ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Polysaccharide-based Biomaterials. Delivery of Therapeutics and Biomedical Applications

دانلود کتاب مواد زیستی مبتنی بر پلی ساکارید ارائه کاربردهای درمانی و زیست پزشکی

Polysaccharide-based Biomaterials. Delivery of Therapeutics and Biomedical Applications

مشخصات کتاب

Polysaccharide-based Biomaterials. Delivery of Therapeutics and Biomedical Applications

ویرایش: [13] 
نویسندگان: , ,   
سری: Biomaterials Science 
ISBN (شابک) : 9781839164989 
ناشر: The Royal Society of Chemistry 
سال نشر: 2023 
تعداد صفحات: 600
[601] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 10 Mb 

قیمت کتاب (تومان) : 31,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 9


در صورت تبدیل فایل کتاب Polysaccharide-based Biomaterials. Delivery of Therapeutics and Biomedical Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مواد زیستی مبتنی بر پلی ساکارید ارائه کاربردهای درمانی و زیست پزشکی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب مواد زیستی مبتنی بر پلی ساکارید ارائه کاربردهای درمانی و زیست پزشکی

پلی ساکاریدها مواد طبیعی و تجدیدپذیر هستند که زیست تخریب پذیر و زیست سازگار هستند و آنها را به موضوعاتی ایده آل برای کاربردهای زیست پزشکی تبدیل می کند. این کتاب بر روی پلی ساکاریدهای اصلی از جمله کیتوزان، سلولز، آلژینات، دکستران، صمغ گوار، صمغ ژلان، پولولان، صمغ لوبیا ملخ، پکتین، صمغ زانتان، نشاسته، هیالورونان و کاراگینان و کاربردهای آنها در دارورسانی تمرکز دارد. ، تصویربرداری و مهندسی بافت. ویراستاران با مشارکت‌هایی از سرتاسر جهان، مجموعه‌ای از فصل‌ها را گردآوری کرده‌اند که نحوه استفاده از مواد مبتنی بر پلی‌ساکارید در طیف وسیعی از سیستم‌های پزشکی را نشان می‌دهد. نتیجه نهایی کتابی است که در آن خواننده می‌تواند یک دید کلی از این دسته مهم از مواد برای کاربردهای زیست‌پزشکی، بدون بررسی مقالات مجلات، به دست آورد. کسانی که در علم مواد، مهندسی زیست پزشکی و شیمی و فناوری‌های دارویی کار می‌کنند، این را یک مرجع ضروری می‌دانند.


توضیحاتی درمورد کتاب به خارجی

Polysaccharides are natural, renewable materials that are biodegradable and biocompatible, making them ideal subjects for biomedical applications. This book focusses on the main polysaccharides, including but not limited to chitosan, cellulose, alginate, dextran, guar gum, gellan gum, pullulan, locust bean gum, pectin, xanthan gum, starch, hyaluronan and carrageenan, and their applications in drug delivery, imaging and tissue engineering. With contributions from around the world, the editors have pulled together a tightly curated set of chapters which showcase how polysaccharide-based materials are employed in a range of biomedical systems. The end result is a book in which the reader can gain a sound overview of this important class of material for biomedical applications, without scouring journal articles. Those working in materials science, biomedical and chemical engineering, and pharmaceutical technologies will find this a must-have reference.



