دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Fang Zhu. Baitun Yang
سری:
ISBN (شابک) : 0367418436, 9780367418434
ناشر: CRC Press
سال نشر: 2021
تعداد صفحات: 283
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 8 مگابایت
در صورت تبدیل فایل کتاب Power Transformer Design Practices به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب روش های طراحی ترانسفورماتور قدرت نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب تئوریهای اساسی عملکرد ترانسفورماتور، اصول طراحی و روشهای مورد استفاده در کار طراحی ترانسفورماتور قدرت را ارائه میکند و شامل معیارهای محدودیت، استفاده مؤثر از مواد، و مثالهای محاسباتی برای تقویت تکنیکهای طراحی و آزمایش ترانسفورماتور خوانندگان است.
>شامل:
< /p>
< /p>
روشهای بهینهسازی طراحی نیز در سرتاسر مورد بحث قرار گرفتهاند. این کتاب به عنوان هدفی برای دستیابی به بهترین عملکرد در طراحی اقتصادی است.
این کتاب حاوی مطالب مرجع عالی برای مهندسان، دانشجویان، معلمان، محققان و هر کسی در زمینه مرتبط با طراحی، ساخت، آزمایش و کاربرد ترانسفورماتور قدرت است. و نگهداری خدمات همچنین سطح بالایی از جزئیات را برای کمک به تحقیقات و توسعه آینده برای حفظ توان الکتریکی به عنوان یک منبع انرژی قابل اعتماد و مقرون به صرفه فراهم می کند.
The book presents basic theories of transformer operation, design principles and methods used in power transformer designing work, and includes limitation criteria, effective utilization of material, and calculation examples to enhance readers’ techniques of transformer design and testing.
It includes:
The ways to optimize design are also discussed throughout the book as a goal to achieve best performances on economic design.
The book contains great reference material for engineers, students, teachers, researchers and anyone in the field associated with power transformer design, manufacture, testing, application and service maintenance. It also provides a high level of detail to help future research and development maintain electrical power as a reliable and economical energy resource.
Cover Half Title Title Page Copyright Page Dedication Table of Contents Preface Authors Chapter 1: Introduction 1.1 Basic Theory 1.1.1 Voltage and Current of Windings 1.1.2 Losses 1.1.3 Maximum Leakage Flux Density 1.1.4 Impedance 1.1.5 Efficiency and Voltage Regulation 1.1.6 Winding Disposition 1.1.6.1 Winding Space Factor 1.1.7 Winding Connections 1.1.7.1 Delta–Delta Connection 1.1.7.2 Wye–Wye Connection 1.1.7.3 Delta–Wye and Wye–Delta Connections 1.2 Practical Considerations in Design 1.2.1 Minimum I 2 R Loss 1.2.2 The Most Economic Utilization of Active Materials 1.3 Active Part Material Cost 1.3.1 Loss and Mass Ratio for Maximum Efficiency 1.3.2 Mass Ratio for Minimum Cost of Material References Chapter 2: Core 2.1 Core materials 2.2 Core Types 2.2.1 Three-Leg Core 2.2.2 Five-Leg Core 2.3 No-Load Loss 2.3.1 Components of No-Load Loss 2.3.1.1 Hysteresis Loss 2.3.1.2 Eddy Current Loss 2.3.1.3 Additional Losses [ 6, 7, 8 ] 2.3.1.4 Interlaminar Loss 2.3.2 Calculation of No-Load Loss 2.3.2.1 Interlaminar Losses 2.4 Exciting Characteristics[ 4, 5, 9, 10 ] 2.4.1 Core