دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Maneka Jayasinghe
سری:
ISBN (شابک) : 981168734X, 9789811687341
ناشر: Springer
سال نشر: 2022
تعداد صفحات: 347
[121]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 3 Mb
در صورت تبدیل فایل کتاب Poverty, Food Consumption, and Economic Development به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فقر، مصرف غذا و توسعه اقتصادی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب به بررسی روابط بین صرفهجویی در مقیاس در مصرف مواد غذایی و تعدادی از ویژگیهای اجتماعی-اقتصادی و جمعیت شناختی خانوارها و انتخابهای رفتاری خانوار میپردازد، زیرا غذا سهم عمدهای از هزینههای خانوار برای خانوادههای فقیر را تشکیل میدهد. ویژگی های در نظر گرفته شده شامل اندازه خانوار، موقعیت مکانی، درآمد و جنسیت سرپرست خانوار است در حالی که انتخاب های رفتاری در نظر گرفته شده شامل تصمیم برای مصرف غذای خانگی و تصمیم به اتخاذ فناوری داخلی برای کمک به تهیه و مصرف غذا است. این کتاب دو مدل نظری را برای منطقی کردن نقش مصرف غذای خانگی و پذیرش فناوری داخلی در افزایش صرفهجویی در مقیاس در مصرف مواد غذایی پیشنهاد میکند. مدلهای اقتصادسنجی نیز برای آزمایش تجربی اعتبار دو مدل نظری استفاده میشوند در حالی که تخمینهای فقر تعدیلشده بهصورت عددی با استفاده از مقیاسهای هم ارزی برآورد شده به دست میآیند. اگرچه داده های مورد استفاده در به کارگیری این تکنیک ها بر اساس چهار نظرسنجی درآمد و هزینه خانوار انجام شده توسط دپارتمان سرشماری و آمار (DCS) در سریلانکا است، این روش می تواند برای تجزیه و تحلیل مشابه در رابطه با هر کشور دیگری استفاده شود.
This book investigates the relationships between economies of scale in food consumption and a number of socio-economic and demographic characteristics of households and household behavioural choices since food is the major share of household expenditure for poor households. The characteristics considered comprise household size, location, income, and gender of the head of household while the behavioural choices considered comprise the decision to consume home-grown food and the decision to adopt domestic technology to aid food preparation and consumption. The book proposes two theoretical models to rationalize the role of the consumption of home-grown food and the adoption of domestic technology in enhancing economies of scale in food consumption. Econometric models are also used to empirically test the validity of the two theoretical models while adjusted poverty estimations are derived numerically using the estimated equivalence scales. Although data used in applying these techniques are based on four Household Income and Expenditure Surveys conducted by the Department of Census and Statistics (DCS) in Sri Lanka, the methodology can be used for similar analysis in relation to any other country.
Preface Contents Editors and Contributors 1 Introduction to Gasoline Compression Ignition Technology: Future Prospects References 2 Technology Enablers for Advanced Gasoline Compression Ignition Engines 2.1 Introduction 2.2 Two Key Technologies for GCI 2.2.1 CVVT& CVVD Valvetrain 2.2.2 High Pressure Gasoline Fuel System 2.3 Engine Setup 2.4 Results and Discussions 2.4.1 GCI Mid-to-High Load Operation 2.4.2 GCI Low Load Operation 2.5 Future work 2.6 Conclusions References 3 The Effect of Control Strategies on the Gasoline Compression Ignition (GCI) Engine: Injection Strategy, Exhaust Residual Gas Strategy, Biodiesel Addition Strategy, and Oxygen Content Strategy 3.1 Introduction 3.2 The Effect of Injection Strategy 3.2.1 Single Injection Strategy 3.2.2 Multi-injection Strategies 3.3 The Effect of EGR Strategy 3.3.1 Effect of EGR and Single-Injection Strategy 3.3.2 Effect of EGR and Multiple Injection Strategies 3.4 The Effect of Biodiesel Addition on Auto-Ignition Delay and Lift of Length Under Low-Temperature Condition Section 3.4.1 The Effect of Biodiesel Addition on Auto-Ignition Delay 3.4.2 The Effect of Biodiesel Addition on Lift-Off Length 3.4.3 The Effect of Oxygen Content on Autoignition Delay 3.4.4 The Effect of Oxygen Content on Lift-Off Length 3.5 Conclusion References 4 A Review on Combustion Rate Control, Spray-Wall Impingement, and CO/UHC Formation of the Gasoline Compression Ignition Engines 4.1 Introduction 4.2 Combustion Rate Control of GCI 4.2.1 Flame Development Pattern and Pressure Rise Rate Control at High Loads 4.2.2 Combustion Stability Control at Low Engine Loads 4.3 Fuel Spray-Wall Impingement and Charge Formation of GCI 4.3.1 Gasoline Spray-Wall Impingement 4.3.2 Fuel Trapping Effect of the Squish Region and Piston Crevice 4.4 CO/UHC Emissions Sources and Spatial Distribution 4.5 Summary References 5 Spark Assisted Gasoline Compression Ignition (SAGCI) Engine Strategies 5.1 Introduction 5.2 History and Objectives of SAGCI Engine Development 5.2.1 Alleviating Well-to-Wheels Greenhouse Gas Emissions 5.2.2 Challenges to GCI Technology Deployment on the Road 5.2.3 Offering Spark Assisted GCI Engine 5.2.4 Emission and Performance Targets of SAGCI Engine 