دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.] نویسندگان: Inamuddin, Mohd Imran Ahamed, Rajender Boddula سری: ISBN (شابک) : 036777058X, 9780367770587 ناشر: CRC Press سال نشر: 2022 تعداد صفحات: 276 [277] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 23 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Porous Polymer Science and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب علم و کاربردهای پلیمر متخلخل نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
علوم و کاربردهای پلیمر متخلخل ارائه پیشرفتها و پیشرفتهای اخیر در سنتز، پارامترهای تنظیم، و کاربردهای پلیمرهای متخلخل است. این کتاب بررسی های نوشته شده توسط پانل های بسیار حرفه ای از کارشناسانی را که در زمینه پلیمرهای متخلخل کار می کنند گرد هم می آورد. این شامل مطالعات اساسی است و به موضوعات جدید در مورد کاربردهای پلیمرهای متخلخل می پردازد.
موضوعات فصل شامل مطالعات پایه، مسائل جدید و کاربردهایی است که به همه جنبه ها در یک مرجع یک مرحله ای در مورد پلیمرهای متخلخل می پردازد. کاربردهای مورد بحث شامل بخشهای کاتالیزور، ذخیرهسازی گاز، انرژی و محیطزیست است که این یک راهنمای ارزشمند برای دانشجویان، اساتید، دانشمندان و کارشناسان صنعتی تحقیق و توسعه است که در زمینه علوم و مهندسی مواد و بهویژه تبدیل و ذخیرهسازی انرژی کار میکنند.
ویژگی های اضافی عبارتند از:
Porous Polymer Science and Applications aims to provide recent developments and advances in synthesis, tuning parameters, and applications of porous polymers. This book brings together reviews written by highly accomplished panels of experts working in the area of porous polymers. It encompasses basic studies and addresses topics of novel issues concerning the applications of porous polymers.
Chapter topics span basic studies, novel issues, and applications addressing all aspects in a one-stop reference on porous polymers. Applications discussed include catalysis, gas storage, energy and environmental sectors making this an invaluable guide for students, professors, scientists and R&D industrial experts working in the field of material science and engineering and particularly energy conversion and storage.
Additional features include:
Cover Half Title Title Page Copyright Page Table of Contents Preface Editors Contributors Chapter 1: Introduction to Porous Polymers 1.1 Introduction 1.2 Types of Porous Polymers 1.3 Synthetic Methods for Porous Polymer Network 1.4 Conclusion References Chapter 2: Hyper-crosslinked Polymers 2.1 Introduction 2.1.1 Overview 2.1.2 Porous Polymer 2.1.3 Crosslinking 2.2 Hyper-crosslinked Polymers 2.3 Synthesis Methods of HCPs 2.3.1 Post-crosslinking Polymer Precursors 2.3.2 Direct One-Step Polycondensation 2.3.3 Knitting Rigid Aromatic Building Blocks by External Crosslinkers 2.4 Structure and Morphology of HCPs 2.4.1 Nanoparticles 2.4.2 Hollow Capsules 2.4.3 2D Membranes 2.4.4 Monoliths 2.5 HCPs Properties 2.5.1 Polymer Surface 2.5.1.1 Hydrophilicity 2.5.1.2 Hydrophobicity 2.5.1.3 Amphiphilicity 2.5.2 Porosity and Surface Area 2.5.3 Swelling Behavior 2.5.4 Thermomechanical Properties 2.6 Functionalization of HCPs 2.7 Characterization of HCPs 2.7.1 Compositional and Structural Characterization 2.7.2 Morphological Characterization 2.7.3 Porosity and Surface Area Analysis 2.7.4 Other Analysis 2.8 Applications 2.8.1 Storage