دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2
نویسندگان: P.S.R. Murty
سری:
ISBN (شابک) : 0081011113, 9780081011119
ناشر: Butterworth-Heinemann
سال نشر: 2017
تعداد صفحات: 406
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 25 مگابایت
در صورت تبدیل فایل کتاب Power Systems Analysis به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تجزیه و تحلیل سیستم های قدرت نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
تجزیه و تحلیل سیستم های قدرت، ویرایش دوم، عملکرد سیستم قدرت متصل به هم را در شرایط پایدار و تحت شرایط عملیاتی دینامیکی در هنگام اختلالات توصیف می کند. این کتاب که در یک سطح پایه نوشته شده است، شامل مثالهای کار شده متعددی از مفاهیم مورد بحث در متن است، درک چگونگی حفظ جریان برق از طریق یک شبکه به هم پیوسته را فراهم میکند.
ویرایش دوم اطلاعات بیشتری در مورد پایداری سیستم قدرت، سیستم تحریک، و تجزیه و تحلیل اغتشاشات کوچک و همچنین بحثهای مربوط به یکپارچهسازی شبکه منابع انرژی تجدیدپذیر اضافه میکند. این کتاب برای استفاده بهعنوان مرجع، مرور، یا خودآموزی برای پزشکان و مشاوران، یا برای دانشجویان رشتههای مهندسی مرتبط که نیاز به کسب اطلاعات بیشتر در مورد سیستمهای قدرت دارند، طراحی شده است.
Power Systems Analysis, Second Edition, describes the operation of the interconnected power system under steady state conditions and under dynamic operating conditions during disturbances. Written at a foundational level, including numerous worked examples of concepts discussed in the text, it provides an understanding of how to keep power flowing through an interconnected grid.
The second edition adds more information on power system stability, excitation system, and small disturbance analysis, as well as discussions related to grid integration of renewable power sources. The book is designed to be used as reference, review, or self-study for practitioners and consultants, or for students from related engineering disciplines that need to learn more about power systems.
Cover Power Systems Analysis Copyright Dedication Preface 1 Introduction 1.1 The Electrical Power System 1.2 Network Models 1.3 Faults and Analysis 1.4 The Primitive Network 1.5 Power System Stability 1.6 Deregulation 1.7 Renewable Energy Resources 2 Graph Theory 2.1 Introduction 2.2 Definitions 2.3 Tree and Cotree 2.4 Basic Loops 2.5 Cut-Set 2.6 Basic Cut-Sets Worked Examples Problems Questions 3 Incidence Matrices 3.1 Element-Node Incidence Matrix 3.2 Bus Incidence Matrix 3.3 Branch-Path Incidence Matrix K 3.4 Basic Cut-Set Incidence Matrix 3.5 Augmented Cut-Set Incidence Matrix B˜ 3.6 Basic Loop Incidence Matrix 3.7 Augmented Loop Incidence Matrix 3.8 Network Performance Equations Worked Examples Questions Problems 4 Network Matrices 4.1 Introduction 4.2 Network Matrices 4.2.1 Network Matrices by Singular Transformations 4.2.1.1 Bus Admittance Matrix and Bus Impedance Matrix 4.2.1.2 Branch Admittance and Branch Impedance Matrices 4.2.1.3 Loop Impedance and Loop Admittance Matrices 4.2.2 Network Matrices by Nonsingular Transformation 4.2.2.1 Branch Admittance Matrix 4.2.2.2 Loop Impedance and Loop Admittance Matrices 4.3 Bus Admittance Matrix by Direct Inspection Worked Examples Questions Problems 5 Building of Network Matrices 5.1 Introduction 5.2 Partial Network 5.3 Addition of a Branch 5.3.1 Calculation of Mutual Impedances 5.3.2 Calculation of Self-Impedance of Added Branch Zab 5.3.3 Special Cases 5.4 Addition of a Link 5.4.1 Calculation of Mutual Impedances 5.4.2 Computation of Self-Impedance 5.4.3 Removal of Elements or Changes in Element 5.5 Removal or Change in Impedance of Elements with Mutual Impedance Worked Examples Problems Questions 6 Symmetrical Components 6.1 The Operator “a” 6.2 Symmetrical Components of Unsymmetrical Phases 6.3 Power in Sequence Components 6.4 Unitary Transformation for Power Invariance 7 Three-Phase Networks 7.1 Three-Phase Network Element Representation 7.1.1 Stationary Network Element 7.1.2 Rotating Network Element 7.1.3 Performance Relations for Primitive Three-Phase Network Element 7.2 Three-Phase Balanced Network Elements 7.2.1 Balanced Excitation 7.2.2 Transformation Matrices 7.3 Three-Phase Impedance Networks 7.3.1 Incidence and Network Matrices for Three-Phase Networks 7.3.2 Algorithm for Three-Phase Bus Impedance Matrix 7.3.2.1 Performance Equation of a Partial Three-Phase Network 7.3.2.2 Addition of a Branch 7.3.2.3 Addition of a Link Summary of the Formulae Worked Examples Questions Problems 8 Synchronous Machine 8.1 The Two-Axis Model of Synchronous Machine 8.2 Derivation of Park’s Two-Axis Model 8.3 Synchronous Machine Analysis 8.3.1 Voltage Relations—Stator or Armature 8.3.1.1 Field or Rotor 8.3.1.2 Direct Axis Damper Windings 8.3.1.3 Quadrature Axis Damper Windings 8.3.2 Flux Linkage Relations 8.3.2.1 Armature 8.3.2.2 Field 8.3.2.3 Direct Axis Damper Winding 8.3.2.4 