دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Samir I. Abood, John Fuller سری: ISBN (شابک) : 9781032495507, 9781003394389 ناشر: CRC Press سال نشر: 2024 تعداد صفحات: [405] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 40 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Power System Protection and Relaying. Computer-Aided Design Using SCADA Technology به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب حفاظت و رله سازی سیستم قدرت طراحی به کمک کامپیوتر با استفاده از فناوری SCADA نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
The book is intended as a textbook for a senior-level undergraduate student in electrical and computer engineering departments and is appropriate for Graduate Students, Industry Professionals, Researchers, and Academics.
Cover Half Title Title Page Copyright Page Dedication Table of Contents Preface Acknowledgments Authors Chapter 1 Introduction to Power Protection Systems 1.1 Introduction 1.2 Philosophy of Power System Protection 1.3 Effects of Faults 1.4 Performance Requirements of Protection System 1.5 Basic Protection Scheme Components 1.6 Protective Relay 1.7 Transducers 1.7.1 Current Transformer 1.7.1.1 IEC Standard Accuracy Classes 1.7.2 Voltage Transformer 1.7.3 Magnetic Voltage Transformer (VT) 1.7.4 Capacitive Voltage Transformers (CVT) 1.8 Relay Connection to the Primary System 1.9 CT Error 1.10 Protective Zones 1.10.1 Backup Protection 1.10.2 Selectivity and Zones of Protection Selectivity 1.11 R–X Diagram Problems Chapter 2 Protective Relays 2.1 Introduction 2.2 Data Required for the Relay Setting 2.3 Class of Measuring Relays 2.4 Basic Definitions and Standard Device Numbers 2.4.1 Definitions of Terms 2.4.2 Devices Numbers 2.5 Classification of Relays 2.6 Types of Relays 2.6.1 Electromagnetic Relays 2.6.1.1 Electromechanical Relays 2.6.1.2 Magnetic Induction Relays 2.6.1.3 Magnetic Attraction Relays 2.7 Comparator Relays 2.7.1 Generalized Amplitude Comparator 2.8 Advantages of Electromechanical Relays 2.9 Solid-State Relays 2.9.1 Solid-State Relay Principle of Operation 2.10 Computerized Relay 2.10.1 Digital Relays 2.10.2 Digital Relays Operation 2.10.3 Signal Path for Microprocessor Relays 2.10.4 Digital Relay Construction 2.10.5 Advantages of Digital Relays 2.11 Numerical Relays 2.11.1 Numerical Measurement Treatment 2.11.2 Advantages of Numerical Technology 2.12 Electromagnetic vs. Computerized Problems Chapter 3 Protection Systems with SCADA Technology 3.1 Introduction 3.2 Background 3.2.1 Benefit sand Drawbacks 3.2.2 Applications 3.2.3 Challenges 3.3 SCADA System and Its Levels 3.4 Basic Functions of the SCADA Systems 3.4.1 Remote Supervision 3.4.2 Remote Control of the Process 3.4.3 Graphics Trends Presentation 3.4.4 Alarm Presentations 3.4.5 Storage of Historical Information 3.4.5.1 Field Instrumentation 3.4.5.2 PLCs and RTUs 3.4.5.3 Remote Communications Networks 3.4.5.4 SCADA Host Software 3.5 SCADA Architecture Development 3.6 Security 3.7 Future Implementations 3.8 Hardware Devices Chapter 4 Faults Analysis 4.1 Introduction 4.2 Fault Concept 4.3 Types of Faults 4.4 Symmetrical Fault Analysis 4.4.1 Simplified Models of Synchronous Machines for Transient Analysis 4.4.2 Transient Phenomena 4.4.3 Three-Phase Short-Circuit Unloaded Synchronous Machine 4.4.4 Effect of Load Current 4.5 Unsymmetrical Faults Analysis 4.6 Symmetrical Components 4.6.1 Positive-Sequence Components 4.6.2 Negative-Sequence Components 4.6.3 Zero-Sequence Components 4.7 Effect of Symmetrical Components on Impedance 4.8 Phase Shift Δ/Y Connection Δ/Y 4.9 Sequence Network of Unloaded Generator 4.9.1 Positive-Sequence Network 4.9.2 Negative-Sequence Network 4.9.3 Zero Sequence 4.10 Analysis of Unsymmetrical Faults Using the Method of Symmetrical Component 4.10.1 Single Line-to-Ground Fault 4.10.2 Line-to-Line Fault 4.10.3 Double Line-to-Ground Fault 4.11 Fault Classification 4.12 Assumptions and Simplifications 4.13 Fault Voltage-Amps 4.14 Fault Analysis by the SCADA System 4.15 Measurement of Zero-Sequence Impedance 4.16 Symmetric (Three-Pole) Short Circuit 4.17 Asymmetric Short Circuits 4.17.1 Single-Pole Short Circuit (Earth Fault) 4.17.2 Two-Pole Short Circuit with Earth Fault 4.17.3 Two-Pole Short Circuit without Earth Fault 4.18 Earth Faults and Their Compensation 4.18.1 Earth-Fault Compensation 4.18.2 Earth Fault with an Isolated Neutral Point 4.19 Overcurrent Time Protection Problems Chapter 5 Fuses and Circuit Breakers 5.1 Introduction 5.2 Load and Fuse Current 5.3 Fuses, Sectionalizes, Reclosers 5.4 ELCB, MCB, and MCCB 5.4.1 Earth Leakage Circuit Breaker (ELCB) 5.4.2 Miniature Circuit Breaker (MCB) 5.4.3 Molded Case Circuit Breaker (MCCB) 5.5 Construction and Working of a Fuse 5.6 Characteristics of a Fuse 5.6.1 Fuse Current-Carrying Capacity 5.6.2 Breaking Capacity 5.6.3 Rated Voltage of Fuse 5.6.4 I[sup(2)]t Value of Fuse 5.6.5 Response Characteristic of a Fuse 5.7 Classification of Fuses 5.8 Types of Fuses 5.8.1 DC Fuses 5.8.2 AC Fuses 5.9 Cartridge Fuses 5.10 D–Type Cartridge Fuse 5.11 HRC (High Rupturing Capacity) Fuse or Link-Type Cartridge Fuse 5.12 HV Fuses 5.13 Automotive, Blade Type, and Fuses of Bolted Type 5.14 SMD Fuses (Surface Mount Fuse), Chip, Radial, and Lead Fuses 5.15 Fuse Characteristics 5.15.1 Fuse Type 5.15.2 Rated Currents and Voltages 5.15.3 Conventional Non-Fusing and Fusing Currents 5.15.4 Operating Zone 5.15.5 Breaking Capacity 5.15.6 Selectivity 5.16 Rewireable Fuses 5.17 Thermal Fuses 5.18 Resettable Fuses 5.19 Uses and Applications of Fuses 5.20 HV Circuit Breakers 5.20.1 Oil Circuit Breakers 5.20.1.1 Bulk Oil Circuit Breaker (BOCB) 5.20.1.2 Minimum Oil Circuit Breaker (MOCB) 5.20.2 SF6 Circuit Breakers 5.20.2.1 Disadvantages 5.20.2.2 Applications 5.20.3 Vacuum Circuit Breakers 5.20.3.1 VCB Circuit Breaker Components 5.20.4 Air-Blast Circuit Breakers 5.20.4.1 Types of Air-Blast Circuit Breakers 5.21 Directional Overcurrent Time Protection 5.22 Testing Direction Recognition Problems Chapter 6 Overcurrent Relay 6.1 Introduction 6.2 Overcurrent Relay 6.2.1 Instantaneous Overcurrent Relay 6.2.2 Definite Time Overcurrent Relay 6.2.2.1 Application 6.2.2.2 The Drawback of the Relay 6.2.3 Inverse Time Overcurrent Relay 6.2.4 IDMT Relay 6.2.5 Very Inverse Relay 6.2.5.1 Application of the Very Inverse Relay 6.2.6 Extremely Inverse Relay 6.2.7 Directional Overcurrent 6.3 Plug Setting Multiplier (PSM) and Time Multiplier Setting (TMS) 6.4 Standard Formula for Overcurrent Relay 6.5 Relay Coordination 6.5.1 Primary and Backup Protection 6.5.2 Method of Relay Coordination 6.5.2.1 Discrimination by Time 6.5.2.2 Discrimination by Current 6.5.2.3 Discrimination by Both Time and Current 6.6 Requirements for Proper Relay Coordination 6.7 Hardware and Software for Overcurrent Relays 6.8 Overvoltage and Undervoltage Protection 6.8.1 Undervoltage Test 6.8.2 Overvoltage Test 6.8.3 Hysteresis Test 6.9 Directional Power Protection 6.10 Testing Forward and Reverse Power 6.10.1 Test of Forward Power 6.10.2 Test of Reverse Power Problems Chapter 7 Transmission Line Protection 7.1 Introduction 7.2 Distance Relay 7.3 Setting of Distance Relay 7.4 Drawback of Distance Relay 7.5 Parallel Ring Mains 7.6 Impedance, Reactance, and MHO Relay 7.6.1 Impedance Relay Protection Setting Diagram 7.6.2 Reactance Relay Protection Setting Diagram 7.6.3 MHO Relay Protection Setting Diagram 7.7 Fundamentals of Differential Protection Systems 7.8 Directional Overcurrent Relay 7.9 Direction or Phase of the Fault Current 7.10 Protection of Parallel Lines (Parallel Operation) 7.11 Minimum Pick-Up Value 7.12 Parametrizing Non-Directional Relays 7.13 Time Overcurrent Relays 7.14 Directional Time Overcurrent Relays 7.15 High-Speed Distance Protection 7.16 Further Settings 7.16.1 Characteristic Data Problems Chapter 8 Transformer Protection 8.1 Introduction 8.2 Transformer Functions 8.2.1 Transformer Size 8.2.2 Location and Function 8.2.3 Voltage 8.2.4 Connection and Design 8.3 Faults on Power Transformer 8.4 Main Types of Transformer Protection 8.4.1 Percentage Differential Protection 8.4.2 Overcurrent Protection 