دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: الکترونیک ویرایش: نویسندگان: Ahmed F. Zobaa, Shady H. E. Abdel Aleem سری: Energy Engineering ISBN (شابک) : 1785611232, 9781785611230 ناشر: Institution of Engineering and Technology سال نشر: 2017 تعداد صفحات: 439 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 37 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Power Quality in Future Electrical Power Systems به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کیفیت توان در سیستم های برق آینده نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Title Copyright Contents Preface 1 Power quality definitions 1.1 Introduction to various power quality indices 1.1.1 Why are we concerned about power quality? 1.1.2 Definition of power quality 1.2 Various conventional power quality indices 1.2.1 Harmonics and interharmonic 1.2.2 Voltage fluctuations and flicker 1.2.3 Voltage unbalance 1.2.4 Power frequency variations 1.2.5 Transients 1.2.6 Short duration voltage variations 1.3 International standards 1.3.1 The Institute of Electrical and Electronic Engineering (IEEE) Standards 1.3.2 American National Standards Institute (IEEE/ANSI) 1.3.3 British Standards (BS) with IEC Standards 1.3.4 International Electrotechnical Commission (IEC) Standards 1.4 Cost of poor power quality 1.4.1 Investment analysis to mitigate costs of power quality 1.4.2 Economic impact of power quality disturbances 1.4.3 Economic mechanisms for improving power quality levels References 2 Frequency-domain power theory and metering of harmonic-pollution responsibility 2.1 Introduction 2.2 Power resolutions for non-sinusoidal single-phase systems 2.2.1 Budeanu\'s power resolution 2.2.2 Fryze\'s power resolution 2.2.3 Shepherd and Zakikhani\'s power resolution 2.2.4 Sharon\'s power resolution 2.2.5 Kusters and Moore\'s power resolution 2.2.6 Czarnecki\'s power resolution 2.2.7 IEEE standard power resolution 2.2.8 Balci and Hocaoglu\'s power resolution 2.3 Power resolutions for non-sinusoidal and unbalanced three-phase systems 2.3.1 Vector apparent power and its resolution 2.3.2 Arithmetic apparent power 2.3.3 Buchollz\'s apparent power and its resolutions 2.3.4 IEEE standard apparent power and its resolution 2.4 Practical implementation of apparent powers and their power resolutions included in IEEE standard 1459 and DIN standard 40110 2.4.1 LabView blocks of developed power meter 2.4.2 Measurement results 2.5 Metering of harmonic-pollution responsibility 2.5.1 The indices based on active power direction method 2.5.2 The methods based on the harmonic analysis of the system 2.5.3 The current decomposition based indices 2.5.4 The methods based on the evaluation of the non-active powers 2.6 The statistical evaluation of the HGI, NLI and Ds harmonic source detection approaches for different load types under several supply voltage waveforms 2.7 Conclusions References 3 Passive harmonic filters Summary 3.1 Introduction 3.2 General concept of passive harmonic filters 3.3 Series passive filters 3.4 Shunt passive filters 3.4.1 Single-tuned filter 3.4.2 Double-tuned filter 3.4.3 Broad-band filters 3.5 Hybrid passive filter 3.6 Conclusion References 4 Active harmonic filters 4.1 Introduction 4.2 Industrial load models and characteristics 4.2.1 Dynamic and quasi-static harmonics in modern electrical networks 4.2.2 Industrial nonlinear loads types and characteristics 4.3 Active power filter topologies and design considerations 4.3.1 Active power filters use in AC and DC–AC power systems 4.3.2 Active power filters—design issues and considerations 4.3.3 Active power filters—industrial applications 4.4 Active power filters configurations 4.4.1 Current source active power filters—CSC 4.4.2 Voltage source active power filters—VSC 4.4.3 Shunt-active power filters 4.4.4 Series-active power filters 4.4.5 Hybrid-active power filters 4.4.6 Modern/distributed-active power filter 4.5 Active power filters—APF control strategies 4.5.1 Overview of APF control techniques 4.5.2 Heuristic soft computing-based control methods 4.5.3 Industrial load harmonic mitigation using APF control techniques 4.6 Emerging APF—applications and typologies 4.7 Case studies: design and optimization of an industrial active power filter 4.7.1 Case study I: APF application and control strategies for hybrid AC–DC industrial loads 4.7.2 Case study II: hybrid-APFs for AC–DC system 4.8 Conclusions References 5 Shunt flexible a.c. transmission 5.1 Introduction 5.2 Overview of harmonic concerns for shunt FACT devices and chapter content 5.2.1 Resonance conditions 5.2.2 Frequency scans 5.3 Power system model 5.3.1 