دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Keng C. Wu
سری:
ISBN (شابک) : 032388542X, 9780323885423
ناشر: Elsevier
سال نشر: 2021
تعداد صفحات: 405
[400]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 33 Mb
در صورت تبدیل فایل کتاب Power Electronic System Design: Linking Differential Equations, Linear Algebra, and Implicit Functions به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب طراحی سیستم الکترونیک قدرت: پیوند معادلات دیفرانسیل، جبر خطی و توابع ضمنی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
طراحی مدارهای پردازش نیرو به طور یکپارچه مدلها و رویکردهای مهم ریاضی را در بهینهسازی مدارهای پردازش توان و سیستمهای خطی القا میکند. این کار مجموعهای از موضوعات چالشبرانگیز ریاضی را با محوریت معادلات دیفرانسیل، جبر خطی و توابع ضمنی، با دیدگاههای متعدد از دیدگاههای الکتریکی، ریاضی و فیزیکی، از جمله اجزای مدیریت نیرو، فیلتر قدرت و تنظیم توان، متحد میکند. کاربردهای برق تحت پوشش شامل مدارهای RC و RL مرتبه اول، مدارهای RLC مرتبه دوم با درایوهای دوره ای، منبع جریان ثابت، شیوه های بازخورد حلقه بسته، انواع حلقه کنترل، تنظیم کننده خطی، تنظیم کننده حالت سوئیچ و کنترل چرخش است.
Power Processing Circuits Design seamlessly infuses important mathematical models and approaches into the optimization of power processing circuits and linear systems. The work unites a constellation of challenging mathematical topics centered on differential equations, linear algebra and implicit functions, with multiple perspectives from electrical, mathematical and physical viewpoints, including power handling components, power filtering and power regulation. Power applications covered encompass first order RC and RL, second order RLC circuits with periodic drives, constant current source, close-loop feedback practices, control loop types, linear regulator, switch-mode regulator and rotation control.
Front Matter Copyright Dedication Contents About the Author Preface 1. Capacitor and inductor 1.1 Capacitor equation in differential form 1.2 Capacitor equation in integral form 1.3 Inductor equation in differential form 1.4 Inductor equation in integral form 1.5 Definition of inductance and Faraday’s law 1.6 Magnetic coupling and mutual inductance 1.7 Transformer equation 1.8 Nonideal capacitor,nonideal inductor,and equivalent circuit 1.9 Transformer equivalent circuits 1.10 Physical size of capacitor and inductor 1.11 Specifications for capacitor and inductor 2 First-order circuits 2.1 RC network with periodic drive source 2.2 Sawtooth (triangle ramp) generator 2.3 Full-wave rectifier with RC load 2.4 Abrushless DC Motor with permanent magnets rotor 2.5 A BLDC motor speed detector References 3 Current source 3.1 Semiconductor diode equation 3.2 Simple current source 3.3 Bob Widlar current source 3.4 Improved current source 3.5 Source impedance 3.6 555 timer 3.7 Precision current loop 3.8 Current-mode laser driver 3.9 LED array driver 3.10 JFET current source 3.11 MOSFET current source 4 Second order 4.1 Form 4.2 Root 4.3 Time domain 4.4 Frequency domain 4.5 Parallel and serial resonance 4.6 Eigen value approach 4.7 RC filters and Sallen–Key filters 4.8 Power filters 4.9 Oscillator 4.10 Implicit function 5 Gain blocks 5.1 Class-A direct-coupled bipolar transistor amplifiers 5.2 Class-AB, B, C bipolar transistor amplifiers 5.3 Transformer-coupled transistor amplifiers 5.4 Class-D switch-mode power amplifiers 5.5 Pulse width modulator 5.6 Digital (clocked) window comparator 5.7 Linear operational amplifiers 5.8 Tuned amplifiers and implicit function 5.9 Composite nonlinear operational amplifiers 5.10 Unity-gain bandwidth of op-amp 5.11 Large signal gain of op-amp 6 Feedback approaches 6.1 Voltage feedback 6.2 Current feedback 6.3 PID feedback 6.4 State feedback 6.5 Feedback isolation 7 Control practices 7.1 Level control 7.2 Mode control 7.3 Zone control 7.4 Variable structures 7.5 Sensor 7.6 Open loop 7.7 Close loop 7.8 Loop contention 7.9 Time control 7.10 Sequential time control 8 Linear regulator 8.1 Bipolar series voltage regulator 8.2 MOSFET series voltage regulator 8.3 Multiple implicit function approach 8.4 Design procedure for loop stability 8.5 Design procedure for error amplifiers 8.6 Current-mode laser driver design procedure 8.7 Shunt regulators 9 Switch-mode DC/DC converters 9.1 Power filter, inductor, and capacitor 9.2 Fundamental topologies 9.3 Operational dynamics of basic buck topology 9.4 