5.3 SAGCI Engine Architecture 5.3.1 Single Cylinder Engine 5.3.2 Multi-cylinder Engine 5.3.3 Fuel Systems 5.4 Gasoline Compression Ignition Strategies at Cold Start 5.4.1 Background 5.4.2 A Specific Design of Spark Plug and Fuel Spray Interaction 5.4.3 Cold Start Operating Conditions 5.4.4 Split Fuel Injection and Extremely Retarded Spark Timing Strategy 5.4.5 Transient Combustion Control Strategy 5.4.6 Summary and Recommendations 5.5 Gasoline Compression Ignition Strategies at Low Loads 5.5.1 Background 5.5.2 Spark Assisted GCI for Robust Combustion Control 5.5.3 Summary and Recommendations 5.6 Gasoline Compression Ignition Strategy at Medium Loads 5.6.1 Background 5.6.2 Effect of Single Injection Strategy 5.6.3 Effect of Double Injection Strategy 5.6.4 Effect of Rebreathing 5.6.5 Summary of Medium Load Results 5.7 Gasoline Compression Ignition Strategies at High Loads 5.7.1 Background 5.7.2 Numerical Setup and Validation 5.7.3 Simulations at 17.6 bar IMEP 5.7.4 Summary and Recommendations 5.8 Conclusions and Future Recommendations 5.8.1 Combustion Chamber Design Guideline 5.8.2 Combustion Strategies at Different Operating Conditions 5.8.3 Recommendations for Future Work References 6 Opposed-Piston Gasoline Compression Ignition Engine 6.1 Opposed-Piston Engine Fundamentals 6.1.1 Reduced Heat Transfer Losses 6.1.2 Lower Pumping Losses 6.1.3 Earlier and Faster Combustion 6.1.4 Cleaner Combustion 6.2 Combining OP and GCI 6.2.1 Mixture Preparation 6.2.2 Charge Temperature Management 6.3 2.7L Opposed-Piston Multicylinder Design 6.3.1 Engine Specifications 6.3.2 Fuel System Specifications 6.3.3 Testing Specifications 6.4 Initial Results 6.4.1 Combustion Strategy and Performance Map 6.4.2 Modal Data 6.4.3 Catalyst Light-Off Mode 6.5 Conclusions References 7 Combustion Instabilities and Control in Compression Ignition, Low-Temperature Combustion, and Gasoline Compression Ignition Engines 7.1 Introduction 7.1.1 Significance of GCI Technology 7.1.2 GCI Technology Challenges 7.2 Overview of Engine Combustion Instabilities 7.2.1 Combustion Instabilities in Conventional Diesel Engines 7.2.2 Combustion Instabilities in LTC Engines 7.3 Parameters Used for the Combustion Instabilities Analysis 7.3.1 Variations in the In-Cylinder Pressure and Heat Release 7.3.2 Maximum Pressure Rise Rate 7.3.3 Coefficient of Variations of Indicated Mean Effective Pressure 7.3.4 Combustion Sound Level (CSL) 7.3.5 Ringing Intensity (RI) 7.3.6 Engine Knock 7.4 Effect of Engine Operating Conditions on Combustion Instabilities 7.4.1 Effect of Fuel Properties on Combustion Instabilities 7.4.2 Effect of Start Conditions on Combustion Instabilities 7.5 Approaches for Combustion Instability Control in GCI Engines 7.5.1 Fuel–Air Demands 7.5.2 Fuel Accumulation/Stratification in the Cylinder 7.5.3 Residual Gas Composition and Temperature 7.5.4 Combustion Chamber Design 7.6 Summary References 8 Injection Strategies and Auto-Ignition Features of Gasoline and Diesel Type Fuels for Advanced CI Engine 8.1 Introduction 8.2 Isobaric Combustion for Modern Engines 8.3 Fuel Flexibility at Extreme Conditions 8.4 Fuel Preferences for Advanced Engine Concepts 8.5 Major Takeaways References 9 Review of Life Cycle Analysis Studies of Less Processed Fuel for Gasoline Compression Ignition Engines 9.1 Introduction 9.2 Characteristics of GCI Fuel 9.3 Overview of Life Cycle Assessment (LCA) 9.4 Overview of the Petroleum Refining Processes 9.4.1 General Refining Aspects 9.4.2 Life Cycle Analysis of Refining Processes 9.4.3 Global Warming Impact: Crude Oil Extraction 9.4.4 Global Warming Impact: Crude Oil Transportation to the Refinery 9.4.5 Global Warming Impact: Crude Oil Refinery 9.4.6 Global Warming Impact: Transporting Refined Product from the Refinery to the Distributors 9.5 Well-To-Wheel (WTW) Analysis of Low Octane Fuels 9.6 Summary References 10 Study on High Efficiency Gasoline HCCI Lean Combustion Engines 10.1 Introduction 10.2 Calculation Model and Analysis Method 10.2.1 Calculation Model of Exergy Loss 10.2.2 Definition of Main Parameters 10.2.3 Energy Balance Analysis Method 10.3 Exergy Loss Analysis in Combustion 10.3.1 Exergy Loss Mechanism in Combustion Process 10.3.2 Thermodynamic Parameters of Low Exergy Loss 10.4 Experimental Facility 10.5 Experimental Results and Discussion 10.5.1 Effects of Combustion Boundaries on Lean G-HCCI 10.5.2 Function of Variable Compression Ratio CR 10.6 Summary References 11 Reaction Mechanisms and Fuel Surrogates for Naphtha/Low Octane Fractions-Application for Gasoline Compression Ignition Engine 11.1 Introduction 11.2 Advanced Combustion Strategies 11.2.1 Overview of Low-Temperature Combustion (LTC) 11.2.2 Gasoline Compression Ignition Concept 11.3 Overview of Naphtha Fuel 11.3.1 Naphtha Production and Its Properties 11.3.2 Reaction Pathway 11.3.3 Reaction Mechanisms/Surrogates for LOF 11.4 Summary References