دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [5th ed.] نویسندگان: J. Duncan Glover, Mulukutla S. Sarma, Thomas Overbye سری: ISBN (شابک) : 1111425795, 9781111425791 ناشر: Cengage Learning سال نشر: 2011 تعداد صفحات: 850 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 16 Mb
در صورت تبدیل فایل کتاب Power System Analysis and Design (SI Edition), Fifth Edition به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تجزیه و تحلیل و طراحی سیستم قدرت (نسخه SI)، پنجمین نسخه نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover......Page 1
Title Page......Page 5
Copyright......Page 6
Contents......Page 9
Preface to the SI Edition......Page 14
Preface......Page 15
List of Symbols, Units, and Notation......Page 21
CHAPTER 1 Introduction......Page 23
Case Study: The Future Beckons: Will the Electric Power Industry Heed the Call?......Page 24
ARE WE SPENDING ENOUGH?......Page 25
THE SYSTEM IS AGING......Page 26
TECHNOLOGY WILL HAVE A ROLE......Page 27
INDUSTRY STRUCTURE......Page 28
REGULATORY ISSUES......Page 29
WORKFORCE OF THE FUTURE......Page 30
FOR FURTHER READING......Page 31
1.1 History of Electric Power Systems......Page 32
1.2 Present and Future Trends......Page 39
1.3 Electric Utility Industry Structure......Page 43
1.4 Computers in Power System Engineering......Page 44
1.5 PowerWorld Simulator......Page 46
REFERENCES......Page 52
CHAPTER 2 Fundamentals......Page 53
MICROGRID TECHNOLOGIES......Page 54
MICROGRID TESTING EXPERIENCE......Page 57
BIOGRAPHIES......Page 67
2.1 Phasors......Page 68
2.2 Instantaneous Power in Single-Phase AC Circuits......Page 69
PURELY CAPACITIVE LOAD......Page 70
GENERAL RLC LOAD......Page 71
REACTIVE POWER......Page 72
PHYSICAL SIGNIFICANCE OF REAL AND REACTIVE POWER......Page 74
2.3 Complex Power......Page 75
2.4 Network Equations......Page 80
2.5 Balanced Three-Phase Circuits......Page 82
BALANCED LINE-TO-NEUTRAL VOLTAGES......Page 83
BALANCED LINE-TO-LINE VOLTAGES......Page 84
BALANCED LINE CURRENTS......Page 85
BALANCED Δ LOADS......Page 86
Δ–Y CONVERSION FOR BALANCED LOADS......Page 88
INSTANTANEOUS POWER: BALANCED THREE-PHASE GENERATORS......Page 90
COMPLEX POWER: BALANCED THREE-PHASE GENERATORS......Page 92
COMPLEX POWER: BALANCED-Y AND BALANCED-Δ IMPEDANCE LOADS......Page 93
2.7 Advantages of Balanced Three-Phase Versus Single-Phase Systems......Page 96
MULTIPLE CHOICE QUESTIONS......Page 98
PROBLEMS......Page 101
REFERENCES......Page 111
CHAPTER 3 Power Transformers......Page 112
Case Study: PJM Manages Aging Transformer Fleet......Page 113
DEVELOPING PRA......Page 114
PRA MODEL INPUTS......Page 115
STANDARDIZATION IMPACT......Page 116
PJM BACKGROUND......Page 117
3.1 The Ideal Transformer......Page 118
3.2 Equivalent Circuits for Practical Transformers......Page 124
SATURATION......Page 128
INRUSH CURRENT......Page 129
3.3 The Per-Unit System......Page 130
3.4 Three-Phase Transformer Connections and Phase Shift......Page 138
3.5 Per-Unit Equivalent Circuits of Balanced Three-Phase Two-Winding Transformers......Page 143
3.6 Three-Winding Transformers......Page 148
3.7 Autotransformers......Page 152
3.8 Transformers with Off-Nominal Turns Ratios......Page 153
MULTIPLE CHOICE QUESTIONS......Page 162
PROBLEMS......Page 166
CASE STUDY QUESTIONS......Page 179
