دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 3
نویسندگان: Vijay Vittal
سری:
ISBN (شابک) : 9781119433705, 1119433703
ناشر: WILEY-BLACKWELL
سال نشر: 2020
تعداد صفحات: 833
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 24 مگابایت
در صورت تبدیل فایل کتاب POWER SYSTEM CONTROL AND STABILITY به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کنترل و پایداری سیستم قدرت نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
TITLE PAGE COPYRIGHT PAGE CONTENTS FOREWORD PREFACE ABOUT THE AUTHORS PART I INTRODUCTION CHAPTER 1 POWER SYSTEM STABILITY 1.1 INTRODUCTION 1.2 REQUIREMENTS OF A RELIABLE ELECTRICAL POWER SERVICE 1.3 STATEMENT OF THE PROBLEM 1.3.1 Definition of Stability 1.3.2 Classification of Stability Problems 1.3.3 Description of Stability Phenomenon 1.4 EFFECT OF IMPACT ON SYSTEM COMPONENTS 1.4.1 Loss of Synchronism 1.4.2 Synchronous Machine During a Transient 1.5 METHODS OF SIMULATION 1.5.1 Linearized System Equations 1.5.2 Large System with Nonlinear Equations 1.6 PLANNING AND OPERATING STANDARDS PROBLEMS REFERENCES CHAPTER 2 THE ELEMENTARY MATHEMATICAL MODEL 2.1 SWING EQUATION 2.2 UNITS 2.3 MECHANICAL TORQUE 2.3.1 Unregulated Machines 2.3.2 Regulated Machines 2.4 ELECTRICAL TORQUE 2.4.1 Synchronous Torque 2.4.2 Other Electrical Torques 2.5 POWER-ANGLE CURVE OF A SYNCHRONOUS MACHINE 2.5.1 Classical Representation of a Synchronous Machine in Stability Studies 2.5.2 Synchronizing Power Coefficients 2.6 NATURAL FREQUENCIES OF OSCILLATION OF A SYNCHRONOUS MACHINE 2.7 SYSTEM OF ONE MACHINE AGAINST AN INFINITE BUS: THE CLASSICAL MODEL 2.8 EQUAL AREA CRITERION 2.8.1 Critical Clearing Angle 2.8.2 Application to a One-Machine System 2.8.3 Equal Area Criterion for a Two-Machine System 2.9 CLASSICAL MODEL OF A MULTIMACHINE SYSTEM 2.10 CLASSICAL STABILITY STUDY OF A NINE-BUS SYSTEM 2.10.1 Data Preparation 2.10.2 Preliminary Calculations 2.11 SHORTCOMINGS OF THE CLASSICAL MODEL 2.12 BLOCK DIAGRAM OF ONE MACHINE PROBLEMS REFERENCES CHAPTER 3 SYSTEM RESPONSE TO SMALL DISTURBANCES 3.1 INTRODUCTION 3.2 TYPES OF PROBLEMS STUDIED 3.2.1 System Response to Small Impacts 3.2.2 Distribution of Power Impacts 3.3 THE UNREGULATED SYNCHRONOUS MACHINE 3.3.1 Demagnetizing Effect of Armature Reaction 3.3.2 Effect of Small Changes of Speed 3.4 MODES OF OSCILLATION OF AN UNREGULATED MULTIMACHINE SYSTEM 3.5 REGULATED SYNCHRONOUS MACHINE 3.5.1 Voltage Regulator with One Time Lag 3.5.2 Governor with One Time Lag 3.6 DISTRIBUTION OF POWER IMPACTS 3.6.1 Linearization 3.6.2 A Special Case: t=0+ 3.6.3 Average Behavior Prior to Governor Action (t=t1) PROBLEMS REFERENCES PART II ELECTRICAL AND ELECTROMAGNETIC DYNAMIC PERFORMANCE CHAPTER 4 THE SYNCHRONOUS MACHINE 4.1 INTRODUCTION 4.2 PARK´S TRANSFORMATION 4.3 FLUX LINKAGE EQUATIONS 