ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب POWER SYSTEM CONTROL AND STABILITY

دانلود کتاب کنترل و پایداری سیستم قدرت

POWER SYSTEM CONTROL AND STABILITY

مشخصات کتاب

POWER SYSTEM CONTROL AND STABILITY

ویرایش: 3 
نویسندگان:   
سری:  
ISBN (شابک) : 9781119433705, 1119433703 
ناشر: WILEY-BLACKWELL 
سال نشر: 2020 
تعداد صفحات: 833 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 24 مگابایت 

قیمت کتاب (تومان) : 31,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 2


در صورت تبدیل فایل کتاب POWER SYSTEM CONTROL AND STABILITY به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب کنترل و پایداری سیستم قدرت نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

TITLE PAGE
COPYRIGHT PAGE
CONTENTS
FOREWORD
PREFACE
ABOUT THE AUTHORS
PART I INTRODUCTION
	CHAPTER 1 POWER SYSTEM STABILITY
		1.1 INTRODUCTION
		1.2 REQUIREMENTS OF A RELIABLE ELECTRICAL POWER SERVICE
		1.3 STATEMENT OF THE PROBLEM
			1.3.1 Definition of Stability
			1.3.2 Classification of Stability Problems
			1.3.3 Description of Stability Phenomenon
		1.4 EFFECT OF IMPACT ON SYSTEM COMPONENTS
			1.4.1 Loss of Synchronism
			1.4.2 Synchronous Machine During a Transient
		1.5 METHODS OF SIMULATION
			1.5.1 Linearized System Equations
			1.5.2 Large System with Nonlinear Equations
		1.6 PLANNING AND OPERATING STANDARDS
		PROBLEMS
		REFERENCES
	CHAPTER 2 THE ELEMENTARY MATHEMATICAL MODEL
		2.1 SWING EQUATION
		2.2 UNITS
		2.3 MECHANICAL TORQUE
			2.3.1 Unregulated Machines
			2.3.2 Regulated Machines
		2.4 ELECTRICAL TORQUE
			2.4.1 Synchronous Torque
			2.4.2 Other Electrical Torques
		2.5 POWER-ANGLE CURVE OF A SYNCHRONOUS MACHINE
			2.5.1 Classical Representation of a Synchronous Machine in Stability Studies
			2.5.2 Synchronizing Power Coefficients
		2.6 NATURAL FREQUENCIES OF OSCILLATION OF A SYNCHRONOUS MACHINE
		2.7 SYSTEM OF ONE MACHINE AGAINST AN INFINITE BUS: THE CLASSICAL MODEL
		2.8 EQUAL AREA CRITERION
			2.8.1 Critical Clearing Angle
			2.8.2 Application to a One-Machine System
			2.8.3 Equal Area Criterion for a Two-Machine System
		2.9 CLASSICAL MODEL OF A MULTIMACHINE SYSTEM
		2.10 CLASSICAL STABILITY STUDY OF A NINE-BUS SYSTEM
			2.10.1 Data Preparation
			2.10.2 Preliminary Calculations
		2.11 SHORTCOMINGS OF THE CLASSICAL MODEL
		2.12 BLOCK DIAGRAM OF ONE MACHINE
		PROBLEMS
		REFERENCES
	CHAPTER 3 SYSTEM RESPONSE TO SMALL DISTURBANCES
		3.1 INTRODUCTION
		3.2 TYPES OF PROBLEMS STUDIED
			3.2.1 System Response to Small Impacts
			3.2.2 Distribution of Power Impacts
		3.3 THE UNREGULATED SYNCHRONOUS MACHINE
			3.3.1 Demagnetizing Effect of Armature Reaction
			3.3.2 Effect of Small Changes of Speed
		3.4 MODES OF OSCILLATION OF AN UNREGULATED MULTIMACHINE SYSTEM
		3.5 REGULATED SYNCHRONOUS MACHINE
			3.5.1 Voltage Regulator with One Time Lag
			3.5.2 Governor with One Time Lag
		3.6 DISTRIBUTION OF POWER IMPACTS
			3.6.1 Linearization
			3.6.2 A Special Case: t=0+
			3.6.3 Average Behavior Prior to Governor Action (t=t1)
		PROBLEMS