REFERENCES......Page 180
CHAPTER 4 Transmission Line Parameters......Page 181
Case Study: Transmission Line Conductor Design Comes of Age......Page 182
Case Study: Six Utilities Share Their Perspectives on Insulators......Page 186
CONDUCTORS......Page 191
INSULATORS......Page 192
SUPPORT STRUCTURES......Page 193
SHIELD WIRES......Page 194
MECHANICAL FACTORS......Page 195
4.2 Resistance......Page 196
4.3 Conductance......Page 199
4.4 Inductance: Solid Cylindrical Conductor......Page 200
4.5 Inductance: Single-Phase Two-Wire Line and Three-Phase Three-Wire Line with Equal Phase Spacing......Page 205
4.6 Inductance: Composite Conductors, Unequal Phase Spacing, Bundled Conductors......Page 207
4.7 Series Impedances: Three-Phase Line with Neutral Conductors and Earth Return......Page 215
4.8 Electric Field and Voltage: Solid Cylindrical Conductor......Page 221
4.9 Capacitance: Single-Phase Two-Wire Line and Three-Phase Three-Wire Line with Equal Phase Spacing......Page 223
4.10 Capacitance: Stranded Conductors, Unequal Phase Spacing, Bundled Conductors......Page 226
4.11 Shunt Admittances: Lines with Neutral Conductors and Earth Return......Page 229
4.12 Electric Field Strength at Conductor Surfaces and at Ground Level......Page 234
4.13 Parallel Circuit Three-Phase Lines......Page 237
MULTIPLE CHOICE QUESTIONS......Page 239
PROBLEMS......Page 242
REFERENCES......Page 253
CHAPTER 5 Transmission Lines: Steady-State Operation......Page 255
Case Study: The ABCs of HVDC Transmission Technologies......Page 256
CORE HVDC TECHNOLOGIES......Page 257
HVDC APPLICATIONS......Page 260
SYSTEM CONFIGURATIONS AND OPERATING MODES......Page 264
STATION DESIGN AND LAYOUT......Page 265
HVDC CONTROL AND OPERATING PRINCIPLES......Page 267
FOR FURTHER READING......Page 268
BIOGRAPHIES......Page 269
5.1 Medium and Short Line Approximations......Page 270
5.2 Transmission-Line Differential Equations......Page 276
5.3 Equivalent π Circuit......Page 282
5.4 Lossless Lines......Page 284
ABCD PARAMETERS......Page 285
WAVELENGTH......Page 286
SURGE IMPEDANCE LOADING......Page 287
VOLTAGE PROFILES......Page 288
STEADY-STATE STABILITY LIMIT......Page 290
5.5 Maximum Power Flow......Page 293
5.6 Line Loadability......Page 295
5.7 Reactive Compensation Techniques......Page 299
MULTIPLE CHOICE QUESTIONS......Page 304
PROBLEMS......Page 306
REFERENCES......Page 315
CHAPTER 6 Power Flows......Page 316
Case Study: Future Vision......Page 317
AGING TRANSMISSION SYSTEM......Page 318
PLANNING CHALLENGES......Page 320
TECHNICAL CHALLENGES......Page 322
INFRASTRUCTURE DEVELOPMENT CHALLENGES......Page 323
VISION FOR THE FUTURE......Page 324
ENHANCED PROJECT JUSTIFICATION......Page 325
BIOGRAPHIES......Page 326
II. TURBINE CHARACTERISTICS......Page 327
IV. REACTIVE POWER CAPABILITIES......Page 330
VI. WTG BEHAVIOR DURING GRID SHORT CIRCUITS......Page 331
VII. REFERENCES......Page 332
6.1 Direct Solutions to Linear Algebraic Equations: Gauss Elimination......Page 333
6.2 Iterative Solutions to Linear Algebraic Equations: Jacobi and Gauss–Seidel......Page 337
6.3 Iterative Solutions to Nonlinear Algebraic Equations: Newton–Raphson......Page 343
6.4 The Power-Flow Problem......Page 347
6.5 Power-Flow Solution by Gauss–Seidel......Page 353
