 - Piecewise cubic curvature-minimizing interpolation 5.4 - Torque-angle relationship for held-out observations 5.5 - Hardware experiments 5.5.1 - Preprocessing and single-cycle extraction 5.5.2 - Results 6 - Discussion and conclusion 6.1 - Conclusion References Chapter 5 - Disturbance observer applications in rehabilitation robotics: an overview 1 - Introduction 2 - Background on disturbance observers 3 - Disturbance observers in upper extremity robotic rehabilitation 3.1 - Upper arm/forearm rehabilitation 3.2 - Hand rehabilitation 4 - Disturbance observers in lower extremity robotic rehabilitation 4.1 - Ankle rehabilitation 4.2 - Knee and knee-ankle rehabilitation 5 - Disturbance observers in robotic telerehabilitation 6 - Conclusion and further remarks References Chapter 6 - Reduction in the metabolic cost of human walking gaits using quasi-passive upper body exoskeleton 1 - Introduction 2 - Methodology 2.1 - Testing apparatus and procedure 2.1.1 - Upper body passive exoskeleton fabrication and experimental results 2.1.2 Upper body quasi-passive exoskeleton fabrication and experimental results 3 - Discussion and conclusion References Chapter 7 - Neural control in prostheses and exoskeletons 1 - Overview 2 - Sensory signals for control 2.1 Physical signals 2.2 - Physiological signals 2.3 - Neural signals 3 Neural control as part of the control architecture 3.1 - Background 3.2 - Neural control 3.2.1 - Central pattern generators 3.3 - Neuromuscular model for control 3.4 - Application of neural control for gait assistance 4 - Template-based neural control 4.1 - Why template-based control? 4.2 - Neuromechanical-template-based control 4.3 - FMCA concept 4.3.1 - Simulation 4.3.2 - Human experiments 5 - Summary References Chapter 8 - Stair negotiation made easier using low-energy interactive stairs 1 Introduction 2 Materials and methods 2.1 Energy-recycling assistive stairs 2.2 Human experiment 2.2.1 - Gait phase definition 2.2.2 - Joint work calculation 2.2.3 - Statistical analysis 3 Results 3.1 Operation of energy-recycling stairs 3.2 Assessment of assistance provided during stair negotiation 3.2.1 - Stair ascent 3.2.2 Stair descent 4 Discussion 4.1 Implications of ERAS as an assistive device 4.2 Experimental limitations and justifications 5 Summary Acknowledgments References Chapter 9 - Semi-active prostheses for low-power gait adaptation 1 - Adaptability in lower-limb control 1.1 - Current semi-active prostheses 1.2 - Benefits of modulating properties in prostheses 2 - The semi-active approach to biomechatronic design 3 - The semi-active design process 3.1 - Motivating a semi-active device 3.1.1 - “What is the body doing?”—defining models of biomechanical behavior 3.1.1.1 - Describing behavior 3.1.1.2 - Conceptual modeling 3.1.1.3 - Mathematical modeling 3.1.2 - “What happens if the task is done differently?”—predicting the effects of device parameter changes 3.1.3 - “How can we tell if the movement changes?”—developing metrics to quantify behavior 3.1.4 - “Do existing prostheses produce a deficit?”—evaluating the potential value 3.2 - Designing the semi-active mechanism 3.2.1 - “How could a semi-active device accomplish the goal?”—design for semi-active actuation 3.2.2 - “How and when should the prosthesis adapt?”—Controlling semi-active adaptation 3.3 - Evaluating performance in semi-active devices 3.3.1 - “Does it work?” 3.3.2 - “Does it have the intended effect?” 3.3.3 - “Do people like it?” 3.4 - Iterate, iterate, iterate 4 - Design principles for semi-active mechanisms 4.1 - Exploiting the gait cycle 4.2 - Clutches and latches 4.3 - Non-backdriveability 4.3.1 - Friction as an ally 4.3.2 - Orthogonal and Inclined-plane actuation 4.3.3 - Kinematic singularities 4.4 - Springs to replace actuators and simplify control 4.5 - High static forces, quick unloaded movements 4.6 - Simplicity and durability 5 - Example concepts and design implementations 5.1 - The foot as a wheel 5.1.1 - Description of behavior: rolling 5.1.2 - Mathematical model: radius of a wheel 5.1.3 - Variations: effects of different radii 5.1.4 - Implementation: the Rock’n’Lock foot 5.1.4.1 - Semi-active design features of the Rock’n’Lock 5.1.4.2 - Performance and benefits of the Rock’n’Lock 5.1.4.3 - Challenges of the Rock’n’Lock design 5.2 - The ankle as a spring 5.2.1 - Description of behavior: increasing ankle moment with increasing angle 5.2.2 - Mathematical model: torque versus ankle angle relationship 5.2.3 - Variations: effects of different stiffnesses 5.2.4 - Implementation: the variable-stiffness foot (VSF) 5.2.4.1 - Semi-active design features of the VSF 5.2.4.2 - Performance and benefits of the VSF 5.2.4.3 - Challenges of the VSF design 5.3 - The ankle as an angle adapter 5.3.1 - Description of behavior: ankle adaptation to slopes, stairs, speeds, and turns 5.3.2 - Mathematical model: controlling the neutral angle of a spring or shape 5.3.3 - Variations: effects of angle changes 5.3.4 - Implementation: The Two-Axis ‘Daptable Ankle (TADA) 5.3.4.1 - Semi-active design features of the TADA 5.3.4.2 - Performance of the TADA 5.3.4.3 - Challenges of the TADA design 6 - Challenges of semi-active prostheses 7 - Conclusion References Index Back Cover