فهرست مطالب

Cover
Half Title
Biomaterials Science Series
Polysaccharide-based Biomaterials: Delivery of Therapeutics and Biomedical Applications
Copyright
Preface
Contents
1. Polysaccharide-based Biomaterials: Overview
	1.1 Introduction
	1.2 Cellulose
	1.3 Chitosan
	1.4 Modifications
	1.5 Hyaluronic Acid
	1.6 Dextran
	1.7 Alginates
	1.8 Pullulan
	1.9 Chondroitin Sulfate
	1.10 Conclusion
	References
2. Recent Approaches in Alginate-based Carriers for Delivery of Therapeutics and Biomedicine
	2.1 Introduction
	2.2 Alginate
		2.2.1 Alginate: Chemical Structure and Characterization
		2.2.2 Extraction of Alginate from Brown Seaweed Algae
	2.3 Alginate-based Colloidal Systems
		2.3.1 Alginate in Different Colloidal Systems
	2.4 Alginate-based Carrier Applications in Delivery Systems and Biomedicine
		2.4.1 Therapeutic Applications
		2.4.2 Drug-controlled Release Systems
		2.4.3 Biomedical Applications
	2.5 Conclusions
	Acknowledgements
	References
3. Alginate-based Carriers for Transdermal Drug Delivery
	3.1 Introduction
	3.2 Alginate: Sources, Physicochemical, and Biological Properties
		3.2.1 Sources of Alginates
		3.2.2 Physicochemical Properties
		3.2.3 Biological Properties of Alginates
	3.3 Preparations of Different Alginate-based Transdermal Systems
		3.3.1 Alginate Films
		3.3.2 Alginate-based Microneedles for Transdermal Drug Delivery
		3.3.3 Alginate-based Electroresponsive Transdermal Drug Delivery System
	3.4 Drug Delivery Application of Alginate Based Transdermal Carriers
		3.4.1 Delivery of Antidiabetic Agents
		3.4.2 Delivery of Anticancer Agents
		3.4.3 Delivery of Anti-inflammatory Agents
		3.4.4 Delivery of Antibiotics
		3.4.5 Delivery of Antihypertensive Agents
		3.4.6 Delivery of Antifungal Agents
		3.4.7 Delivery of Antimicrobial Agents
		3.4.8 Delivery of Antioxidants
		3.4.9 Delivery of Anti-alopecia Agents
		3.4.10 Miscellaneous
	3.5 Conclusion
	References
4. Chitosan-based Nanocarriers for Drug Delivery: Advances and Challenges
	4.1 Introduction
	4.2 Chitosan-based Drug Delivery Nanocarriers
		4.2.1 Nanoparticles
		4.2.2 Nanogels
		4.2.3 Nanomicelles
		4.2.4 Physicochemical Characterization ofNanospheres, Nanocapsules, and Nanogels
		4.2.5 Nanofibers
	4.3 Summary and Future Perspectives
	Abbreviations
	Acknowledgements
	References
5. Hyaluronic Acid in Drug Delivery
	5.1 Introduction
		5.1.1 Properties
		5.1.2 Synthesis and Degradation
	5.2 Application of Hyaluronic Acid in Drug Delivery Systems
		5.2.1 HA in Parenteral Delivery
		5.2.2 HA in Pulmonary Delivery
		5.2.3 HA in Ocular Delivery
		5.2.4 HA in Nasal Delivery
		5.2.5 HA in Oral Delivery
		5.2.6 HA in Vaginal Delivery
		5.2.7 HA in Topical Delivery
		5.2.8 HA in Tissue and Regenerative Medicine
		5.2.9 HA in Anti-cancer Drug Delivery Systems
		5.2.10 HA in Protein and Peptide Delivery
		5.2.11 HA in Targeted Drug Delivery Systems
		5.2.12 HA in Self-assembling Systems
	5.3 Application of Hyaluronic Acid in Gene Delivery Systems
	5.4 Application of Hyaluronic Acid in Imaging
		5.4.1 Fluorescence Imaging
		5.4.2 Magnetic Resonance Imaging
		5.4.3 Theranostic Applications
	5.5 Challenges and Opportunities
	5.6 Conclusion
	References
6. Dextran in the Delivery of Therapeutics: Chronicle of the Journey from Preclinical to Clinical Trials
	6.1 Introduction
	6.2 Dextran: An Extraordinary 'Slime' from the Bounty of Nature
		6.2.1 Chemistry of Dextran
		6.2.2 Physicochemical Properties of Dextran That Contribute to Its Superior Carrier Status
		6.2.3 Methods of Synthesis
	6.3 Preclinical Success Stories
	6.4 Clinical Trials of Dextran as a Carrier