4.3.1 Stator Self-Inductances 4.3.2 Rotor Self-Inductances 4.3.3 Stator Mutual Inductances 4.3.4 Rotor Mutual Inductances 4.3.5 Stator-to-Rotor Mutual Inductances 4.3.6 Transformation of Inductances 4.4 VOLTAGE EQUATIONS 4.5 FORMULATION OF STATE-SPACE EQUATIONS 4.6 CURRENT FORMULATION 4.7 PER-UNIT CONVERSION 4.7.1 Choosing a Base for Stator Quantities 4.7.2 Choosing a Base for Rotor Quantities 4.7.3 Comparison with Other Per-Unit Systems 4.7.4 The Correspondence of Per-Unit Stator EMF to Rotor Quantities 4.8 NORMALIZING THE VOLTAGE EQUATIONS 4.9 NORMALIZING THE TORQUE EQUATIONS 4.9.1 The Normalized Swing Equation 4.9.2 Forms of the Swing Equation 4.10 TORQUE AND POWER 4.11 EQUIVALENT CIRCUIT OF A SYNCHRONOUS MACHINE 4.12 THE FLUX LINKAGE STATE-SPACE MODEL 4.12.1 The Voltage Equations 4.12.2 The Torque Equation 4.12.3 Machine Equations with Saturation Neglected 4.12.4 Treatment of Saturation 4.13 LOAD EQUATIONS 4.13.1 Synchronous Machine Connected to an Infinite Bus 4.13.2 Current Model 4.13.3 The Flux Linkage Model 4.14 SUBTRANSIENT AND TRANSIENT INDUCTANCES AND TIME CONSTANTS 4.14.1 Time Constants 4.15 SIMPLIFIED MODELS OF THE SYNCHRONOUS MACHINE 4.15.1 Neglecting Damper Windings: The Eq (One-Axis) Model 4.15.2 Voltage Behind Subtransient Reactance: The E Model 4.15.3 Neglecting λd and λq for a Cylindrical Rotor Machine: The Two-Axis Model 4.15.4 Neglecting Amortisseur Effects and λd and λq Terms: The One-Axis Model 4.15.5 Assuming Constant Flux Linkage in the Main Field Winding 4.16 PARAMETER DETERMINATION FOR GENERATOR DYNAMIC MODELS PROBLEMS REFERENCES CHAPTER 5 THE SIMULATION OF SYNCHRONOUS MACHINES 5.1 INTRODUCTION 5.2 STEADY-STATE EQUATIONS AND PHASOR DIAGRAMS 5.3 MACHINE CONNECTED TO AN INFINITE BUS THROUGH A TRANSMISSION LINE 5.4 MACHINE CONNECTED TO AN INFINITE BUS WITH LOCAL LOAD AT MACHINE TERMINAL 5.4.1 Special Case: The Resistive Load, ZL=RL+j0 5.4.2 General Case: ZL Arbitrary 5.5 DETERMINING STEADY-STATE CONDITIONS 5.5.1 Machine Connected to an Infinite Bus with Local Load 5.6 EXAMPLES 5.7 INITIAL CONDITIONS FOR A MULTIMACHINE SYSTEM 5.8 DETERMINATION OF MACHINE PARAMETERS FROM MANUFACTURERS´ DATA 5.9 DIGITAL SIMULATION OF SYNCHRONOUS MACHINES 5.9.1 Digital Computation of Saturation 5.9.2 Updating λAD PROBLEMS REFERENCES CHAPTER 6 LOAD MODELING 6.1 INTRODUCTION 6.2 STATIC LOAD MODELS 6.3 INDUCTION MOTOR LOADS 6.3.1 Model Development of a Three-Phase Induction Machine 6.3.2 Representing Induction Machines in Stability Simulations 6.3.3 Stalled Motor Operation 6.4 SINGLE-PHASE MOTORS 6.4.1 Scroll Compressors 6.4.2 Point-on-Wave Effects 6.4.3 Dynamic Phasors 6.5 POWER ELECTRONIC LOADS 6.6 SELF-RESTORING LOADS 6.7 DISTRIBUTED ENERGY RESOURCES 6.8 COMPOSITE LOAD MODELS 6.9 DATA DEVELOPMENT 6.9.1 Component