Capacity 2.8.1.1 Storage of Hydrogen 2.8.1.2 Storage of Methane 2.8.1.3 CO 2 Capture 2.8.2 Environmental Remediation 2.8.3 Heterogeneous Catalysis 2.8.4 Drug Delivery 2.8.5 Sensing 2.8.6 Other Applications 2.9 Conclusion References Chapter 3: Porous Ionic Polymers 3.1 Introduction: A Distinctive Feature of the Porous Structure of Ionic Polymers 3.2 Ionic Polymers in Dry State 3.3 Ionic Polymers in Swollen State: Hsu–Gierke Model 3.4 Modifications of Hsu–Gierke Model: Hydration of Ion Exchange Polymers 3.5 Methods for Research of Porous Structure of Ionic Polymers 3.5.1 Nitrogen Adsorption-Desorption 3.5.2 Mercury Intrusion 3.5.3 Adsorption-Desorption of Water Vapor 3.5.4 Differential Scanning Calorimetry 3.5.5 Standard Contact Porosimetry 3.6 Conclusions References Chapter 4: Analysis of Qualitative and Quantitative Criteria of Porous Plastics 4.1 Introduction 4.2 Sorting of Porous Polymers 4.2.1 Macroporous Polymers 4.2.2 Microporous Polymers 4.2.3 Mesoporous Polymers 4.3 Methodology 4.3.1 AHP Analysis 4.4 Conclusions References Chapter 5: Novel Research on Porous Polymers Using High Pressure Technology 5.1 Background 5.2 Porous Polymers Based on Natural Polysaccharides 5.3 Parameters Involved in the Porous Polymers Processing by High Pressure 5.4 Supercritical Fluid Drying for Porous Polymers Processing 5.5 Porous Polymers for Foaming and Scaffolds by Supercritical Technology 5.6 Supercritical CO 2 Impregnation in Porous Polymers for Food Packaging 5.7 Synthesis of Porous Polymers by Supercritical Emulsion Templating 5.8 Porous Polymers as Supports for Catalysts Materials by Supercritical Fluid 5.9 Porous Metal–Organic Frameworks Polymers by Supercritical Fluid Processing 5.10 Concluding Remarks Acknowledgments References Chapter 6: Porous Polymer for Heterogeneous Catalysis 6.1 Introduction 6.2 Stability and Functionalization of POPs 6.3 Strategies for Synthesizing POP Catalyst 6.3.1 Co-polymerization 6.3.1.1 Acidic and Basic Groups 6.3.1.2 Ionic Groups 6.3.1.3 Ligand Groups 6.3.1.4 Chiral Groups 6.3.1.5 Porphyrin Group 6.3.2 Self-polymerization 6.3.2.1 Organic Ligand Groups 6.3.2.2 Organocatalyst Groups 6.3.2.3 Ionic Groups 6.3.2.4 Chiral Ligand Groups 6.3.2.5 Porphyrin Groups 6.4 Applications of Various Porous Polymers 6.4.1 CO 2 Capture and Utilization 6.4.1.1 Ionic Liquid/Zn-PPh 3 Integrated POP 6.4.1.1.1 Mechanism of the Cycloaddition Reaction 6.4.1.2 Triphenylphosphine-based POP 6.4.2 Energy Storage 6.4.3 Heterogeneous Catalysis 6.4.3.1 Cu(II) Complex on Pyridine-based POP for Nitroarene Reduction 6.4.3.2 POP-supported Rhodium for Hydroformylation of Olefins 6.4.3.3 Ni(II)-metallated POP for Suzuki–Miyaura Crosscoupling Reaction 6.4.3.4 Ru-loaded POP for Decomposition of Formic Acid to H 2 6.4.3.5 Porphyrin-based POP to Support Mn Heterogeneous Catalysts for Selective Oxidation of Alcohols 6.4.3.5.1 Mechanism of the Oxidation of Alcohols by TFP-DPMs 6.4.4 Photocatalysis 6.4.4.1 Conjugated Porous Polymer Based on Phenanthrene Units 6.4.4.2 (dipyrrin)(bipyridine)ruthenium(II) Visible Light Photocatalyst 6.4.4.3 Carbazole-based CMPs for C-3 Functionalization of Indoles 6.4.4.3.1 Mechanism of C-3 Formylation of N-methylindole by CMP-CSU6 Polymer Catalyst 6.4.4.3.2 