		REFERENCES
PART II ELECTRICAL AND ELECTROMAGNETIC DYNAMIC PERFORMANCE
	CHAPTER 4 THE SYNCHRONOUS MACHINE
		4.1 INTRODUCTION
		4.2 PARK´S TRANSFORMATION
		4.3 FLUX LINKAGE EQUATIONS
			4.3.1 Stator Self-Inductances
			4.3.2 Rotor Self-Inductances
			4.3.3 Stator Mutual Inductances
			4.3.4 Rotor Mutual Inductances
			4.3.5 Stator-to-Rotor Mutual Inductances
			4.3.6 Transformation of Inductances
		4.4 VOLTAGE EQUATIONS
		4.5 FORMULATION OF STATE-SPACE EQUATIONS
		4.6 CURRENT FORMULATION
		4.7 PER-UNIT CONVERSION
			4.7.1 Choosing a Base for Stator Quantities
			4.7.2 Choosing a Base for Rotor Quantities
			4.7.3 Comparison with Other Per-Unit Systems
			4.7.4 The Correspondence of Per-Unit Stator EMF to Rotor Quantities
		4.8 NORMALIZING THE VOLTAGE EQUATIONS
		4.9 NORMALIZING THE TORQUE EQUATIONS
			4.9.1 The Normalized Swing Equation
			4.9.2 Forms of the Swing Equation
		4.10 TORQUE AND POWER
		4.11 EQUIVALENT CIRCUIT OF A SYNCHRONOUS MACHINE
		4.12 THE FLUX LINKAGE STATE-SPACE MODEL
			4.12.1 The Voltage Equations
			4.12.2 The Torque Equation
			4.12.3 Machine Equations with Saturation Neglected
			4.12.4 Treatment of Saturation
		4.13 LOAD EQUATIONS
			4.13.1 Synchronous Machine Connected to an Infinite Bus
			4.13.2 Current Model
			4.13.3 The Flux Linkage Model
		4.14 SUBTRANSIENT AND TRANSIENT INDUCTANCES AND TIME CONSTANTS
			4.14.1 Time Constants
		4.15 SIMPLIFIED MODELS OF THE SYNCHRONOUS MACHINE
			4.15.1 Neglecting Damper Windings: The Eq (One-Axis) Model
			4.15.2 Voltage Behind Subtransient Reactance: The E Model
			4.15.3 Neglecting λd and λq for a Cylindrical Rotor Machine: The Two-Axis Model
			4.15.4 Neglecting Amortisseur Effects and λd and λq Terms: The One-Axis Model
			4.15.5 Assuming Constant Flux Linkage in the Main Field Winding
		4.16 PARAMETER DETERMINATION FOR GENERATOR DYNAMIC MODELS
		PROBLEMS
		REFERENCES
	CHAPTER 5 THE SIMULATION OF SYNCHRONOUS MACHINES
		5.1 INTRODUCTION
		5.2 STEADY-STATE EQUATIONS AND PHASOR DIAGRAMS
		5.3 MACHINE CONNECTED TO AN INFINITE BUS THROUGH A TRANSMISSION LINE
		5.4 MACHINE CONNECTED TO AN INFINITE BUS WITH LOCAL LOAD AT MACHINE TERMINAL
			5.4.1 Special Case: The Resistive Load, ZL=RL+j0
			5.4.2 General Case: ZL Arbitrary
		5.5 DETERMINING STEADY-STATE CONDITIONS
			5.5.1 Machine Connected to an Infinite Bus with Local Load
		5.6 EXAMPLES
		5.7 INITIAL CONDITIONS FOR A MULTIMACHINE SYSTEM
		5.8 DETERMINATION OF MACHINE PARAMETERS FROM MANUFACTURERS´ DATA
		5.9 DIGITAL SIMULATION OF SYNCHRONOUS MACHINES
			5.9.1 Digital Computation of Saturation
			5.9.2 Updating λAD
		PROBLEMS
		REFERENCES
	CHAPTER 6 LOAD MODELING
		6.1 INTRODUCTION
		6.2 STATIC LOAD MODELS
		6.3 INDUCTION MOTOR LOADS
			6.3.1 Model Development of a Three-Phase Induction Machine
			6.3.2 Representing Induction Machines in Stability Simulations
			6.3.3 Stalled Motor Operation
		6.4 SINGLE-PHASE MOTORS
			6.4.1 Scroll Compressors
			6.4.2 Point-on-Wave Effects
			6.4.3 Dynamic Phasors