Exciting Current 2.4.2 Influence of Winding Connections on Third Harmonic Voltages and Currents 2.4.2.1 Y–Y Connection with Both Isolated Neutrals 2.4.2.2 Y–Y Connection with Both Grounded Neutrals 2.4.2.3 Y–Y Connection with Isolated Primary Neutral and Grounded Secondary Neutral 2.4.2.4 Y–D or D–Y Connection 2.4.3 Undesirable Features of Third Harmonics 2.4.4 Calculation of Exciting Current 2.5 Inrush Current 2.6 Test Failures of No-Load Loss 2.7 Core Insulation and Ground 2.8 Flux Density Generated by Quasi-DC Current 2.9 Gapped Core References Chapter 3: Windings 3.1 Types of Winding 3.1.1 Layer Winding 3.1.2 Multi-Start Winding [ 2, 3 ] 3.1.3 Helical Winding 3.1.4 Disc Winding 3.2 Transpositions 3.2.1 Helical Winding 3.2.2 Disc Winding 3.3 Half-Turn Effect 3.4 Axial Split Windings 3.5 Cables Used in Winding References Chapter 4: Insulation 4.1 Voltages on Transformer Terminals 4.1.1 Service Voltage 4.1.2 Overvoltages 4.1.2.1 Upset of Symmetry of Voltage 4.1.2.2 Lightning Impulse 4.1.2.3 Switching Impulse 4.2 Voltage Inside Transformer 4.2.1 Analysis on Ideal Model 4.2.2 Transferred Voltage 4.2.3 Voltage across Regulating Winding 4.3 Insulation Materials 4.3.1 Mineral Oil 4.3.1.1 Electrode Shape 4.3.1.2 Electrode Spacing 4.3.1.3 Electrode Area 4.3.1.4 Duration of Applied Voltage 4.3.1.5 Temperature 4.3.1.6 Oil Volume 4.3.1.7 Velocity 4.3.1.8 Moisture 4.3.1.9 Gas in Oil [ 3, 8 ] 4.3.1.10 Oil Oxidation 4.3.2 Natural Ester Liquid [9, 10] 4.3.2.1 Fire Safety 4.3.2.2 Service Life 4.3.2.3 Thermal Performance 4.3.3 Paper Insulation 4.3.3.1 Moisture 4.3.3.2 Breakdown Stresses 4.3.4 Clamping Ring 4.4 Partial Discharge and Insulation Structure 4.4.1 Oil Duct Stress 4.4.2 Corner Stress 4.4.3 Creepage Breakdown 4.5 Major Insulation Design 4.5.1 Main Insulation Gap between Windings in Same Phase 4.5.2 Main Insulation Gap between Innermost Winding and Core 4.5.3 Main Insulation Gap between Windings in Different Phases 4.5.4 End Insulation 4.6 Minor Insulation Design 4.6.1 Turn-to-turn Insulation 4.6.2 Section-to-Section Insulation 4.6.3 Tap Gap Location 4.7 Lead Insulation 4.8 Typical Electric Field Patterns 4.8.1 Uniform Field 4.8.2 Coaxial Cylindrical Electrodes 4.8.3 Cylinder to plane References Chapter 5: Impedances 5.1 Positive Sequence/Negative Sequence Impedance 5.1.1 Reactance between Two Windings 5.1.2 Reactance between Series Connected Windings and Other Winding 5.1.3 Reactance of Zigzag Winding 5.1.4 Reactance of Three Windings 5.1.5 Lead Reactance 5.2 Zero Sequence Impedance [4, 5] References Chapter 6: Load Loss 6.1 I 2 R Loss 6.2 Winding Eddy Current Loss 6.3 Circulating Current Loss 6.3.1 Transposition of Helical Winding 6.3.2 Transposition of Disk Winding 6.4 Circulating Current Loss in Winding Leads 6.5 Losses in Metallic Structure Parts 6.5.1 Tie-Plate Loss 6.5.2 Clamping Plate Loss 6.5.3 Tank Wall Loss 6.6 Shunts 6.6.1 Shield from Winding Leakage Flux 6.6.2 Shield from High Current Leads References Chapter 7: Cooling 7.1 Basic Knowledge 7.1.1 Aging of Insulation Paper 7.1.2 