	6.5 Future Perspectives
	6.6 Conclusion
	Abbreviations
	References
7. Guar Gum-based Biomaterials in the Delivery of Therapeutics
	7.1 Introduction
		7.1.1 Gums/Polysaccharides as a Choice for Therapeutics
	7.2 Why Guar Gum?
		7.2.1 Guar Gum Processing
	7.3 Synthesis of Guar Gum-based Therapeutics
		7.3.1 Antihypertensive Drugs
		7.3.2 Anticancer Drugs
		7.3.3 Anti-infective Drugs
		7.3.4 Anti-inflammatory
	7.4 Different Ways of Giving Drugs Using a Polymer Blend
		7.4.1 Particulate Level Blends
		7.4.2 Colloidal Level Blends
		7.4.3 The Molecular-level Blends
		7.4.4 Excipients
		7.4.5 Film Coatings and Oral Films
		7.4.6 Tablets
		7.4.7 Capsules
	7.5 Applications
		7.5.1 Guar Gum-based Microparticles for Drug Delivery
		7.5.2 Guar Gum-based Nanoparticles for Drug Delivery
		7.5.3 Guar Gum-based Nanoparticles as Self-healing, Injectable, and Antibacterial Biomaterials
		7.5.4 Self-healing Properties
		7.5.5 Injectable and Antibacterial Properties
		7.5.6 Guar Gum-based Grafted Systems for Drug Delivery
		7.5.7 Guar Gum-based Hydrogel Systems for Drug Delivery
		7.5.8 Guar Gum-based Buccal Film for Drug Delivery
		7.5.9 Guar Gum-based Tablets for Drug Delivery
	7.6 Guar Gum-based Microsphere for Delivery of Anticancer Drugs
	7.7 Toxicity Status of Guar Gum-based Therapeutics
	7.8 Alternatives to Guar Gum
	7.9 Conclusion
	References
8. Gellan Gum-based Drug Delivery Carriers
	8.1 Introduction
	8.2 Sources and Production of Gellan Gum
		8.2.1 Factors Affecting Gellan Gum Production
		8.2.2 Isolation of Gellan Gum from the Culture Broth
		8.2.3 Purification of Gellan Gum
	8.3 Chemistry of Gellan Gum
	8.4 Physicochemical Properties of Gellan Gum
	8.5 Rationale of Gellan Gum as a Drug Carrier
	8.6 Chemical Modifications of Gellan Gum for Benefits of Drug Delivery
		8.6.1 Carboxymethylation
		8.6.2 Graft-copolymerization
		8.6.3 Oxidation
		8.6.4 Alkylation
		8.6.5 Gellan–Thioglycolic Acid Conjugate
	8.7 Gellan Gum-based Drug Delivery Carriers
		8.7.1 Gellan Gum-based Beads
		8.7.2 Gellan Microparticles
		8.7.3 Gellan Pellets
		8.7.4 Gellan-based In Situ Gel
		8.7.5 Tablets
		8.7.6 Hydrogels
		8.7.7 Micelles
		8.7.8 Gellan Nanoparticles
		8.7.9 Gellan as an Emulsion Stabilizer
		8.7.10 Gellan-based Nanofiber
	8.8 Conclusion
	References
9. Locust Bean Gum – A Potential Drug Delivery Carrier
	9.1 Introduction
	9.2 Locust Bean Gum
		9.2.1 Manufacture
		9.2.2 Processing
		9.2.3 Composition
		9.2.4 Chemical Structure
	9.3 Properties of LBG
		9.3.1 Solubility
		9.3.2 Viscosity
		9.3.3 Molecular Weight
		9.3.4 Hydration Rate
		9.3.5 Water Adsorption Isotherm
		9.3.6 Synergistic Gel Formation
	9.4 Biological Activity of LBG
	9.5 Biocompatible and Biodegradable Nature of LBG
	9.6 Drug Delivery Applications
		9.6.1 Oral Drug Delivery
		9.6.2 Buccal Drug Delivery
		9.6.3 Colonic Drug Delivery
		9.6.4 Topical Drug Delivery
		9.6.5 Ocular Drug Delivery
		9.6.6 Inhalable LBG Microparticles
		9.6.7 Solubility Improvement of Poorly Water-soluble Drugs
		9.6.8 Tissue Engineering Application of LBG
	9.7 Conclusions
	Acknowledgements
	References
10. Pectin-based Vehicles for Delivery of Therapeutics
	10.1 Introduction
	10.2 Overview of Pectin as a Biomaterial
	10.3 Variety of Pectin-based Delivery Vehicles
	10.4 Pectin as a Suitable Mucoadhesive Vehicle
	10.5 Range of Therapeutics Delivered via Pectin Vehicles
		10.5.1 Pectin Vehicles for Small Molecular Drug Delivery
			10.5.2 Pectin Vehicles for Gene Delivery
	10.6 Therapeutic Applications of Pectin-based Drug Delivery Vehicles
		10.6.1 Oral Delivery
			10.6.2 Systemic Delivery