		6.5 POWER ELECTRONIC LOADS
		6.6 SELF-RESTORING LOADS
		6.7 DISTRIBUTED ENERGY RESOURCES
		6.8 COMPOSITE LOAD MODELS
		6.9 DATA DEVELOPMENT
			6.9.1 Component Based
			6.9.2 Measurement Based
		PROBLEMS
		REFERENCES
	CHAPTER 7 SIMULATION OF MULTIMACHINE SYSTEMS
		7.1 INTRODUCTION
		7.2 STATEMENT OF THE PROBLEM
		7.3 MATRIX REPRESENTATION OF A PASSIVE NETWORK
			7.3.1 Network in the Transient State
			7.3.2 Converting to a Common Reference Frame
		7.4 CONVERTING MACHINE COORDINATES TO SYSTEM REFERENCE
		7.5 RELATION BETWEEN MACHINE CURRENTS AND VOLTAGES
		7.6 SYSTEM ORDER
		7.7 MACHINES REPRESENTED BY CLASSICAL METHODS
		7.8 LINEARIZED MODEL FOR THE NETWORK
		7.9 HYBRID FORMULATION
		7.10 NETWORK EQUATIONS WITH FLUX LINKAGE MODEL
		7.11 TOTAL SYSTEM EQUATIONS
		7.12 ALTERNATING SOLUTION METHOD
			7.12.1 Nonlinear Loads
			7.12.2 Network–Machine Interface
		7.13 SIMULTANEOUS SOLUTION METHOD
		7.14 DESIGN OF NUMERICAL SOLVERS
		PROBLEMS
		REFERENCES
	CHAPTER 8 SMALL-SIGNAL STABILITY ANALYSIS
		8.1 INTRODUCTION
		8.2 FUNDAMENTALS OF LINEAR SYSTEM STABILITY
		8.3 LINEARIZATION OF THE GENERATOR STATE-SPACE CURRENT MODEL
		8.4 LINEARIZATION OF THE LOAD EQUATION FOR THE ONE-MACHINE PROBLEM
		8.5 LINEARIZATION OF THE FLUX LINKAGE MODEL
		8.6 STATE MATRIX FOR MULTIMACHINE SYSTEMS
			8.6.1 Formulation of the State Matrix
			8.6.2 Representation of Static Loads in the State Matrix
		8.7 SIMPLIFIED LINEAR MODEL
			8.7.1 The E Equation
			8.7.2 Electrical Torque Equation
			8.7.3 Terminal Voltage Equation
			8.7.4 Summary of Equations
			8.7.5 Effect of Loading
			8.7.6 Comparison with Classical Model
		8.8 BLOCK DIAGRAMS
		8.9 STATE-SPACE REPRESENTATION OF SIMPLIFIED MODEL
		PROBLEMS
		REFERENCES
	CHAPTER 9 EXCITATION SYSTEMS
		9.1 SIMPLIFIED VIEW OF EXCITATION CONTROL
		9.2 CONTROL CONFIGURATIONS
		9.3 TYPICAL EXCITATION CONFIGURATIONS
			9.3.1 Primitive Systems
			9.3.2 Type DC Excitation Control Systems with DC Generator-Commutator Exciters
			9.3.3 Type AC Excitation Control Systems with Alternator-Rectifier Exciters
			9.3.4 Type AC Excitation Control Systems with Alternator-SCR Exciter Systems
			9.3.5 Type ST Excitation Control Systems with Compound-Rectifier Exciter Systems
			9.3.6 Type ST Excitation Control System with Compound-Rectifier Exciter Plus Potential-Source-Rectifier Exciter
			9.3.7 Type ST Excitation Control Systems with Potential-Source-Rectifier Exciter
		9.4 EXCITATION CONTROL SYSTEM DEFINITIONS
			9.4.1 Voltage Response Ratio
			9.4.2 Exciter Voltage Ratings
			9.4.3 Other Specifications
		9.5 VOLTAGE REGULATOR
			9.5.1 Electromechanical Regulators
			9.5.2 Early Electronic Regulators
			9.5.3 Rotating Amplifier Regulators
			9.5.4 Magnetic Amplifier Regulators
			9.5.5 Digital Excitation Systems
		9.6 Exciter Buildup
			9.6.1 The DC Generator Exciter
			9.6.2 Linear Approximations for DC Generator Exciters
			9.6.3 The AC Generator Exciters
			9.6.4 Solid-State Exciters
			9.6.5 Buildup of a Loaded DC Exciter
