دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Dillip Kumar Mishra, Li Li, Jiangfeng Zhang, Md. Jahangir Hossain سری: ISBN (شابک) : 0443184267, 9780443184260 ناشر: Academic Press سال نشر: 2023 تعداد صفحات: 349 [352] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 30 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Power System Frequency Control: Modeling and Advances به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کنترل فرکانس سیستم قدرت: مدل سازی و پیشرفت ها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Front Cover Power System Frequency Control: Modeling and Advances Copyright Contents Contributors Chapter 1: Fundamentals of load frequency control in power system 1.1. Basic concepts 1.2. AGC in a modern area power network 1.3. Power network frequency loop 1.3.1. Primary loop 1.3.2. Secondary loop 1.3.3. Emergency loop 1.4. Individual model of the AGC system 1.4.1. Generator model 1.4.2. Load model 1.4.3. Turbine model 1.4.4. Governor model 1.4.5. Tie-line model 1.5. Structure of the AGC system 1.5.1. Power system interconnection and its significance 1.5.2. Single-area model 1.5.3. Multiarea model 1.5.4. Multiarea extension model Appendix 1: AGC parameters and values References Chapter 2: Controller design for load frequency control: Shortcomings and benefits 2.1. Introduction 2.2. Traditional control design 2.2.1. Control design with reheat 2.2.2. Extension of two area with reheat and HVDC-link 2.3. Shortcomings of the traditional controller 2.4. The need for an advanced control method 2.5. Controller 2.5.1. PI controller 2.5.2. PID controller 2.5.3. IDDF controller 2.5.4. TIDF controller 2.5.5. FOPID controller 2.6. Objective function 2.6.1. Area control error (ACE) 2.6.2. Integral absolute error (IAE) 2.6.3. Integral time absolute error (ITAE) 2.6.4. Integral square error (ISE) 2.6.5. Integral square error (ISE) Appendix [A] Matrix [A] Matrix values [B] Matrix [B] Matrix values Disturbances matrix [τ] [τ] Matrix values References Chapter 3: Transient/sensitivity/stability analysis of load frequency control 3.1. Introduction 3.2. Transient analysis 3.2.1. Single-area AGC network 3.2.2. Two equal-area AGC network 3.2.3. Case-1: AC-link 3.2.4. Case-2: AC-DC link 3.2.5. Two-unequal area AGC network 3.2.6. AC-link 3.2.7. AC-DC link 3.2.8. Three area AGC network 3.2.9. Five area AGC network 3.3. Sensitivity analysis 3.3.1. Parameter variation 3.3.2. Random loading 3.4. Stability analysis 3.4.1. State-space analysis 3.4.2. Transfer function-based analysis References Chapter 4: Significance of ancillary devices for load frequency control 4.1. Introduction 4.2. Thyristor-controlled series capacitor (TCSC) 4.3. Static synchronous series compensator (SSSC) 4.4. Unified power flow controller (UPFC) 4.5. Interline power flow controller (IPFC) 4.6. Summary References Chapter 5: Challenges and viewpoints of load frequency control in deregulated power system 5.1. Introduction 5.2. Transient response analysis of AGC with a deregulated environment 5.2.1. Scenario-1: Unilateral transaction 5.2.2. Scenario-1: Bilateral transaction 5.2.3. Scenario-3: Contract violation 5.3. Summary References Chapter 6: Battery energy storage contribution to system frequency for grids with high renewable energy sources penetration 6.1. Introduction 6.2. The fast frequency regulation 6.2.1. The Italian fast reserve 6.3. The proposed methodology 6.3.1. The BESS model 6.3.2. Fast reserve by BESS in the Italian system 6.3.3. The selection of the frequency event 6.3.4. The imbalance reconstruction 6.3.5. The performed simulations 6.4. Results 6.4.1. Discussion 6.5. Conclusions References Chapter 7: The power grid load frequency control method combined with multiple types of energy storage system 7.1. Introduction 7.2. Model of load frequency control 7.2.1. Model of system frequency response 7.2.2. Model of LFC components 7.3. Model of PPS-HESS combined control 7.3.1. PPS control system 7.3.2. HESS control system 7.3.2.1. Battery FR model 7.3.2.2. Supercapacitor FR model 7.3.3. PPS-HESS control system 7.4. Design of controller 7.4.1. FOPID control 7.4.2. Optimization model 7.4.2.1. Optimization of the objective function 7.4.2.2. Optimization of processes 7.5. Analysis of simulation 7.5.1. Pumping operation 7.5.2. Generating operation 7.6. Conclusion References Chapter 8: Sophisticated dynamic frequency modeling: Higher order SFR model of hybrid power system with renewable generation 8.1. Introduction 8.2. Frequency dynamic response characteristics 8.3. Traditional second-order SFR model 8.4. Modeling and analysis of the higher order SFR model 8.4.1. The higher order SFR model 8.4.2. Influence analysis of model parameters 8.4.3. Parameters equivalence method of higher order SFR model 8.4.4. Simulation and analysis 8.4.4.1. Single-generator with load system 8.4.4.2. IEEE 3-generator 9-bus system Case 1: Load disturbance Case 2: Generator trip 8.5. Higher