Based 6.9.2 Measurement Based PROBLEMS REFERENCES CHAPTER 7 SIMULATION OF MULTIMACHINE SYSTEMS 7.1 INTRODUCTION 7.2 STATEMENT OF THE PROBLEM 7.3 MATRIX REPRESENTATION OF A PASSIVE NETWORK 7.3.1 Network in the Transient State 7.3.2 Converting to a Common Reference Frame 7.4 CONVERTING MACHINE COORDINATES TO SYSTEM REFERENCE 7.5 RELATION BETWEEN MACHINE CURRENTS AND VOLTAGES 7.6 SYSTEM ORDER 7.7 MACHINES REPRESENTED BY CLASSICAL METHODS 7.8 LINEARIZED MODEL FOR THE NETWORK 7.9 HYBRID FORMULATION 7.10 NETWORK EQUATIONS WITH FLUX LINKAGE MODEL 7.11 TOTAL SYSTEM EQUATIONS 7.12 ALTERNATING SOLUTION METHOD 7.12.1 Nonlinear Loads 7.12.2 Network–Machine Interface 7.13 SIMULTANEOUS SOLUTION METHOD 7.14 DESIGN OF NUMERICAL SOLVERS PROBLEMS REFERENCES CHAPTER 8 SMALL-SIGNAL STABILITY ANALYSIS 8.1 INTRODUCTION 8.2 FUNDAMENTALS OF LINEAR SYSTEM STABILITY 8.3 LINEARIZATION OF THE GENERATOR STATE-SPACE CURRENT MODEL 8.4 LINEARIZATION OF THE LOAD EQUATION FOR THE ONE-MACHINE PROBLEM 8.5 LINEARIZATION OF THE FLUX LINKAGE MODEL 8.6 STATE MATRIX FOR MULTIMACHINE SYSTEMS 8.6.1 Formulation of the State Matrix 8.6.2 Representation of Static Loads in the State Matrix 8.7 SIMPLIFIED LINEAR MODEL 8.7.1 The E Equation 8.7.2 Electrical Torque Equation 8.7.3 Terminal Voltage Equation 8.7.4 Summary of Equations 8.7.5 Effect of Loading 8.7.6 Comparison with Classical Model 8.8 BLOCK DIAGRAMS 8.9 STATE-SPACE REPRESENTATION OF SIMPLIFIED MODEL PROBLEMS REFERENCES CHAPTER 9 EXCITATION SYSTEMS 9.1 SIMPLIFIED VIEW OF EXCITATION CONTROL 9.2 CONTROL CONFIGURATIONS 9.3 TYPICAL EXCITATION CONFIGURATIONS 9.3.1 Primitive Systems 9.3.2 Type DC Excitation Control Systems with DC Generator-Commutator Exciters 9.3.3 Type AC Excitation Control Systems with Alternator-Rectifier Exciters 9.3.4 Type AC Excitation Control Systems with Alternator-SCR Exciter Systems 9.3.5 Type ST Excitation Control Systems with Compound-Rectifier Exciter Systems 9.3.6 Type ST Excitation Control System with Compound-Rectifier Exciter Plus Potential-Source-Rectifier Exciter 9.3.7 Type ST Excitation Control Systems with Potential-Source-Rectifier Exciter 9.4 EXCITATION CONTROL SYSTEM DEFINITIONS 9.4.1 Voltage Response Ratio 9.4.2 Exciter Voltage Ratings 9.4.3 Other Specifications 9.5 VOLTAGE REGULATOR 9.5.1 Electromechanical Regulators 9.5.2 Early Electronic Regulators 9.5.3 Rotating Amplifier Regulators 9.5.4 Magnetic Amplifier Regulators 9.5.5 Digital Excitation Systems 9.6 Exciter Buildup 9.6.1 The DC Generator Exciter 9.6.2 Linear Approximations for DC Generator Exciters 9.6.3 The AC Generator Exciters 9.6.4 Solid-State Exciters 9.6.5 Buildup of a Loaded DC Exciter 9.6.6 Normalization of Exciter Equations 9.7 LIMITING AND PROTECTION FOR EXCITATION CONTROL SYSTEMS 9.7.1 Modeling