Power system components 5.3.2 Background voltage distortion 5.3.3 Conclusions on system model 5.4 Shunt FACT device model 5.4.1 Static VAr compensator (SVC) 5.4.2 Static synchronous compensator (SSC or STATCOM) 5.4.3 High-voltage dc (HVDC) transmission 5.4.4 Conclusions on shunt FACT device model 5.5 Harmonic studies 5.5.1 Harmonic-performance studies 5.5.2 Harmonic rating studies References 6 Power-quality improvement using series FACTS 6.1 Introduction 6.1.1 Electricity network and power-quality overview 6.1.2 Load-flow analysis 6.2 Power-quality improvement using FACTS devices 6.3 Proposed SSSC model 6.3.1 Case 1: PQ control 6.3.2 Case 2: P control 6.3.3 NR-RCIM load-flow method with developed SSSC model 6.4 Proposed IPFC model 6.4.1 Master line 6.4.2 Slave line 6.4.3 Incorporating of developed IPFC model in NR-RCIM load flow 6.5 Validation of developed series FACTS models 6.5.1 Proposed SSSC model in NR-RCIM 6.5.2 Developed IPFC model in NR-RCIM 6.6 Conclusions References 7 Distributed generation systems 7.1 Introduction 7.2 Distributed generation 7.2.1 Description of the problem 7.2.2 Applications of distribution generation 7.3 Voltage source converters 7.4 Control techniques in DG systems 7.4.1 Grid connection 7.4.2 Islanded mode 7.5 Power quality in DG 7.5.1 Grid connected 7.5.2 Island mode 7.6 Harmonics and passive filter design for DG 7.6.1 Power filter configurations 7.6.2 Analysis of the three filter topologies 7.6.3 Filter design 7.6.4 Case study 7.6.5 Damping filter design 7.6.6 Simulation results References 8 Backward–forward sweep-based islanding scenario generation algorithm for defensive splitting of radial distribution systems 8.1 Introduction 8.2 Problem formulation 8.2.1 Proposed backward–forward-sweep-based islanding scenario generation algorithm 8.2.2 Objective function and constraints 8.2.3 Binary imperialistic-competitive-algorithm-based optimization process 8.3 Simulation studies 8.4 Conclusion Appendix References 9 Decentralised voltage control in smart grids 9.1 Introduction 9.1.1 Voltage profile as power quality index 9.1.2 Microgrids 9.1.3 Motivation of cooperative decentralised control in smart grid 9.2 Decentralised and distributed control systems 9.2.1 Contraction-based multi-agent systems 9.2.2 Contract net interaction protocol 9.3 Centralised hierarchical control of the DERs 9.3.1 Frequency regulation 9.3.2 Voltage magnitude regulation 9.4 DER integration concealment 9.5 Reactive power dispatch 9.5.1 Power-flow equations 9.5.2 Sensitivity calculations 9.5.3 Modal analysis 9.6 Distributed voltage control schemes 9.6.1 Optimisation based on the Lagrange multipliers method 9.6.2 Distributed voltage control via multi-agent system 9.6.3 Distributed voltage control with simplified model-based sensitivity calculation 9.6.4 Decentralised cooperative optimisation using self-organised sensor network 9.6.5 Distributed cooperative gradient-descent optimisation of reactive power dispatch References Further Readings 10 Techno-economic issues of power quality 10.1 Introduction 10.2 Different approaches for finding out power quality impact on tariff 10.3 Design of modules to associate disturbance and economic loss 10.3.1 Case study 1: cement plant 10.3.2 Case study 2: industry 10.3.3 Case study 3: hospital 10.4 The relationship between duration of disturbance and its cost–benefit analysis index 10.5 Improvement of power quality in the system and its expected benefits 10.6 Power-quality investment and gross domestic product in developing countries: case study 10.6.1 Case 1: Nepal 10.6.2 Case 2: Sri Lanka 10.7 Conclusions Acknowledgment References 11 An economic robust programing approach for the design of energy management systems 11.1 Introduction 11.2 Robust programing framework 11.3 Energy management system as a robust programing problem 11.4 Case study and simulation results 11.5 Concluding remarks Acknowledgment References 12 Future trends in power quality 12.1 Introduction 12.2 Contracts of PQ in a reconfigured electric power industry 12.3 Emerging power quality measurements 12.4 Power quality: impacts, harmonics estimation and mitigation 12.5 Power quality indices and standards 12.6 Power quality and smart grid 12.7 Power quality trends and future requirements 12.8 Case studies 12.8.1 The hybrid FACTS SPFC-filter compensator 12.8.2 FACTS-MPFC Modulated power filter compensator scheme I 12.8.3 FACTS–MPFC switched power filter compensator scheme II 12.8.4 Modulated/switched series-shunt power filter compensator scheme III 12.9 Conclusions Appendix References Index A B C D E F G H I J K L M N O P R S T U V W