ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Power System Frequency Control: Modeling and Advances

دانلود کتاب کنترل فرکانس سیستم قدرت: مدل سازی و پیشرفت ها

Power System Frequency Control: Modeling and Advances

مشخصات کتاب

Power System Frequency Control: Modeling and Advances

ویرایش:  
نویسندگان: , , ,   
سری:  
ISBN (شابک) : 0443184267, 9780443184260 
ناشر: Academic Press 
سال نشر: 2023 
تعداد صفحات: 349
[352] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 30 Mb 

قیمت کتاب (تومان) : 32,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 8


در صورت تبدیل فایل کتاب Power System Frequency Control: Modeling and Advances به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب کنترل فرکانس سیستم قدرت: مدل سازی و پیشرفت ها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Front Cover
Power System Frequency Control: Modeling and Advances
Copyright
Contents
Contributors
Chapter 1: Fundamentals of load frequency control in power system
	1.1. Basic concepts
	1.2. AGC in a modern area power network
	1.3. Power network frequency loop
		1.3.1. Primary loop
		1.3.2. Secondary loop
		1.3.3. Emergency loop
	1.4. Individual model of the AGC system
		1.4.1. Generator model
		1.4.2. Load model
		1.4.3. Turbine model
		1.4.4. Governor model
		1.4.5. Tie-line model
	1.5. Structure of the AGC system
		1.5.1. Power system interconnection and its significance
		1.5.2. Single-area model
		1.5.3. Multiarea model
		1.5.4. Multiarea extension model
	Appendix 1: AGC parameters and values
	References
Chapter 2: Controller design for load frequency control: Shortcomings and benefits
	2.1. Introduction
	2.2. Traditional control design
		2.2.1. Control design with reheat
		2.2.2. Extension of two area with reheat and HVDC-link
	2.3. Shortcomings of the traditional controller
	2.4. The need for an advanced control method
	2.5. Controller
		2.5.1. PI controller
		2.5.2. PID controller
		2.5.3. IDDF controller
		2.5.4. TIDF controller
		2.5.5. FOPID controller
	2.6. Objective function
		2.6.1. Area control error (ACE)
		2.6.2. Integral absolute error (IAE)
		2.6.3. Integral time absolute error (ITAE)
		2.6.4. Integral square error (ISE)
		2.6.5. Integral square error (ISE)
	Appendix
		[A] Matrix
		[A] Matrix values
		[B] Matrix
		[B] Matrix values
		Disturbances matrix [τ]
		[τ] Matrix values
	References
Chapter 3: Transient/sensitivity/stability analysis of load frequency control
	3.1. Introduction
	3.2. Transient analysis
		3.2.1. Single-area AGC network
		3.2.2. Two equal-area AGC network
		3.2.3. Case-1: AC-link
		3.2.4. Case-2: AC-DC link
		3.2.5. Two-unequal area AGC network
		3.2.6. AC-link
		3.2.7. AC-DC link
		3.2.8. Three area AGC network
		3.2.9. Five area AGC network
	3.3. Sensitivity analysis
		3.3.1. Parameter variation
		3.3.2. Random loading
	3.4. Stability analysis
		3.4.1. State-space analysis
		3.4.2. Transfer function-based analysis
	References
Chapter 4: Significance of ancillary devices for load frequency control
	4.1. Introduction
	4.2. Thyristor-controlled series capacitor (TCSC)
	4.3. Static synchronous series compensator (SSSC)
	4.4. Unified power flow controller (UPFC)
	4.5. Interline power flow controller (IPFC)
	4.6. Summary
	References
Chapter 5: Challenges and viewpoints of load frequency control in deregulated power system
	5.1. Introduction
	5.2. Transient response analysis of AGC with a deregulated environment
		5.2.1. Scenario-1: Unilateral transaction
		5.2.2. Scenario-1: Bilateral transaction
		5.2.3. Scenario-3: Contract violation
	5.3. Summary
	References
Chapter 6: Battery energy storage contribution to system frequency for grids with high renewable energy sources penetration
	6.1. Introduction
	6.2. The fast frequency regulation
		6.2.1. The Italian fast reserve
	6.3. The proposed methodology
		6.3.1. The BESS model
		6.3.2. Fast reserve by BESS in the Italian system
		6.3.3. The selection of the frequency event
		6.3.4. The imbalance reconstruction
		6.3.5. The performed simulations
	6.4. Results
		6.4.1. Discussion
	6.5. Conclusions
	References
Chapter 7: The power grid load frequency control method combined with multiple types of energy storage system
	7.1. Introduction
	7.2. Model of load frequency control
		7.2.1. Model of system frequency response
		7.2.2. Model of LFC components
	7.3. Model of PPS-HESS combined control
		7.3.1. PPS control system
		7.3.2. HESS control system
			7.3.2.1. Battery FR model
			7.3.2.2. Supercapacitor FR model
		7.3.3. PPS-HESS control system
	7.4. Design of controller
		7.4.1. FOPID control
		7.4.2. Optimization model
			7.4.2.1. Optimization of the objective function
			7.4.2.2. Optimization of processes
	7.5. Analysis of simulation
		7.5.1. Pumping operation
		7.5.2. Generating operation
	7.6. Conclusion
	References
Chapter 8: Sophisticated dynamic frequency modeling: Higher order SFR model of hybrid power system with renewable generation
	8.1. Introduction
	8.2. Frequency dynamic response characteristics
	8.3. Traditional second-order SFR model
	8.4. Modeling and analysis of the higher order SFR model
		8.4.1. The higher order SFR model
		8.4.2. Influence analysis of model parameters
		8.4.3. Parameters equivalence method of higher order SFR model
		8.4.4. Simulation and analysis
			8.4.4.1. Single-generator with load system