Amplifier Limits 9.7.2 Control Limiters and Associated Protection 9.7.3 Volts per Hertz Protection 9.8 EXCITATION SYSTEM RESPONSE 9.8.1 Noncontinuously Regulated Systems 9.8.2 Continuously Regulated Systems 9.9 STATE-SPACE DESCRIPTION OF THE EXCITATION SYSTEM 9.9.1 Simplified Linear Model 9.9.2 Complete Linear Model 9.10 COMPUTER REPRESENTATION OF EXCITATION SYSTEMS 9.10.1 Type DC1: DC Commutator Exciter 9.10.2 Type AC Systems: Alternator Supplied Rectifier Excitation Systems 9.10.3 Type AC1 System: Field-Controlled Alternator-Rectifier Excitation System 9.10.4 Type ST1 System: Controlled Rectifier System with Terminal Potential Supply Only 9.10.5 Type ST2 System: Static with Terminal Potential and Current Supplies 9.10.6 Type DC3 System: Noncontinuous Acting 9.11 TYPICAL SYSTEM CONSTANTS 9.12 THE EFFECT OF EXCITATION ON GENERATOR PERFORMANCE PROBLEMS REFERENCES CHAPTER 10 THE EFFECT OF EXCITATION ON STABILITY 10.1 INTRODUCTION 10.1.1 Transient Stability and Small-Signal Stability Considerations 10.2 EFFECT OF EXCITATION ON GENERATOR POWER LIMITS 10.3 EFFECT OF THE EXCITATION SYSTEM ON TRANSIENT STABILITY 10.3.1 The Role of the Excitation System in Classical Model Studies 10.3.2 Increased Reliance on Excitation Control to Improve Stability 10.3.3 Parametric Study 10.3.4 Reactive Power Demand During System Emergencies 10.4 EFFECT OF EXCITATION ON SMALL-SIGNAL STABILITY 10.4.1 Examination of Small-Signal Stability by Routh´s Criterion 10.4.2 Further Considerations of the Regulator Gain and Time Constant 10.4.3 Effect on the Electrical Torque 10.5 ROOT-LOCUS ANALYSIS OF A REGULATED MACHINE CONNECTED TO AN INFINITE BUS 10.6 APPROXIMATE SYSTEM REPRESENTATION 10.6.1 Approximate Excitation System Representation 10.6.2 Estimate of Gx(s) 10.6.3 The Inertial Transfer Function 10.7 SUPPLEMENTARY STABILIZING SIGNALS 10.7.1 Block Diagram of the Linear System 10.7.2 Approximate Model of the Complete Exciter-Generator System 10.7.3 Lead Compensation 10.8 LINEAR ANALYSIS OF THE STABILIZED GENERATOR 10.9 PSS TUNING IN MULTIMACHINE POWER SYSTEMS 10.10 ALTERNATE TYPES OF PSS 10.11 DIGITAL COMPUTER TRANSIENT STABILITY STUDIES 10.11.1 Effect of Fault Duration 10.11.2 Effect of the Power System Stabilizer 10.12 SOME GENERAL COMMENTS ON THE EFFECT OF EXCITATION ON STABILITY PROBLEMS REFERENCES CHAPTER 11 DYNAMIC MODELING AND REPRESENTATION OF RENEWABLE ENERGY RESOURCES 11.1 WIND TURBINE GENERATORS 11.1.1 Type 1 WTGs 11.1.2 Type 2 WTGs 11.1.3 Type 3 WTGs 11.1.4 Type 4 WTGs 11.2 PHOTOVOLTAIC SOLAR PLANT MODELING 11.2.1 Generic Model of PV Solar Plant 11.2.2 Modified Generic Model of PV Solar Plant PROBLEMS REFERENCES CHAPTER 12 VOLTAGE STABILITY 12.1 Modeling Requirements for Voltage Instability Analysis 12.2 Voltage Instability Analysis Using