6.6 Power-Flow Solution by Newton–Raphson......Page 356
6.7 Control of Power Flow......Page 365
6.8 Sparsity Techniques......Page 371
6.9 Fast Decoupled Power Flow......Page 374
6.10 The "DC" Power Flow......Page 375
6.11 Power-Flow Modeling of Wind Generation......Page 376
MULTIPLE CHOICE QUESTIONS......Page 378
PROBLEMS......Page 380
Design Projects 1–5......Page 388
REFERENCES......Page 399
CHAPTER 7 Symmetrical Faults......Page 401
Case Study: The Problem of Arcing Faults in Low-Voltage Power Distribution Systems......Page 402
7.1 Series R–L Circuit Transients......Page 404
7.2 Three-Phase Short Circuit—Unloaded Synchronous Machine......Page 407
7.3 Power System Three-Phase Short Circuits......Page 411
7.4 Bus Impedance Matrix......Page 414
AC CIRCUIT BREAKERS......Page 422
FUSES......Page 428
MULTIPLE CHOICE QUESTIONS......Page 431
PROBLEMS......Page 433
Design Project 4 (continued)......Page 439
REFERENCES......Page 440
CHAPTER 8 Symmetrical Components......Page 441
Case Study: Circuit Breakers Go High Voltage......Page 442
A HISTORY OF CIRCUIT BREAKERS......Page 443
SELF-BLAST TECHNOLOGY......Page 445
OUTLOOK FOR THE FUTURE......Page 448
BIOGRAPHY......Page 449
8.1 Definition of Symmetrical Components......Page 450
8.2 Sequence Networks of Impedance Loads......Page 455
8.3 Sequence Networks of Series Impedances......Page 463
8.4 Sequence Networks of Three-Phase Lines......Page 465
8.5 Sequence Networks of Rotating Machines......Page 467
8.6 Per-Unit Sequence Models of Three-Phase Two-Winding Transformers......Page 473
8.7 Per-Unit Sequence Models of Three-Phase Three-Winding Transformers......Page 478
8.8 Power in Sequence Networks......Page 481
MULTIPLE CHOICE QUESTIONS......Page 483
PROBLEMS......Page 485
REFERENCES......Page 492
CHAPTER 9 Unsymmetrical Faults......Page 493
Case Study: Fires at U.S. Utilities......Page 494
9.1 System Representation......Page 495
9.2 Single Line-to-Ground Fault......Page 500
9.3 Line-to-Line Fault......Page 505
9.4 Double Line-to-Ground Fault......Page 507
9.5 Sequence Bus Impedance Matrices......Page 514
MULTIPLE CHOICE QUESTIONS......Page 522
PROBLEMS......Page 523
REFERENCES......Page 536
Design Project 4 (continued)......Page 534
Design Project 6......Page 535
CHAPTER 10 System Protection......Page 538
Case Study: The Future of Power Transmission......Page 540
TECHNOLOGY’S ROLE GOING FORWARD......Page 541
BIOGRAPHIES......Page 546
10.1 System Protection Components......Page 547
10.2 Instrument Transformers......Page 548
10.3 Overcurrent Relays......Page 555
10.4 Radial System Protection......Page 559
10.5 Reclosers and Fuses......Page 563
10.6 Directional Relays......Page 567
10.7 Protection of Two-Source System with Directional Relays......Page 568
10.8 Zones of Protection......Page 569
10.9 Line Protection with Impedance (Distance) Relays......Page 573
10.10 Differential Relays......Page 579
10.11 Bus Protection with Differential Relays......Page 581
10.12 Transformer Protection with Differential Relays......Page 582
10.13 Pilot Relaying......Page 587
10.14 Digital Relaying......Page 588
PROBLEMS......Page 589
REFERENCES......Page 599
CHAPTER 11 Transient Stability......Page 601
Case Study: Real-Time Dynamic Security Assessment......Page 603
CONCLUSIONS......Page 608