The Mechanism for C-3 Thiocyanation of 1H-indole 6.4.5 Electrocatalysis 6.4.5.1 Redox-active N-containing CPP for Oxygen Reduction Reaction (ORR) References Chapter 7: Triazine Porous Frameworks 7.1 Introduction 7.2 Synthetic Procedures of CTFs and Their Structural Designs 7.2.1 Ionothermal Trimerization Strategy 7.2.2 High Temperature Phosphorus Pentoxide (P 2 O 5)-Catalyzed Method 7.2.3 Amidine-based Polycondensation Methods 7.2.4 Superacid Catalyzed Method 7.2.5 Friedel–Crafts Reaction Method 7.3 Applications of CTFs 7.3.1 Adsorption and Separation 7.3.1.1 CO 2 Capture and Separation 7.3.1.2 The Removal of Pollutants 7.3.2 Heterogeneous Catalysis 7.3.3 Applications for Energy Storage and Conversion 7.3.3.1 Metal-Ion Batteries 7.3.3.2 Supercapacitors 7.3.4 Electrocatalysis 7.3.5 Photocatalysis 7.3.6 Other Applications of CTFs References Chapter 8: Advanced Separation Applications of Porous Polymers 8.1 Introduction 8.2 Advanced Separation Applications 8.3 Separation through Adsorption 8.4 Water Treatment 8.5 Conclusion Abbreviations References Chapter 9: Porous Polymers for Membrane Applications 9.1 Introduction 9.2 Introduction to Synthesis of Porous Polymeric Particles 9.3 Preparation of Porous Polymeric Membrane 9.4 Morphology of Membrane and Its Parameters 9.5 Emerging Applications of Porous Polymer Membranes 9.6 Polysulfone and Polyvinylidene Fluoride Used as Porous Polymers for Membrane Application 9.6.1 Polysulfone Membranes 9.6.2 Polyvinylidene Fluoride Membranes 9.7 Use of Porous Polymeric Membranes for Sensing Application 9.8 Use of Porous Polymeric Electrolytic Membranes Application 9.9 Use of Porous Polymeric Membrane for Numerical Modeling and Optimization 9.10 Use of Porous Polymers for Biomedical Application 9.11 Use of Porous Polymeric Membrane in Tissue Engineering 9.12 Use of Porous Polymeric Membrane in Wastewater Treatment 9.13 Use of Porous Polymeric Membrane for Dye Rejection Application 9.14 Porous Polymeric Membrane Antifouling Application 9.15 Porous Polymeric Membrane Used for Fuel Cell Application 9.16 Conclusion References Chapter 10: Porous Polymers in Solar Cells 10.1 Introduction 10.1.1 Si-based Solar Cells 10.1.2 Thin-film Solar Cells 10.1.3 Organic Solar Cells 10.2 Porous Polymers in DSSCs 10.2.1 Porous Polymers in Electrodes 10.2.2 Porous Polymer as a Counter Electrode 10.2.3 Porous Polymers in TiO 2 Photoanode 10.2.4 Porous Polymers in Electrolyte 10.2.5 Porous Polymer as Energy Conversion Film 10.2.5.1 Polyvinylidene Fluoride-co-Hexafluoropropylene (PVDF-HFP) Membranes 10.2.5.2 Pyridine-based CMPs Aerogels (PCMPAs) 10.2.6 Porous Polymers in Coating of Solar Cell 10.2.7 Porous Polymers as Photocatalyst or Electrocatalyst 10.3 Perovskite Solar Cells 10.3.1 Porous Polymers in Electron Transport Layers 10.3.2 Porous Polymers in Hole Transport Layers 10.3.3 Porous Polymer as Energy Conversion Film 10.3.4 Porous Polymers as Interlayers 10.3.5 Porous Polymers in Morphology Regulations 10.4 Porous Polymers in Silicon Solar Cell 10.5 Miscellaneous 10.5.1 Porous Polymers in Solar Evaporators 10.5.2 Charge Separation Systems in Solar Cells 10.5.3 Porous Polymers in ZnO Photoanode 10.6 Conclusions References Chapter 11: Porous Polymers for