Quadrature Axis Damper Winding 8.3.3 Inductance Relations 8.3.3.1 Self-Inductance of the Armature Windings 8.3.3.2 Mutual Inductances of the Armature Windings 8.3.3.3 Mutual Inductances Between Stator and Rotor Flux 8.3.4 Flux Linkage Equations 8.3.4.1 Field 8.3.4.2 Direct Axis Damper Winding 8.3.4.3 Quadrature Axis Damper Winding 8.4 The Transformations 8.5 Stator Voltage Equations 8.6 Steady-State Equation 8.7 Steady-State Vector Diagram 8.8 Reactances 8.9 Equivalent Circuits and Phasor Diagrams 8.9.1 Model for Transient Stability 8.10 Transient State Phasor Diagram 8.11 Power Relations 8.12 Synchronous Machine Connected Through an External Reactance Worked Examples Questions Problems 9 Lines and Loads 9.1 Lines 9.1.1 Short Lines 9.1.2 Medium Lines 9.1.3 Long Lines 9.2 Transformers 9.2.1 Transformer with Nominal Turns Ratio 9.2.2 Phase Shifting Transformers 9.3 Load Modeling 9.3.1 Constant Current Model 9.3.2 Constant Impedance Model 9.3.3 Constant Power Model 9.4 Composite Load 9.4.1 Dynamic Characteristics 9.5 Induction Machine Modeling 9.6 Model with Mechanical Transients 9.6.1 Power Torque and Slip 9.6.2 Reactive Power and Slip 9.6.3 Synchronous Motor 9.7 Rectifiers and Inverter Loads 9.7.1 Static Load Modeling for Load Flow Studies 9.7.2 Voltage Dependence of Equivalent Loads 9.7.3 Derivation for Equivalent Load Powers Worked Examples Questions Problems 10 Power Flow Studies 10.1 Necessity for Power Flow Studies 10.2 Conditions for Successful Operation of a Power System 10.3 The Power Flow Equations 10.4 Classification of Buses 10.5 Bus Admittance Formation 10.6 System Model for Load Flow Studies 10.7 Gauss–Seidel Method 10.8 Gauss–Seidel Iterative Method 10.8.1 Acceleration Factor 10.8.2 Treatment of a PV Bus 10.9 Newton–Raphson Method 10.9.1 Rectangular Coordinates Method 10.9.2 The Polar Coordinates Method 10.10 Sparsity of Network Admittance Matrices 10.11 Triangular Decomposition 10.12 Optimal Ordering 10.13 Decoupled Methods 10.14 Fast Decoupled Methods 10.15 Load Flow Solution Using Z-Bus 10.15.1 Bus Impedance Formation 10.15.2 Addition of a Line to the Reference Bus 10.15.3 Addition of a Radial Line and New Bus 10.15.4 Addition of a Loop Closing Two Existing Buses in the System 10.15.5 Gauss–Seidel Method Using Z-Bus for Load Flow Solution 10.16 Convergence Characteristics 10.17 Comparison of Various Methods for Power Flow Solution Worked Examples Problems Questions 11 Short Circuit Analysis 11.1 Per Unit Quantities 11.2 Advantages of Per Unit System 11.3 Three-Phase Short Circuits 11.4 Reactance Diagrams 11.5 Percentage Values 11.6 Short Circuit kVA 11.7 Importance of Short Circuit Currents 11.8 Analysis of R–L Circuit 11.9 Three-Phase Short Circuit on Unloaded Synchronous Generator 11.10 Effect of Load Current or Prefault Current 11.11 Reactors 11.11.1 Construction of Reactors 11.11.2 Classification of Reactors Worked Examples Problems Questions 12 Unbalanced Fault Analysis 12.1 Sequence Impedances 12.2 Balanced Star Connected Load 12.3 Transmission Lines 12.4 Sequence Impedances of Transformer 12.5 Sequence Reactances of Synchronous Machine 12.6 Sequence Networks of Synchronous Machines 12.6.1 Positive Sequence Network 12.6.2 Negative Sequence Network 12.6.3 Zero Sequence Network 12.7 Unsymmetrical Faults 12.8 Assumptions for System Representation 12.9 Unsymmetrical Faults on an Unloaded Generator 12.10 Line-to-Line Fault 12.11 Double Line-to-Ground Fault 12.12 Single Line-to-Ground Fault with Fault Impedance 12.13 Line-to-Line Fault with Fault Impedance 12.14 Double Line-to-Ground Fault With Fault Impedance Worked Examples Problems Questions 13 Power System Stability 13.1 Elementary Concepts 13.2 Illustration of Steady State Stability Concept 13.3 Methods for Improcessing Steady State Stability Limit 13.4 Synchronizing Power Coefficient 13.5 Short Circuit Ratio and Excitation System 13.6 Transient Stability 13.7 Stability of a Single Machine Connected to Infinite Bus 13.8 The Swing Equation 13.9 Equal Area Criterion and Swing Equation 13.10 Transient Stability Limit 13.11 Frequency of Oscillations 13.12 Critical Clearing Time and Critical Clearing Angle 13.13 Fault on a Double-Circuit Line 13.14 Transient Stability When Power Is Transmitted During the Fault 13.15 Fault Clearance and Reclosure in Double-Circuit System 13.16 First Swing Stability 13.17 Solution to Swing Equation Step-by-Step Method 13.18 Factors Affecting Transient Stability 13.18.1 Effect of Voltage Regulator 13.19 Excitation System and the Stability Problem 13.20 Dynamic Stability 13.20.1 Power System Stabilizer 13.21 Small Disturbance Analysis 13.22 Node Elimination Methods 13.23 Other Methods for Solution of Swing Equation 13.23.1 Modified Euler’s Method Worked Examples Problems Questions Index Back Cover