Oil Thermal Behavior 7.1.3 Temperature Limits 7.2 Temperature Rises of Oil 7.2.1 Natural Oil Flow, Natural Air Cooling 7.2.2 Natural Oil Flow, Forced Air Cooling 7.2.3 Forced Oil Flow Cooling 7.3 Loading Capacity 7.3.1 Ultimate Temperature Rises under Different Load 7.3.2 Instant Temperature Rises 7.3.3 Winding Hot Spot Rise 7.4 Cooling of Winding 7.4.1 Losses Generated in Winding Cable 7.4.2 Winding Cooling Condition 7.4.2.1 Winding Gradient with Natural Oil Flow 7.4.2.2 Winding Gradient with Directed Forced Oil Flow References Chapter 8: Short-Circuit Obligation 8.1 Short-Circuit Events 8.2 Radial and Axial Electromagnetic Forces 8.2.1 Radial Force 8.2.2 Axial Force 8.3 Failure Modes 8.3.1 Failure Modes Caused by Radial Forces 8.3.1.1 Tensile Stress 8.3.1.2 Buckling 8.3.1.3 Spiraling 8.3.2 Failure Modes Caused by Axial Forces 8.3.2.1 Tilting 8.3.2.2 Axial Bending 8.3.2.3 Telescoping 8.3.2.4 Collapse of Winding End Supports 8.4 Short-Circuit Forces in Special Transformers 8.5 Short-Circuit Current Calculation 8.6 Impedance Effects on Short-Circuit Force 8.6.1 Transformer Inherent Impedance 8.6.2 External Neutral Impedance in Zero Sequence Network 8.7 Short-Circuit Forces on Leads 8.8 Thermal Capability of Withstanding Short Circuits 8.9 Measures for Robust Mechanical Structure 8.10 Compressive Stress on Radial Spacer 8.11 Axial Bending Stress on Conductor 8.12 Tilting Force 8.13 Hoop Stress References Chapter 9: Sound Levels 9.1 No-Load Sound 9.1.1 Magneto-Motive Force 9.1.2 Magnetostriction 9.1.3 Transmission 9.1.4 Abatement Techniques 9.2 Load Sound 9.2.1 Sound from Winding 9.2.2 Sound from Tank Wall 9.2.3 Sound from Magnetic Shunts 9.2.4 Abatement Techniques 9.3 Fan Sound 9.4 Total Sound 9.5 Sound Level Measurements 9.5.1 Sound Pressure Level 9.5.2 Sound Intensity Level 9.5.3 Sound Power Level References Chapter 10: Autotransformers 10.1 Basic Relations 10.2 Insulation Consideration 10.3 Tap Winding Electrical Locations 10.4 Winding Physical Disposition 10.5 Use of Auxiliary Transformers 10.6 Zero Sequence Impedance and Delta-Connected Winding 10.6.1 Stabilizing Winding Rating 10.6.2 Loaded Tertiary Winding References Chapter 11: Testing 11.1 Preliminary Tests 11.1.1 Ratio and Polarity 11.1.2 Winding DC Resistance 11.1.3 Power Factor and Capacitance 11.1.4 Insulation Resistance 11.2 No-Load Losses and Excitation Current 11.3 Lightning Impulse and Switching Impulse 11.3.1 Lightning Impulse Waveshape and Sweep Times 11.3.2 Test Set-Up and Procedure 11.3.3 Failure Detection 11.3.4 Switching Impulse 11.3.5 Transient Analysis 11.4 Applied Voltage 11.5 Induced Voltage and Partial Discharge Measurement 11.5.1 Induced Voltage Test 11.5.2 Partial Discharge Measurement 11.6 Load Losses and Impedance 11.6.1 Load Losses and Positive Impedance 11.6.2 Zero Sequence Impedance 11.7 Temperature Rise 11.8 Audible Sound level 11.9 Others 11.9.1 Oil 11.9.2 Dissolved Gas Analysis (DGA) [ 12 ] 11.9.3 Short-Circuit 11.9.4 Diagnostic Tests References Index A B C D E F G H I K L M N O P R S T U V W Y Z