			9.6.6 Normalization of Exciter Equations
		9.7 LIMITING AND PROTECTION FOR EXCITATION CONTROL SYSTEMS
			9.7.1 Modeling Amplifier Limits
			9.7.2 Control Limiters and Associated Protection
			9.7.3 Volts per Hertz Protection
		9.8 EXCITATION SYSTEM RESPONSE
			9.8.1 Noncontinuously Regulated Systems
			9.8.2 Continuously Regulated Systems
		9.9 STATE-SPACE DESCRIPTION OF THE EXCITATION SYSTEM
			9.9.1 Simplified Linear Model
			9.9.2 Complete Linear Model
		9.10 COMPUTER REPRESENTATION OF EXCITATION SYSTEMS
			9.10.1 Type DC1: DC Commutator Exciter
			9.10.2 Type AC Systems: Alternator Supplied Rectifier Excitation Systems
			9.10.3 Type AC1 System: Field-Controlled Alternator-Rectifier Excitation System
			9.10.4 Type ST1 System: Controlled Rectifier System with Terminal Potential Supply Only
			9.10.5 Type ST2 System: Static with Terminal Potential and Current Supplies
			9.10.6 Type DC3 System: Noncontinuous Acting
		9.11 TYPICAL SYSTEM CONSTANTS
		9.12 THE EFFECT OF EXCITATION ON GENERATOR PERFORMANCE
		PROBLEMS
		REFERENCES
	CHAPTER 10 THE EFFECT OF EXCITATION ON STABILITY
		10.1 INTRODUCTION
			10.1.1 Transient Stability and Small-Signal Stability Considerations
		10.2 EFFECT OF EXCITATION ON GENERATOR POWER LIMITS
		10.3 EFFECT OF THE EXCITATION SYSTEM ON TRANSIENT STABILITY
			10.3.1 The Role of the Excitation System in Classical Model Studies
			10.3.2 Increased Reliance on Excitation Control to Improve Stability
			10.3.3 Parametric Study
			10.3.4 Reactive Power Demand During System Emergencies
		10.4 EFFECT OF EXCITATION ON SMALL-SIGNAL STABILITY
			10.4.1 Examination of Small-Signal Stability by Routh´s Criterion
			10.4.2 Further Considerations of the Regulator Gain and Time Constant
			10.4.3 Effect on the Electrical Torque
		10.5 ROOT-LOCUS ANALYSIS OF A REGULATED MACHINE CONNECTED TO AN INFINITE BUS
		10.6 APPROXIMATE SYSTEM REPRESENTATION
			10.6.1 Approximate Excitation System Representation
			10.6.2 Estimate of Gx(s)
			10.6.3 The Inertial Transfer Function
		10.7 SUPPLEMENTARY STABILIZING SIGNALS
			10.7.1 Block Diagram of the Linear System
			10.7.2 Approximate Model of the Complete Exciter-Generator System
			10.7.3 Lead Compensation
		10.8 LINEAR ANALYSIS OF THE STABILIZED GENERATOR
		10.9 PSS TUNING IN MULTIMACHINE POWER SYSTEMS
		10.10 ALTERNATE TYPES OF PSS
		10.11 DIGITAL COMPUTER TRANSIENT STABILITY STUDIES
			10.11.1 Effect of Fault Duration
			10.11.2 Effect of the Power System Stabilizer
		10.12 SOME GENERAL COMMENTS ON THE EFFECT OF EXCITATION ON STABILITY
		PROBLEMS
		REFERENCES
	CHAPTER 11 DYNAMIC MODELING AND REPRESENTATION OF RENEWABLE ENERGY RESOURCES
		11.1 WIND TURBINE GENERATORS
			11.1.1 Type 1 WTGs
			11.1.2 Type 2 WTGs
			11.1.3 Type 3 WTGs
			11.1.4 Type 4 WTGs
		11.2 PHOTOVOLTAIC SOLAR PLANT MODELING
			11.2.1 Generic Model of PV Solar Plant
			11.2.2 Modified Generic Model of PV Solar Plant
		PROBLEMS
		REFERENCES
	CHAPTER 12 VOLTAGE STABILITY
		12.1 Modeling Requirements for Voltage Instability Analysis