Time Domain Simulation 12.3 DYNAMIC VAr PLANNING AND OPTIMIZATION 12.3.1 Trajectory Sensitivity Analysis 12.3.2 Formulation of the VAr Optimization Problem 12.3.3 Implementation of the Dynamic VAr Optimization Approach 12.3.4 Application of Dynamic VAr Optimization Approach PROBLEMS REFERENCES CHAPTER 13 DYNAMIC PERFORMANCE AND MODELING OF FLEXIBLE AC TRANSMISSION SYSTEM (FACTS) COMPONENTS 13.1 INTRODUCTION 13.2 STATIC VAr SYSTEM 13.2.1 Stability Characteristics of an SVS 13.2.2 Positive-Sequence Transient Stability Model for SVS 13.3 THYRISTOR-CONTROLLED SERIES COMPENSATION 13.3.1 Operating Modes of a TCSC 13.3.2 Equipment Characteristics and Limiting Conditions 13.3.3 TCSC Model for Transient Stability Studies 13.4 STATIC SYNCHRONOUS COMPENSATOR 13.4.1 STATCOM Model for Transient Stability Studies 13.5 HIGH VOLTAGE DC TRANSMISSION PROBLEMS REFERENCES CHAPTER 14 POWER SYSTEM PROTECTION AND MONITORING ASSOCIATED WITH POWER SYSTEM STABILITY 14.1 INTRODUCTION 14.2 POWER SYSTEM PROTECTION FUNCTIONS ASSOCIATED WITH TRANSIENT STABILITY ANALYSIS 14.2.1 Bulk Transmission Line Out-of-Step Protection 14.2.2 Generator Out-of-Step Protection 14.2.3 Undervoltage Load Shedding 14.2.4 Underfrequency Load Shedding 14.3 SPECIAL PROTECTION SCHEMES 14.3.1 Generation Rejection and Load Shedding 14.3.2 Controlled Islanding and Load Shedding 14.4 SYNCHROPHASOR-BASED MONITORING OF POWER SYSTEM STABILITY 14.4.1 Online Dynamic Security Assessment Using Synchrophasor Measurements and Decision Trees 14.4.2 Island Formation Prediction Scheme Supported by PMU Measurements 14.4.3 Real-Time Voltage Security and Oscillation Monitoring Using PMU Measurements PROBLEMS REFERENCES PART III MECHANICAL DYNAMIC PERFORMANCE CHAPTER 15 SPEED GOVERNING 15.1 THE FLYBALL GOVERNOR 15.2 THE ISOCHRONOUS GOVERNOR 15.3 INCREMENTAL EQUATIONS OF THE TURBINE 15.4 THE SPEED DROOP GOVERNOR 15.5 THE FLOATING LEVER SPEED DROOP GOVERNOR 15.6 THE COMPENSATED GOVERNOR 15.7 ELECTRONIC GOVERNORS 15.8 GOVERNOR MODELS FOR TRANSIENT STABILITY SIMULATIONS PROBLEMS CHAPTER 16 STEAM TURBINE PRIME MOVERS 16.1 INTRODUCTION 16.2 POWER PLANT CONTROL MODES 16.2.1 The Turbine-Following Control Mode 16.2.2 The Boiler-Following Control Mode 16.2.3 The Coordinated Control Mode 16.3 THERMAL GENERATION 16.4 A STEAM POWER PLANT MODEL 16.5 STEAM TURBINES 16.6 STEAM TURBINE CONTROL OPERATIONS 16.7 STEAM TURBINE CONTROL FUNCTIONS 16.8 STEAM GENERATOR CONTROL 16.9 FOSSIL-FUELED BOILERS 16.9.1 Drum-Type Boilers 16.9.2 Once-Through Boilers 16.9.3 Computer Models of Fossil-Fueled Boilers 16.10 NUCLEAR STEAM SUPPLY SYSTEMS 16.10.1 Boiling Water Reactors 16.10.2 Pressurized Water Reactors PROBLEMS REFERENCES CHAPTER 17 HYDRAULIC TURBINE PRIME MOVERS 17.1 INTRODUCTION 17.2 THE IMPULSE TURBINE 17.3 THE