Hydrogen Production 11.1 Introduction 11.1.1 Approaches Utilized for the Generation of Porous Polymers (PPs) 11.1.1.1 Infiltration 11.1.1.2 Layer-by-Layer Assembly (LbL) 11.1.1.3 Conventional Polymerization 11.1.1.4 Electrochemical Polymerization 11.1.1.5 Controlled/Living Polymerization (CLP) 11.1.1.6 Macromolecular Design 11.1.1.7 Self-assembly 11.1.1.8 Phase Separation 11.1.1.9 Solid and Liquid Templating 11.1.1.10 Foaming 11.2 Various Porous Polymers for H 2 Production 11.2.1 Photocatalysts Based on Conjugated Microporous Polymers 11.2.2 Conjugated Microporous Polymers 11.2.3 Porous Conjugated Polymer (PCP) 11.2.4 Membrane Reactor 11.2.5 Paper-Structured Catalyst with Porous Fiber-Network Microstructure 11.2.6 Porous Organic Polymers (POPs) 11.2.7 PEM Water Electrolysis 11.2.8 Microporous Inorganic Membranes 11.2.9 Hybrid Porous Solids for Hydrogen Evolution 11.3 Other Alternatives for Hydrogen Production 11.3.1 Metal–Organic Frameworks (MOFs) 11.3.2 Covalent Organic Frameworks 11.3.3 Photochemical Device 11.3.4 Conjugated Polymer Dots (Pdots) 11.4 Preparation Technology and Post-processing 11.5 Material Cost and Energy Source 11.6 Application of Porous Polymers 11.7 Advantage and Limitations 11.7.1 Advantage 11.7.2 Limitations 11.8 Challenges and Future Outlooks 11.9 Conclusions References Chapter 12: Porous Polymers in Photocatalysis 12.1 Introduction 12.2 Photocatalysis 12.3 Mechanism of Action 12.4 Porous Polymer Catalyzed Light Induced Organic Transformations 12.4.1 Polycarbazole 12.4.2 Benzimidazole, Benzoxazole, and Benzothiazole 12.4.3 Xanthene 12.4.4 Porphyrin 12.5 Conclusion References Chapter 13: Porous Polymers for CO 2 Reduction 13.1 Introduction 13.2 Role of CO 2 in Climate Change 13.3 Mitigation Strategies of CO 2 13.4 Technologies for CO 2 Capture 13.4.1 Post-combustion Process 13.4.2 Pre-combustion Process 13.4.3 Oxy-fuel Combustion 13.4.4 Chemical Looping Combustion 13.5 Porous Organic Polymers 13.5.1 Covalent Organic Frameworks (COFs) 13.5.2 Covalent Triazine Frameworks 13.5.3 Polymers of Intrinsic Microporosity 13.5.4 Porous Aromatic Frameworks 13.5.5 Hyper-Crosslinked Polymers 13.5.6 Conjugated Microporous Polymers 13.6 Factors Affecting the CO 2 Uptake 13.6.1 Surface Area 13.6.2 Functionalization of Pore Size 13.6.3 Swellable Polymers 13.6.4 Heteroatomic Skeleton 13.6.5 Surface Functionalized POPs 13.6.5.1 Organic Functional Groups 13.6.5.2 Inorganic Ions 13.7 Selectivity of CO 2 13.8 Conclusion and Prospects References Chapter 14: Antibacterial Applications of Porous Polymers 14.1 Introduction 14.2 Development of Porous Polymers with Antimicrobial Potential 14.2.1 Direct Modeling Methodology 14.2.2 Direct Synthesis Methodologies 14.2.3 Block Copolymer Self-assembly Methodologies 14.3 Some Porous Biodegradable and Biocompatible Polymers for Antimicrobial Applications 14.3.1 Polymeric Aerogels, Bioaerogels, and Polymeric Foams 14.3.2 Polymeric Aerogels, Bioaerogels, and Bio-based Polymeric Foams are Biocompatible and non-Toxic 14.4 Applications of Porous Antimicrobial Polymers in the Food Industry 14.5 Applications of Porous Antimicrobial Polymers in the Pharmaceutical Industry 14.6 Conclusions Conflict of Interest Acknowledgment References Index