		12.2 Voltage Instability Analysis Using Time Domain Simulation
		12.3 DYNAMIC VAr PLANNING AND OPTIMIZATION
			12.3.1 Trajectory Sensitivity Analysis
			12.3.2 Formulation of the VAr Optimization Problem
			12.3.3 Implementation of the Dynamic VAr Optimization Approach
			12.3.4 Application of Dynamic VAr Optimization Approach
		PROBLEMS
		REFERENCES
	CHAPTER 13 DYNAMIC PERFORMANCE AND MODELING OF FLEXIBLE AC TRANSMISSION SYSTEM (FACTS) COMPONENTS
		13.1 INTRODUCTION
		13.2 STATIC VAr SYSTEM
			13.2.1 Stability Characteristics of an SVS
			13.2.2 Positive-Sequence Transient Stability Model for SVS
		13.3 THYRISTOR-CONTROLLED SERIES COMPENSATION
			13.3.1 Operating Modes of a TCSC
			13.3.2 Equipment Characteristics and Limiting Conditions
			13.3.3 TCSC Model for Transient Stability Studies
		13.4 STATIC SYNCHRONOUS COMPENSATOR
			13.4.1 STATCOM Model for Transient Stability Studies
		13.5 HIGH VOLTAGE DC TRANSMISSION
		PROBLEMS
		REFERENCES
	CHAPTER 14 POWER SYSTEM PROTECTION AND MONITORING ASSOCIATED WITH POWER SYSTEM STABILITY
		14.1 INTRODUCTION
		14.2 POWER SYSTEM PROTECTION FUNCTIONS ASSOCIATED WITH TRANSIENT STABILITY ANALYSIS
			14.2.1 Bulk Transmission Line Out-of-Step Protection
			14.2.2 Generator Out-of-Step Protection
			14.2.3 Undervoltage Load Shedding
			14.2.4 Underfrequency Load Shedding
		14.3 SPECIAL PROTECTION SCHEMES
			14.3.1 Generation Rejection and Load Shedding
			14.3.2 Controlled Islanding and Load Shedding
		14.4 SYNCHROPHASOR-BASED MONITORING OF POWER SYSTEM STABILITY
			14.4.1 Online Dynamic Security Assessment Using Synchrophasor Measurements and Decision Trees
			14.4.2 Island Formation Prediction Scheme Supported by PMU Measurements
			14.4.3 Real-Time Voltage Security and Oscillation Monitoring Using PMU Measurements
		PROBLEMS
		REFERENCES
PART III MECHANICAL DYNAMIC PERFORMANCE
	CHAPTER 15 SPEED GOVERNING
		15.1 THE FLYBALL GOVERNOR
		15.2 THE ISOCHRONOUS GOVERNOR
		15.3 INCREMENTAL EQUATIONS OF THE TURBINE
		15.4 THE SPEED DROOP GOVERNOR
		15.5 THE FLOATING LEVER SPEED DROOP GOVERNOR
		15.6 THE COMPENSATED GOVERNOR
		15.7 ELECTRONIC GOVERNORS
		15.8 GOVERNOR MODELS FOR TRANSIENT STABILITY SIMULATIONS
		PROBLEMS
	CHAPTER 16 STEAM TURBINE PRIME MOVERS
		16.1 INTRODUCTION
		16.2 POWER PLANT CONTROL MODES
			16.2.1 The Turbine-Following Control Mode
			16.2.2 The Boiler-Following Control Mode
			16.2.3 The Coordinated Control Mode
		16.3 THERMAL GENERATION
		16.4 A STEAM POWER PLANT MODEL
		16.5 STEAM TURBINES
		16.6 STEAM TURBINE CONTROL OPERATIONS
		16.7 STEAM TURBINE CONTROL FUNCTIONS
		16.8 STEAM GENERATOR CONTROL
		16.9 FOSSIL-FUELED BOILERS
			16.9.1 Drum-Type Boilers
			16.9.2 Once-Through Boilers
			16.9.3 Computer Models of Fossil-Fueled Boilers
		16.10 NUCLEAR STEAM SUPPLY SYSTEMS
			16.10.1 Boiling Water Reactors
			16.10.2 Pressurized Water Reactors
		PROBLEMS
		REFERENCES
	CHAPTER 17 HYDRAULIC TURBINE PRIME MOVERS
		17.1 INTRODUCTION
		17.2 THE IMPULSE TURBINE