REACTION TURBINE 17.4 PROPELLER-TYPE TURBINES 17.5 THE DERIAZ TURBINE 17.6 CONDUITS, SURGE TANKS, AND PENSTOCKS 17.7 HYDRAULIC SYSTEM EQUATIONS 17.8 HYDRAULIC SYSTEM TRANSFER FUNCTION 17.9 SIMPLIFYING ASSUMPTIONS 17.10 BLOCK DIAGRAM FOR A HYDRO SYSTEM 17.11 PUMPED-STORAGE HYDRO SYSTEMS 17.12 REPRESENTATION OF HYDRO TURBINES AND GOVERNORS IN STABILITY STUDIES PROBLEMS REFERENCES CHAPTER 18 COMBUSTION TURBINE AND COMBINED-CYCLE POWER PLANTS 18.1 INTRODUCTION 18.2 THE COMBUSTION TURBINE PRIME MOVER 18.2.1 Combustion Turbine Control 18.2.2 Off-Nominal Frequency and Voltage Effects 18.2.3 Nonlinear Governor Droop Characteristic 18.2.4 Recent Advances in Modeling Gas Turbines 18.3 THE COMBINED-CYCLE PRIME MOVER 18.3.1 Fuel and Air Controls 18.3.2 The Gas Turbine Power Generation 18.3.3 The Steam Turbine Power Generation 18.3.4 Recent Development in Modeling Combined-Cycle Plants PROBLEMS REFERENCES APPENDIX A TRIGONOMETRIC IDENTITIES FOR THREE-PHASE SYSTEMS APPENDIX B SOME COMPUTER METHODS FOR SOLVING DIFFERENTIAL EQUATIONS B.1 DIGITAL COMPUTER SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS B.2 BRIEF SURVEY OF NUMERICAL METHODS B.3 MODIFIED EULER METHOD B.4 NUMERICAL INSTABILITY B.5 NUMERICAL ERROR B.6 IMPLICIT INTEGRATION METHODS FURTHER READING APPENDIX C NORMALIZATION C.1 NORMALIZATION OF MUTUALLY COUPLED COILS C.2 EQUAL MUTUAL FLUX LINKAGES C.2.1 Summary C.3 COMPARISON WITH MANUFACTURERS´ IMPEDANCES C.4 COMPLETE DATA FOR TYPICAL MACHINE REFERENCES APPENDIX D TYPICAL SYSTEM DATA D.1 DATA FOR GENERATOR UNITS D.1.1 Short Circuit Ratio D.1.2 Generator Saturation D.1.3 Damping D.1.4 Voltage Regulator Type D.1.5 Exciter Saturation D.1.6 Governor Representation D.1.7 Power System Stabilizer D.2 DATA FOR TRANSMISSION LINES REFERENCES APPENDIX E EXCITATION CONTROL SYSTEM DEFINITIONS REFERENCES APPENDIX F CONTROL SYSTEM COMPONENTS F.1 SUMMATION F.2 DIFFERENTIATION F.3 INTEGRATION F.4 AMPLIFICATION F.5 GATING F.6 TRANSDUCERS F.6.1 Rotational Speed Transducers (Tachometers) F.6.2 Position Transducers F.6.3 Pressure Transducers F.7 FUNCTION GENERATORS REFERENCES APPENDIX G PRESSURE CONTROL SYSTEMS G.1 PRESSURE REGULATOR, GR G.2 HYDRAULIC SERVOMOTOR, GH G.3 STEAM VALVE–STEAM FLOW, GA AND GA G.4 STEAM VOLUME REFERENCE APPENDIX H THE GOVERNOR EQUATIONS H.1 THE FLYBALL GOVERNOR H.1.1 The Equilibrium Equations H.1.2 The Dynamic Equations REFERENCES APPENDIX I WAVE EQUATIONS FOR A HYDRAULIC CONDUIT I.1 DYNAMIC EQUATION OF EQUILIBRIUM I.2 THE CONTINUITY CONDITION I.2.1 Deformation of the Shell I.2.2 Compressibility of the Water APPENDIX J HYDRAULIC SERVOMOTORS J.1 CONTROL VALVE FLOW EQUATIONS J.2 CONTROL VALVE FORCE EQUATIONS J.3 THE HYDRAULIC VALVE-CONTROLLED PISTON REFERENCES INDEX IEEE PRESS SERIES ON POWER ENGINEERING EULA