order SFR model of hybrid power systems 8.5.1. Parameters adjustment 8.5.2. Testing and analysis Case: Sudden load disturbance 8.6. Correction of mixture proportion parameter in higher order SFR model 8.6.1. Higher order SFR model with mixture proportion parameter 8.6.1.1. Simplified hydraulic turbine speed control system 8.6.1.2. Wind turbine speed control system 8.6.1.3. Model with mixture proportion parameter 8.6.2. Parameter correction 8.6.3. Testing and analysis 8.6.3.1. Accuracy analysis of frequency response for load sudden change Case 1 8.6.3.2. Model suitability analysis under different load disturbance Case 2 8.6.3.3. Model suitability analysis under different power generation penetration Case 3 8.7. Summary Acknowledgment References Chapter 9: Application of neural network based variable fractional order PID controllers for load frequency control in is ... 9.1. Introduction 9.2. Isolated HMG configuration and mathematical modeling 9.2.1. System structure 9.2.2. WTG model 9.2.3. PV model 9.2.4. FC model 9.2.5. DLC model 9.2.6. Frequency deviation model 9.3. (FO)PID controllers, actions, and tuning rules 9.3.1. Control actions 9.3.2. Tuning rules 9.4. The proposed (FO)PID-based LFC: Multiagent NN-based online tuning approach 9.4.1. Coordinated control strategy 9.4.2. NN-based online tuner 9.4.3. SRL-based training for multiple agents 9.5. Simulation results 9.6. Conclusion Acknowledgments References Chapter 10: Coordinated tuning of MMC-HVDC interconnection links and PEM electrolyzers for fast frequency support in&spi 10.1. Introduction 10.2. Theoretical background 10.2.1. Modeling and control of the MMC-HVDC links 10.2.2. Modeling and control of PEM electrolyzers 10.3. Optimization problem formulation 10.4. The mean variance optimization algorithm 10.5. The test system 10.6. Simulation study and results 10.6.1. Simulation method and workflow 10.6.2. Simulation Event and Operational Scenarios 10.6.3. Optimization results 10.6.3.1. Scenario 1 10.6.3.2. Scenario 2 10.6.3.3. Scenario 3 10.6.3.4. Scenario 4 10.7. Discussion 10.8. Conclusions References Chapter 11: Under-frequency load shedding control: From stage-wise to continuous 11.1. Introduction 11.2. Under-frequency load shedding: Concepts and cases 11.2.1. Conventional under-frequency load shedding 11.2.2. Some cases with UFLS activated 11.2.3. From stage-wise scheme to continuous scheme 11.3. Performance of continuous under-frequency load shedding 11.3.1. Analytical frequency response with continuous UFLS 11.3.2. Characteristic of continuous UFLS 11.4. Implementation of continuous under-frequency load shedding 11.4.1. Impact of nonlinear factors on continuous UFLS 11.4.2. Improved continuous UFLS scheme 11.4.3. Implementation with precise load control 11.4.4. Tuning of continuous UFLS 11.5. Applications 11.6. Conclusions References Chapter 12: Emergency active-power balancing scheme for load frequency control 12.1. Introduction 12.2. Electric-power system response to active-power imbalance 12.2.1. Synchronous machine 12.2.2. Active-power imbalance distribution 12.2.3. Consumption 12.2.4. Converter-interfaced generation 12.3. Emergency active-power balancing 12.3.1. Measurements 12.3.2. Methodology 12.3.2.1. Conventional 12.3.2.2. Imbalance estimation 12.3.2.3. System frequency response model 12.3.2.4. Predictive techniques 12.3.2.5. Other advanced techniques 12.3.3. Actions 12.4. Challenges and a way forward 12.4.1. Challenges 12.4.2. Recommendations for the future References Chapter 13: Keeping an eye on the load frequency control implementation using LabVIEW platform 13.1. Introduction 13.2. Overview of LabVIEW 13.3. Elements and functions 13.3.1. Wires 13.3.2. Structures 13.3.3. Control palette 13.3.4. Function palette 13.3.5. Tool palette 13.3.6. Arrays 13.4. Control system toolbox 13.5. Case study 13.5.1. Transient analysis 13.5.1.1. Test network 1 13.5.1.2. Test network 2 13.5.1.3. Test network 3 13.5.1.4. Stability analysis of proposed LFC model realized in Labview References Chapter 14: An overview of the real-time digital simulation platform and realization of multiarea multisource load f 14.1. Introduction 14.2. Real-time emulator 14.3. Why use real-time simulation 14.4. RT-LAB system architecture 14.4.1. Software architecture 14.5. Real-time validation steps 14.5.1. Execution process 14.6. Real-time study using OPAL-RT 14.7. Conclusions References Chapter 15: Design and testing capabilities of low-inertia energy system-based frequency control using Typhoon HIL real-tim 15.1. Introduction 15.2. Type of real-time configurations in Typhoon HIL environment 15.3. Cost and fidelity analysis of different configurations 15.3.1. Frequency measurements and studies in Typhoon HIL 15.4. Flow chart of workflow for Typhoon HIL real-time simulation 15.5. Communication protocols 15.6. Results and analysis: Active distribution network under study 15.7. Conclusion References Index Back Cover