			10.6.3 Intranasal Delivery
			10.6.4 Topical Delivery
			10.6.5 Ocular Delivery
			10.6.6 Vaginal Delivery
	10.7 Clinical Progress
	10.8 Summary
	10.9 Challenges and Future Perspectives
	List of Abbreviations
	Conflicts of interest
	Acknowledgements
	References
11. Pullulan in the Delivery of Therapeutics
	11.1 Introduction and Background
	11.2 Pullulan as a Drug Carrier
	11.3 Pullulan Derivatives as Drug Carriers
	11.4 Pullulan-based Therapeutic Laborers with Bactericidal and Fungicidal Activities
	11.5 Pullulan-based Anticancer Laborers
	11.6 Pullulan-based Antioxidant Laborers with Radical Leaching Potentiality
	11.7 Pullulan-based Therapeutic Laborers withAnti-inflammatory and Immunomodulatory Performance
	11.8 Pullulan-based Therapeutic Laborers for Bone Illness
	11.9 Conclusion
	References
12. Carrageenan-based Carriers for Therapeutic Delivery
	12.1 Introduction
	12.2 Sources of Carrageenan
	12.3 Extraction of Carrageenan
	12.4 Production
	12.5 Chemical Structure
	12.6 General Properties
	12.7 Modification of Carrageenan
	12.8 Carrageenan-based Carriers
		12.8.1 Hydrogels
		12.8.2 Tablets
		12.8.3 Beads
		12.8.4 Suppositories
		12.8.5 Oral Suspensions
		12.8.6 Pallets
		12.8.7 Internasal Systems
		12.8.8 Micro/nanoparticles
		12.8.9 Wafers
	12.9 Applications of Carrageenan in Therapeutic Delivery
		12.9.1 Oral Delivery
		12.9.2 Opthalmic
		12.9.3 Nasal Delivery
		12.9.4 Transdermal
	12.10 Conclusion
	References
13. Xanthan Gum in Drug Carriers
	13.1 Introduction
		13.1.1 History of Xanthan Gum
		13.1.2 Production
		13.1.3 Chemical Composition and Structure
		13.1.4 Physico-chemical Properties
	13.2 Modifications
		13.2.1 Carboxymethylation
		13.2.2 Grafting
		13.2.3 Phosphorylation
		13.2.4 Esterification
		13.2.5 Miscellaneous Modifications
	13.3 Xanthan Gum for Drug Delivery Applications
		13.3.1 Nanoparticles
		13.3.2 Microparticles
		13.3.3 Hydrogels
		13.3.4 Polyelectrolyte Complex
		13.3.5 Tablets
		13.3.6 Gels
		13.3.7 Complex Matrix
	13.4 Conclusion
	Acknowledgements
	References
14. Cellulose-based Biomaterials in Drug Delivery Applications
	14.1 Sources of Cellulose Biopolymer
		14.1.1 Cellulose Structure
		14.1.2 Cellulose Allomorphs
		14.1.3 Characterization of Allomorphs
	14.2 Cellulose Classification
		14.2.1 Microcrystalline Cellulose (MCC)
		14.2.2 Cellulose Nanofibrils (CNF)
		14.2.3 Cellulose Nanocrystals (CNC)
	14.3 Cellulose Derivatives
		14.3.1 Cellulose Ethers
	14.4 Cellulose-based Gels in Drug Delivery
		14.4.1 Nanocellulose Hydrogels
		14.4.2 Hydrogels by Modified Cellulose
		14.4.3 Cellulose Derivative Hydrogels
		14.4.4 Cellulose Aerogels
		14.4.5 Cellulose Nanocrystal Gels
		14.4.6 Bacterial Cellulose Hydrogel Membranes
		14.4.7 Cellulose Derivative as Hydrogels
	14.5 Other Cellulose Materials for Drug Delivery Applications
		14.5.1 Microcrystalline Cellulose
		14.5.2 Cellulose Nanofibers
		14.5.3 Carboxymethyl Cellulose
		14.5.4 Hydroxymethylpropyl and Hydroxypropyl Cellulose
	14.6 Conclusions
	References
15. Starch-based Drug Delivery System: A Review on Pharmaceutical and Biomedical Applications
	15.1 Introduction
	15.2 Major Composition of Starch and its Sources
	15.3 Methods Used in the Fabrication of Starch-based Micro/nano DDSs
		15.3.1 Graft Copolymerization
		15.3.2 Microemulsion
		15.3.3 Ultrasonication
		15.3.4 Hydrolysis
		15.3.5 Electrospinning
	15.4 Significance of Starch as a Drug Delivery System
	15.5 Limitations in Starch and Starch-based DDSs
	15.6 Application of Starch-based DDSs
		15.6.1 Antimicrobial Evaluations of Starch-based DDSs