8.4.2.1 Protection with Fuses 8.4.2.2 Time-Delay Overcurrent Relays 8.4.2.3 Instantaneous Relays 8.4.3 Earth Fault and Restricted Earth Fault Protection 8.4.4 Buchholz Relay 8.4.4.1 Principle of Operation 8.4.5 Oil Pressure Relief Devices 8.4.6 Oil Temperature (F49) 8.4.7 Winding Temperature (F49) 8.5 Voltage Balance Relay 8.6 Transformer Magnetizing In-rush 8.6.1 The Magnitude of Magnetizing In-rush Current 8.6.2 Harmonics of Magnetizing In-rush Current 8.7 Modeling of Power Transformer Differential Protection 8.7.1 Differential Protection Difficulties 8.7.1.1 In-rush Current During Initial Energization 8.7.1.2 False Trip Due to CT Characteristics 8.7.1.3 False Trip Due to Tap Changer 8.8 Percentage Differential Relay Modeling 8.9 Phasor Model 8.10 Three-Phase to Ground Fault at the Loaded Transformer 8.11 Magnetizing In-rush Current 8.12 Three Phases to Ground Fault at the Loaded Transformer 8.13 Phase-to-Ground External Fault at the Loaded Transformer 8.14 Two-Phase-to-Ground Fault at the Loaded Transformer Problems Chapter 9 Generator, Motor, and Busbar Protection 9.1 Introduction 9.2 Generator Fault Types 9.2.1 Rotor Protection 9.2.2 Unbalanced Loading 9.2.3 Overload Protection 9.2.4 Overspeed Protection 9.2.5 Overvoltage Protection 9.2.6 Failure or Prime-Mover 9.2.7 Loss of Excitation 9.2.7.1 Recommended Settings 9.3 Effects of Generator Bus Faults 9.4 Internal Faults 9.4.1 Differential Protection (Phase Faults) 9.4.2 Differential Protection (Ground Faults) 9.4.3 Field Grounds 9.4.4 Phase Fault Backup Protection 9.4.5 The 95% Stator Earth Fault Protection (64G1) 9.4.6 The 100% Stator Earth Fault Protection (64G2) 9.4.7 Voltage Restrained Overcurrent Protection (51/27 G) 9.4.8 Low Forward Power Relay (37G) 9.4.9 Reverse Power Relay (32G) 9.4.10 Generator Under Frequency Protection (81 G) 9.4.11 Generator Overvoltage Protection (59 G) 9.5 Typical Relay Settings 9.6 Motor Protection 9.6.1 Typical Protective Settings for Motors 9.6.2 Motor Protective Device 9.6.3 Motor Protection by Fuses 9.7 Bus Bars Protection 9.7.1 Bus Protection Schemes 9.7.2 Bus Differential Relaying Schemes 9.7.2.1 Basic Differential System 9.7.2.2 Bus Differential Protection with Overcurrent Relays 9.7.2.3 Bus Protection with Percentage Differential Relays 9.7.2.4 Bus High-Impedance Voltage Differential Protection 9.7.2.5 Bus Partial Differential Protection Problems Chapter 10 High-Impedance Faults 10.1 Introduction 10.2 Characteristics of HIFs 10.3 HIF’s Detection 10.3.1 Feature Extraction 10.3.2 Pattern Recognition (Classification) 10.4 Power Distribution Network 10.5 Source Model 10.6 Power Transformer Model 10.7 Line Model 10.8 Load Model 10.9 Shunt Capacitor Model 10.10 Nonlinear Load Model 10.11 Induction Motor Model 10.12 Fault Model 10.12.1 Symmetrical Fault Model 10.12.2 Line-to-Ground Fault Model 10.12.3 Line-to-Line Fault Model 10.13 Procedural Events Modeling and Techniques 10.14 The Fourier Transform Problems Chapter 11 Grounding of Power System 11.1 Introduction 11.2 The Concept of Grounding 11.3 Purposes of System Grounding 11.4 Methods of System-Neutral Grounding 11.4.1 Ungrounded System 11.4.2 Methods of System-Neutral Grounding 11.4.3 Reactance Grounding 11.5 Equivalent-Circuit Representation of Grounding Systems 11.6 Touch and Step Voltages 11.7 Typical Inspection 11.8 Grounding Electrodes 11.9 Grounding Verification Control System 11.10 Soil Measurements 11.10.1 The Soil Model 11.10.2 Soil Characteristics 11.10.3 Wenner Method 11.10.4 Driven Rod Technique 11.11 Resistance of Grounding Systems 11.12 Types of the Electrode Grounding System 11.12.1 Hemispherical Electrode Hidden in Globe 11.12.2 Two Hemispheres Inserted in Earth 11.12.3 Other Simple Grounding Systems 11.13 Measurement of Ground Electrode Resistance 11.13.1 Three-Electrode Method 11.13.2 Show Up of Potential Method 11.13.3 Theory of the Fall of Potential 11.13.4 Hemispherical Electrodes 11.13.4.1 General Case 11.13.5 Electrical Center Method Problems Appendix A: Relay and Circuit Breaker Applications Bibliography Index