Operational dynamics of basic boost topology 9.5 Operational dynamics of basic flyback converter 9.6 Cascaded converter — nonisolated 9.7 Isolated converter — forward converter 9.8 Isolated converter — half-bridge converter 9.9 Isolated converter — push–pull converter 9.10 Isolated converter — full-bridge converter 9.11 Isolated converter — quasi-resonant converter 9.12 Analog feedback 9.13 Close loop—analog 9.14 Close loop—digital 10 AC drives, rectification, and inductive loads 10.1 Reexamine RC-loaded rectifier 10.2 AC drive with unidirectional RL load 10.3 Half-wave AC drive with nonpulsating current feeding RL load 10.4 Full-wave AC drive with nonpulsating current feeding RL load 10.5 Phase-controlled AC drive with RL load 10.6 Phase-controlled AC drive with free-wheel diode and RL load 10.7 Phase-controlled full-wave AC drive with RL load 10.8 Three-phase circuits 11 Rotation, three-phase synthesis, and space vector concepts 11.1 Magnetic field (flux) 11.2 Synthesis of three-phase sources and inverters 11.3 Vector concept Appendix A Accelerated steady-state analysis for a parallel resonant network fed by nonsinusoidal, half-wave rectified current Appendix B Matrix exponential Appendix C Example 4.7 MATLAB m-file Appendix D Example 8.1 Appendix E A general mass-spring-dashpot second-order system; first alternative Appendix F A general mass-spring-dashpot second-order system; second alternative Appendix G A general mass-spring-dashpot second-order system; third alternative Appendix H Matrix exponential—Jordan form Appendix I A step-by-step primer on digital power-supply design Digital tides Tumble to digital Roadmap to digital Navigate to digital filter Workout a forward converter example Implementation Conclusion References Appendix J Motor winding driven by SCR phase-controlled sine source Index Front Matter Front Matter Copyright Front Matter Dedication Contents About the Author Preface Chapter 1 Capacitor and inductor 1.1 Capacitor equation in differential form 1.2 Capacitor equation in integral form 1.3 Inductor equation in differential form 1.4 Inductor equation in integral form 1.5 Definition of inductance and Faraday's law 1.6 Magnetic coupling and mutual inductance 1.7 Transformer equation 1.8 Nonideal capacitor, nonideal inductor, and equivalent circuit 1.9 Transformer equivalent circuits 1.10 Physical size of capacitor and inductor 1.11 Specifications for capacitor and inductor 1.11.1 Capacitor 1.11.2 Inductor 1.11.3 Inductor core material 1.11.4 Inductor core Geometry 1.11.5 Inductor winding Chapter 2 First-order circuits 2.1 RC network with periodic drive source 2.1.1. Fourier analysis approach 2.1.1 Continuity of states and boundary condition approach 2.2 Sawtooth \(triangle ramp\) generator 2.3 Full-wave rectifier with RC load 2.3.1 Issues 2.3.2 Solutions 2.3.3 Graphical method 2.3.4 Numerical method 2.4 A brushless DC Motor with permanent magnets rotor 2.5 A BLDC \(Brushless DC\) motor speed detector References Chapter 3 Current source 3.1 Semiconductor diode equation 3.2 Simple current source 3.3 Bob Widlar current source 3.4 Improved current source 3.5 Source impedance 3.6 555 timer 3.7 Precision current loop 3.8 Current-mode laser driver 3.9 LED array driver 3.10 JFET current source 3.11 MOSFET current source Chapter 4 Second order 4.1 Form 4.2 Root 4.2.1 Parametric change 4.3 Time domain 4.4 Frequency domain 4.5 Parallel and serial resonance 4.5.1 Steady-state AC analysis 4.5.2 Inverse Laplace transform 4.5.3 Approximation considering only the fundamental 4.5.4 Steady-state Fourier analysis 4.5.5 Accelerated steady-state analysis 4.5.6 Approximation 4.5.7 Fourier analysis 4.5.8 Accelerated steady-state approach 4.6 Eigen value approach 4.7 RC filters and Sallen-Key filters 4.8 Power filters 4.9 Oscillator 4.10 Implicit function Chapter 5 Gain blocks 5.1 Class-A direct-coupled bipolar transistor amplifiers 5.2 Class-AB, B, C bipolar transistor amplifiers 5.3 Transformer-coupled transistor amplifiers 5.4 Class-D switch-mode power amplifiers 5.5 Pulse width modulator 5.6 Digital \(clocked\) window comparator 5.7 Linear operational amplifiers 5.8 Tuned amplifiers and implicit function 5.9 Composite nonlinear operational amplifiers 5.10 Unity-gain bandwidth of op-amp 5.11 Large signal gain of op-amp Chapter 6 Feedback approaches 6.1 Voltage feedback 6.2 Current feedback 6.2.1 