		15.6.2 Antioxidant Potential of Starch-based DDSs
		15.6.3 Cellular Uptake, Cellular Viability, and Cytotoxic Effects of Starch-based DDSs
		15.6.4 Drug Loading and Releasing Assessment of Starch-based DDSs as a Futuristic Prospect
	15.7 Conclusion
	Acknowledgements
	References
16. Tamarind Seed Polysaccharide in Novel Drug Delivery and Biomedical Applications
	16.1 Introduction
		16.1.1 Synonyms
		16.1.2 Botanical Source and Chemical Structure
		16.1.3 Selective Properties of TSP
		16.1.4 Safety
		16.1.5 Commercial Products of TSP
	16.2 Pharmaceutical Applications of TSP and Chemically Modified TSP
	16.3 Applications of TSP in Conventional Drug Delivery Systems
	16.4 Applications in Novel Drug Delivery Systems and Biomedical Fields
		16.4.1 Novel Drug Delivery Systems
		16.4.2 Applications of TSP in Futuristic NDDS
		16.4.3 Biomedical Applications of Tamarind Seed Polysaccharide
	16.5 Conclusion
	Abbreviations
	Acknowledgements
	References
17. Chitosan-derived Biomaterials in Cancer Therapeutics and Biomedical Imaging
	17.1 Introduction to Anti-cancer Drug Delivery Systems
		17.1.1 Biopolymeric Carriers for Anti-cancer Agents
		17.1.2 Chitosan as a Versatile Biopolymer and Drug Delivery Vehicle
		17.2.1 Method of Preparation of ChitosanNanoparticles and Microparticles for Anti-cancer Agents
		17.2.2 Significance of Chitosan Nanoparticles in Anti-cancer Drug Delivery
		17.2.3 Significance of Chitosan Microparticles in Anti-cancer Drug Delivery
	17.3 Chitosan-derived Metal Nanoparticles
		17.3.1 Synthesis Protocol of Gold and Silver Nanoparticles Using Chitosan
		17.3.2 Significance of Chitosan-derived Metal Nanoparticles in Cancer Therapeutics
	17.4 Chitosan-based Nanocomposites
	17.5 Chitosan-based Hydrogels
		17.5.1 Classification of Hydrogels in Current Biomedical Applications
		17.5.2 Method of Preparation of Chitosan Hydrogels for Anti-cancer Therapeutics
		17.5.3 Significance of Chitosan Hydrogels in Anti-cancer Therapeutics
	17.6 Chitosan-based Conjugates
	17.7 Derivatives of Chitosan as Anticancer Agents
		17.7.1 Chemical Modifications of Chitosan
		17.7.2 Some Anticancer Derivatives of Chitosan
		17.7.3 Significance of Chitosan Derivatives in Anti-cancer Therapeutics
	17.8 Chitosan-based Imaging System for Cancer Diagnosis
		17.8.1 Chitosan Nanomaterials for Fluorescence-based Imaging of Cancer
		17.8.2 Chitosan Nanomaterials for Enhancement of CT and MRI Resolution
		17.8.3 Chitosan Nanomaterials for Multimodal Imaging
	17.9 Conclusion
	References
18. Polysaccharide-based Scaffolds for Tissue Engineering Applications
	18.1 Introduction
	18.2 Chemical Modifications of Polysaccharides
	18.3 Graft Polymerization
	18.4 Sulfation
	18.5 Carboxymethylation
	18.6 Esterification
	18.7 Alginate and Dextran-based Scaffolds
		18.7.1 Hydrogels Based on Alginate and Dextran
		18.7.2 Microspheres Based on Alginate and Dextran
		18.7.3 Scaffolds Based on Alginate and Dextran
	18.8 Applications of Alginate/Dextran Scaffolds
		18.8.1 Wound Healing
		18.8.2 Cartilage Repair
		18.8.3 Drug Delivery
	18.9 Chitosan-based Scaffolds
		18.9.1 Chitosan Derivatives for Tissue Engineering
		18.9.2 Chitosan-based Scaffold Fabrication Methods
		18.9.3 Chitosan in Tissue Applications
	18.10 HA-based Brain Tissue Engineering
		18.10.1 HA-based Adipose Tissue Engineering
			18.10.2 HA-based Cartilage Tissue Engineering
			18.10.3 HA-based Nerve Tissue Engineering
			18.10.4 HA-based Skin Tissue Engineering
			18.10.5 HA-based Other Soft Tissue Engineering
	18.11 Future Prospects and Conclusions
	References
Subject Index




نظرات کاربران