BIOGRAPHIES......Page 611
11.1 The Swing Equation......Page 612
11.2 Simplified Synchronous Machine Model and System Equivalents......Page 618
11.3 The Equal-Area Criterion......Page 620
11.4 Numerical Integration of the Swing Equation......Page 630
11.5 Multimachine Stability......Page 635
TRANSIENT STABILITY COMPUTATION PROCEDURE......Page 637
11.6 A Two-Axis Synchronous Machine Model......Page 643
11.7 Wind Turbine Machine Models......Page 647
11.8 Design Methods for Improving Transient Stability......Page 654
PROBLEMS......Page 656
CASE STUDY QUESTIONS......Page 659
REFERENCES......Page 660
CHAPTER 12 Power System Controls......Page 661
Case Study: Overcoming Restoration Challenges Associated with Major Power System Disturbances......Page 664
12.1 Generator-Voltage Control......Page 674
12.2 Turbine-Governor Control......Page 679
12.3 Load-Frequency Control......Page 685
FOSSIL-FUEL UNITS, NO INEQUALITY CONSTRAINTS, NO TRANSMISSION LOSSES......Page 689
EFFECT OF INEQUALITY CONSTRAINTS......Page 693
EFFECT OF TRANSMISSION LOSSES......Page 696
OTHER TYPES OF UNITS......Page 701
12.5 Optimal Power Flow......Page 702
PROBLEMS......Page 704
REFERENCES......Page 710
CHAPTER 13 Transmission Lines: Transient Operation......Page 712
Case Study: VariSTAR® Type AZE Surge Arresters......Page 713
ELECTRICAL GRID OPERATION......Page 716
MARKET STRUCTURE......Page 717
WIND GROWTH IN REGIONS......Page 718
IMPACT ON OPERATIONS......Page 719
WIND EVENTS EXPERIENCED......Page 720
CURRENT PRACTICES......Page 722
BIOGRAPHIES......Page 728
13.1 Traveling Waves on Single-Phase Lossless Lines......Page 729
13.2 Boundary Conditions for Single-Phase Lossless Lines......Page 732
13.3 Bewley Lattice Diagram......Page 741
SINGLE-PHASE LOSSLESS LINE......Page 746
LUMPED INDUCTANCE......Page 748
LUMPED CAPACITANCE......Page 749
NODAL EQUATIONS......Page 750
13.5 Lossy Lines......Page 753
ATTENUATION......Page 754
DISTORTION......Page 755
POWER LOSSES......Page 756
13.6 Multiconductor Lines......Page 757
LIGHTNING......Page 760
SWITCHING SURGES......Page 765
POWER FREQUENCY OVERVOLTAGES......Page 766
PROBLEMS......Page 772
REFERENCES......Page 776
13.8 Insulation Coordination......Page 767
CHAPTER 14 POWER DISTRIBUTION......Page 779
BASIC INGREDIENTS......Page 780
SMART GRID DRIVERS......Page 781
EVOLUTION OF THE SMART GRID......Page 783
TRANSITION TO THE SMART GRID......Page 785
EMERGING SMART GRID STANDARDS......Page 788
SMART GRID RESEARCH, DEVELOPMENT, AND DEMONSTRATION (RD&D)......Page 789
BIOGRAPHY......Page 791
14.1 Introduction to Distribution......Page 792
14.2 Primary Distribution......Page 794
PRIMARY RADIAL SYSTEMS......Page 795
PRIMARY LOOP SYSTEMS......Page 799
PRIMARY NETWORK SYSTEMS......Page 801
14.3 Secondary Distribution......Page 802
COMMON SECONDARY MAIN......Page 804
SECONDARY NETWORK......Page 805
SPOT NETWORK......Page 806
DISTRIBUTION SUBSTATION TRANSFORMERS......Page 807
DISTRIBUTION TRANSFORMERS......Page 813
14.5 Shunt Capacitors in Distribution Systems......Page 817
14.6 Distribution Software......Page 822
14.7 Distribution Reliability......Page 823
14.8 Distribution Automation......Page 826
14.9 Smart Grids......Page 829
PROBLEMS......Page 830
REFERENCES......Page 834
Appendix......Page 836
Index......Page 840