			8.4.4.2. IEEE 3-generator 9-bus system
				Case 1: Load disturbance
				Case 2: Generator trip
	8.5. Higher order SFR model of hybrid power systems
		8.5.1. Parameters adjustment
		8.5.2. Testing and analysis
			Case: Sudden load disturbance
	8.6. Correction of mixture proportion parameter in higher order SFR model
		8.6.1. Higher order SFR model with mixture proportion parameter
			8.6.1.1. Simplified hydraulic turbine speed control system
			8.6.1.2. Wind turbine speed control system
			8.6.1.3. Model with mixture proportion parameter
		8.6.2. Parameter correction
		8.6.3. Testing and analysis
			8.6.3.1. Accuracy analysis of frequency response for load sudden change
				Case 1
			8.6.3.2. Model suitability analysis under different load disturbance
				Case 2
			8.6.3.3. Model suitability analysis under different power generation penetration
				Case 3
	8.7. Summary
	Acknowledgment
	References
Chapter 9: Application of neural network based variable fractional order PID controllers for load frequency control in is ...
	9.1. Introduction
	9.2. Isolated HMG configuration and mathematical modeling
		9.2.1. System structure
		9.2.2. WTG model
		9.2.3. PV model
		9.2.4. FC model
		9.2.5. DLC model
		9.2.6. Frequency deviation model
	9.3. (FO)PID controllers, actions, and tuning rules
		9.3.1. Control actions
		9.3.2. Tuning rules
	9.4. The proposed (FO)PID-based LFC: Multiagent NN-based online tuning approach
		9.4.1. Coordinated control strategy
		9.4.2. NN-based online tuner
		9.4.3. SRL-based training for multiple agents
	9.5. Simulation results
	9.6. Conclusion
	Acknowledgments
	References
Chapter 10: Coordinated tuning of MMC-HVDC interconnection links and PEM electrolyzers for fast frequency support in&spi
	10.1. Introduction
	10.2. Theoretical background
		10.2.1. Modeling and control of the MMC-HVDC links
		10.2.2. Modeling and control of PEM electrolyzers
	10.3. Optimization problem formulation
	10.4. The mean variance optimization algorithm
	10.5. The test system
	10.6. Simulation study and results
		10.6.1. Simulation method and workflow
		10.6.2. Simulation Event and Operational Scenarios
		10.6.3. Optimization results
			10.6.3.1. Scenario 1
			10.6.3.2. Scenario 2
			10.6.3.3. Scenario 3
			10.6.3.4. Scenario 4
	10.7. Discussion
	10.8. Conclusions
	References
Chapter 11: Under-frequency load shedding control: From stage-wise to continuous
	11.1. Introduction
	11.2. Under-frequency load shedding: Concepts and cases
		11.2.1. Conventional under-frequency load shedding
		11.2.2. Some cases with UFLS activated
		11.2.3. From stage-wise scheme to continuous scheme
	11.3. Performance of continuous under-frequency load shedding
		11.3.1. Analytical frequency response with continuous UFLS
		11.3.2. Characteristic of continuous UFLS
	11.4. Implementation of continuous under-frequency load shedding
		11.4.1. Impact of nonlinear factors on continuous UFLS
		11.4.2. Improved continuous UFLS scheme
		11.4.3. Implementation with precise load control
		11.4.4. Tuning of continuous UFLS
	11.5. Applications
	11.6. Conclusions
	References
Chapter 12: Emergency active-power balancing scheme for load frequency control
	12.1. Introduction
	12.2. Electric-power system response to active-power imbalance
		12.2.1. Synchronous machine
		12.2.2. Active-power imbalance distribution
		12.2.3. Consumption
		12.2.4. Converter-interfaced generation
	12.3. Emergency active-power balancing
		12.3.1. Measurements
		12.3.2. Methodology
			12.3.2.1. Conventional
			12.3.2.2. Imbalance estimation
			12.3.2.3. System frequency response model
			12.3.2.4. Predictive techniques
			12.3.2.5. Other advanced techniques
		12.3.3. Actions
	12.4. Challenges and a way forward
		12.4.1. Challenges
		12.4.2. Recommendations for the future
	References
Chapter 13: Keeping an eye on the load frequency control implementation using LabVIEW platform
	13.1. Introduction
	13.2. Overview of LabVIEW
	13.3. Elements and functions
		13.3.1. Wires
		13.3.2. Structures
		13.3.3. Control palette
		13.3.4. Function palette
		13.3.5. Tool palette
		13.3.6. Arrays
	13.4. Control system toolbox
	13.5. Case study
		13.5.1. Transient analysis
			13.5.1.1. Test network 1
			13.5.1.2. Test network 2
			13.5.1.3. Test network 3
			13.5.1.4. Stability analysis of proposed LFC model realized in Labview
	References
Chapter 14: An overview of the real-time digital simulation platform and realization of multiarea multisource load f
	14.1. Introduction
	14.2. Real-time emulator
	14.3. Why use real-time simulation
	14.4. RT-LAB system architecture
		14.4.1. Software architecture
	14.5. Real-time validation steps
		14.5.1. Execution process
	14.6. Real-time study using OPAL-RT
	14.7. Conclusions
	References
Chapter 15: Design and testing capabilities of low-inertia energy system-based frequency control using Typhoon HIL real-tim
	15.1. Introduction
	15.2. Type of real-time configurations in Typhoon HIL environment
	15.3. Cost and fidelity analysis of different configurations
		15.3.1. Frequency measurements and studies in Typhoon HIL
	15.4. Flow chart of workflow for Typhoon HIL real-time simulation
	15.5. Communication protocols
	15.6. Results and analysis: Active distribution network under study
	15.7. Conclusion
	References
Index
Back Cover




نظرات کاربران