		17.3 THE REACTION TURBINE
		17.4 PROPELLER-TYPE TURBINES
		17.5 THE DERIAZ TURBINE
		17.6 CONDUITS, SURGE TANKS, AND PENSTOCKS
		17.7 HYDRAULIC SYSTEM EQUATIONS
		17.8 HYDRAULIC SYSTEM TRANSFER FUNCTION
		17.9 SIMPLIFYING ASSUMPTIONS
		17.10 BLOCK DIAGRAM FOR A HYDRO SYSTEM
		17.11 PUMPED-STORAGE HYDRO SYSTEMS
		17.12 REPRESENTATION OF HYDRO TURBINES AND GOVERNORS IN STABILITY STUDIES
		PROBLEMS
		REFERENCES
	CHAPTER 18 COMBUSTION TURBINE AND COMBINED-CYCLE POWER PLANTS
		18.1 INTRODUCTION
		18.2 THE COMBUSTION TURBINE PRIME MOVER
			18.2.1 Combustion Turbine Control
			18.2.2 Off-Nominal Frequency and Voltage Effects
			18.2.3 Nonlinear Governor Droop Characteristic
			18.2.4 Recent Advances in Modeling Gas Turbines
		18.3 THE COMBINED-CYCLE PRIME MOVER
			18.3.1 Fuel and Air Controls
			18.3.2 The Gas Turbine Power Generation
			18.3.3 The Steam Turbine Power Generation
			18.3.4 Recent Development in Modeling Combined-Cycle Plants
		PROBLEMS
		REFERENCES
	APPENDIX A TRIGONOMETRIC IDENTITIES FOR THREE-PHASE SYSTEMS
	APPENDIX B SOME COMPUTER METHODS FOR SOLVING DIFFERENTIAL EQUATIONS
		B.1 DIGITAL COMPUTER SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS
		B.2 BRIEF SURVEY OF NUMERICAL METHODS
		B.3 MODIFIED EULER METHOD
		B.4 NUMERICAL INSTABILITY
		B.5 NUMERICAL ERROR
		B.6 IMPLICIT INTEGRATION METHODS
		FURTHER READING
	APPENDIX C NORMALIZATION
		C.1 NORMALIZATION OF MUTUALLY COUPLED COILS
		C.2 EQUAL MUTUAL FLUX LINKAGES
			C.2.1 Summary
		C.3 COMPARISON WITH MANUFACTURERS´ IMPEDANCES
		C.4 COMPLETE DATA FOR TYPICAL MACHINE
		REFERENCES
	APPENDIX D TYPICAL SYSTEM DATA
		D.1 DATA FOR GENERATOR UNITS
			D.1.1 Short Circuit Ratio
			D.1.2 Generator Saturation
			D.1.3 Damping
			D.1.4 Voltage Regulator Type
			D.1.5 Exciter Saturation
			D.1.6 Governor Representation
			D.1.7 Power System Stabilizer
		D.2 DATA FOR TRANSMISSION LINES
		REFERENCES
	APPENDIX E EXCITATION CONTROL SYSTEM DEFINITIONS
	REFERENCES
	APPENDIX F CONTROL SYSTEM COMPONENTS
		F.1 SUMMATION
		F.2 DIFFERENTIATION
		F.3 INTEGRATION
		F.4 AMPLIFICATION
		F.5 GATING
		F.6 TRANSDUCERS
			F.6.1 Rotational Speed Transducers (Tachometers)
			F.6.2 Position Transducers
			F.6.3 Pressure Transducers
		F.7 FUNCTION GENERATORS
		REFERENCES
	APPENDIX G PRESSURE CONTROL SYSTEMS
		G.1 PRESSURE REGULATOR, GR
		G.2 HYDRAULIC SERVOMOTOR, GH
		G.3 STEAM VALVE–STEAM FLOW, GA AND GA
		G.4 STEAM VOLUME
		REFERENCE
	APPENDIX H THE GOVERNOR EQUATIONS
		H.1 THE FLYBALL GOVERNOR
			H.1.1 The Equilibrium Equations
			H.1.2 The Dynamic Equations
		REFERENCES
	APPENDIX I WAVE EQUATIONS FOR A HYDRAULIC CONDUIT
		I.1 DYNAMIC EQUATION OF EQUILIBRIUM
		I.2 THE CONTINUITY CONDITION
			I.2.1 Deformation of the Shell
			I.2.2 Compressibility of the Water
	APPENDIX J HYDRAULIC SERVOMOTORS
		J.1 CONTROL VALVE FLOW EQUATIONS
		J.2 CONTROL VALVE FORCE EQUATIONS
		J.3 THE HYDRAULIC VALVE-CONTROLLED PISTON
		REFERENCES
INDEX
IEEE PRESS SERIES ON POWER ENGINEERING
EULA




نظرات کاربران