Low-side DC current feedback 6.2.2 High-side DC current feedback 6.2.3 Resistive AC current feedback 6.2.4 Inductive AC current feedback 6.2.5 Current summation 6.2.6 Current subtraction 6.2.7 Current steering 6.3 PID feedback 6.3.1 Proportional feedback 6.3.2 Derivative feedback 6.3.3 Integral feedback 6.4 State feedback 6.5 Feedback isolation 6.5.1 Magnetic isolators 6.5.2 Optical isolators Chapter 7 Control practices 7.1 Level control 7.1.1 Single level 7.1.2 Multilevel 7.2 Mode control 7.3 Zone control 7.4 Variable structures 7.5 Sensor 7.5.1 Spatial sensors 7.5.2 Energy sensors 7.5.3 Sensors specification 7.6 Open loop 7.7 Close loop 7.7.1 Loop gain/phase 7.7.2 Loop gain margin, phase margin, and stability 7.8 Loop contention 7.9 Time control 7.9.1 Duration control 7.9.2 Instant control 7.9.3 Shaping 7.9.4 Preset 7.10 Sequential time control 7.10.1 Power ON/OFF sequence 7.10.2 Sequential control 7.10.3 Cycle suppressing 7.10.4 Sequential burst Chapter 8 Linear regulator 8.1 Bipolar series voltage regulator 8.1.1 DC analysis 8.1.2 Small-signal AC analysis 8.2 MOSFET series voltage regulator 8.2.1 DC analysis 8.2.2 Small-signal AC analysis 8.3 Multiple implicit function approach 8.4 Design procedure for loop stability 8.5 Design procedure for error amplifiers 8.5.1 Type-II amplifier 8.5.2 Type-III amplifier 8.6 Current-mode laser driver design procedure 8.7 Shunt regulators Chapter 9 Switch-mode DC/DC converters 9.1 Power filter, inductor, and capacitor 9.1.1 Laplace transform approach 9.1.2 State transition approach 9.1.3 Inductor current 9.1.4 Capacitor size 9.1.5 Inductor size 9.2 Fundamental topologies 9.2.1 Buck converter 9.2.2 Boost converter 9.2.3 Buck/boost converter 9.2.4 Electromagnetic function 9.2.5 Core utilization 9.3 Operational dynamics of basic buck topology 9.4 Operational dynamics of basic boost topology 9.5 Operational dynamics of basic flyback converter 9.6 Cascaded converter-nonisolated 9.6.1 SEPIC \(single-ended primary inductor converter\) 9.6.2 Ćuk converter 9.7 Isolated converter-forward converter 9.7.1 One switch 9.7.2 Two switch 9.7.3 Synchronous rectification 9.8 Isolated converter-half-bridge converter 9.9 Isolated converter-push-pull converter 9.10 Isolated converter-full-bridge converter 9.11 Isolated converter-quasi-resonant converter 9.12 Analog feedback 9.12.1 Voltage mode 9.12.2 Pulse width modulation-edge modulation 9.12.3 SG1524 9.12.4 Frequency modulation 9.12.5 Ripple regulator 9.12.6 Peak current mode 9.12.7 Switches and driver 9.13 Close loop-analog 9.13.1 Voltage-mode loop 9.13.2 Current-mode loop 9.13.3 Loop gain/phase/bandwidth 9.13.4 Loop stability 9.14 Close loop-digital Chapter 10 AC drives, rectification, and inductive loads 10.1 Reexamine RC-loaded rectifier 10.2 AC drive with unidirectional RL load 10.3 Half-wave AC drive with nonpulsating current feeding RL load 10.4 Full-wave AC drive with nonpulsating current feeding RL load 10.5 Phase-controlled AC drive with RL load 10.6 Phase-controlled AC drive with free-wheel diode and RL load 10.7 Phase-controlled full-wave AC drive with RL load 10.8 Three-phase circuits Chapter 11 Rotation, three-phase synthesis, and space vector concepts 11.1 Magnetic field \(flux\) 11.2 Synthesis of three-phase sources and inverters 11.2.1 Voltage-fed single-switch inverter 11.2.2 Voltage-fed two-switch inverter 11.2.3 Voltage-fed half-bridge inverter 11.2.4 Voltage-fed full-bridge inverter 11.2.5 Voltage-fed three-phase inverter 11.3 Vector concept 11.3.1 Synthesis of other states 11.3.2 Minimal synthesis 11.3.3 Optimal synthesis Appendix A Accelerated steady-state analysis for a parallel resonant network fed by nonsinusoidal, half-wave rectified current Appendix J Motor winding driven by SCR phase-controlled sine source Index Appendix B Matrix exponential Appendix C Example 4.7 MATLAB m-file Appendix D Example 8.1 Appendix E A general mass-spring- dashpot second-order system; first alternative Appendix F A general mass-spring- dashpot second-order system; second alternative Appendix G A general mass-spring- dashpot second-order system; third alternative Appendix H Matrix exponential-Jordan form Appendix I A step-by-step primer on digital power-supply design Digital tides Tumble to digital Roadmap to digital Navigate to digital filter Work out a forward converter example Implementation Conclusion References