دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [13] نویسندگان: Jana S., Jana S., Domb A.J. (ed.) سری: Biomaterials Science ISBN (شابک) : 9781839164989 ناشر: The Royal Society of Chemistry سال نشر: 2023 تعداد صفحات: 600 [601] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 10 Mb
در صورت تبدیل فایل کتاب Polysaccharide-based Biomaterials. Delivery of Therapeutics and Biomedical Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مواد زیستی مبتنی بر پلی ساکارید ارائه کاربردهای درمانی و زیست پزشکی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
پلی ساکاریدها مواد طبیعی و تجدیدپذیر هستند که زیست تخریب پذیر و زیست سازگار هستند و آنها را به موضوعاتی ایده آل برای کاربردهای زیست پزشکی تبدیل می کند. این کتاب بر روی پلی ساکاریدهای اصلی از جمله کیتوزان، سلولز، آلژینات، دکستران، صمغ گوار، صمغ ژلان، پولولان، صمغ لوبیا ملخ، پکتین، صمغ زانتان، نشاسته، هیالورونان و کاراگینان و کاربردهای آنها در دارورسانی تمرکز دارد. ، تصویربرداری و مهندسی بافت. ویراستاران با مشارکتهایی از سرتاسر جهان، مجموعهای از فصلها را گردآوری کردهاند که نحوه استفاده از مواد مبتنی بر پلیساکارید در طیف وسیعی از سیستمهای پزشکی را نشان میدهد. نتیجه نهایی کتابی است که در آن خواننده میتواند یک دید کلی از این دسته مهم از مواد برای کاربردهای زیستپزشکی، بدون بررسی مقالات مجلات، به دست آورد. کسانی که در علم مواد، مهندسی زیست پزشکی و شیمی و فناوریهای دارویی کار میکنند، این را یک مرجع ضروری میدانند.
Polysaccharides are natural, renewable materials that are biodegradable and biocompatible, making them ideal subjects for biomedical applications. This book focusses on the main polysaccharides, including but not limited to chitosan, cellulose, alginate, dextran, guar gum, gellan gum, pullulan, locust bean gum, pectin, xanthan gum, starch, hyaluronan and carrageenan, and their applications in drug delivery, imaging and tissue engineering. With contributions from around the world, the editors have pulled together a tightly curated set of chapters which showcase how polysaccharide-based materials are employed in a range of biomedical systems. The end result is a book in which the reader can gain a sound overview of this important class of material for biomedical applications, without scouring journal articles. Those working in materials science, biomedical and chemical engineering, and pharmaceutical technologies will find this a must-have reference.
Cover Half Title Biomaterials Science Series Polysaccharide-based Biomaterials: Delivery of Therapeutics and Biomedical Applications Copyright Preface Contents 1. Polysaccharide-based Biomaterials: Overview 1.1 Introduction 1.2 Cellulose 1.3 Chitosan 1.4 Modifications 1.5 Hyaluronic Acid 1.6 Dextran 1.7 Alginates 1.8 Pullulan 1.9 Chondroitin Sulfate 1.10 Conclusion References 2. Recent Approaches in Alginate-based Carriers for Delivery of Therapeutics and Biomedicine 2.1 Introduction 2.2 Alginate 2.2.1 Alginate: Chemical Structure and Characterization 2.2.2 Extraction of Alginate from Brown Seaweed Algae 2.3 Alginate-based Colloidal Systems 2.3.1 Alginate in Different Colloidal Systems 2.4 Alginate-based Carrier Applications in Delivery Systems and Biomedicine 2.4.1 Therapeutic Applications 2.4.2 Drug-controlled Release Systems 2.4.3 Biomedical Applications 2.5 Conclusions Acknowledgements References 3. Alginate-based Carriers for Transdermal Drug Delivery 3.1 Introduction 3.2 Alginate: Sources, Physicochemical, and Biological Properties 3.2.1 Sources of Alginates 3.2.2 Physicochemical Properties 3.2.3 Biological Properties of Alginates 3.3 Preparations of Different Alginate-based Transdermal Systems 3.3.1 Alginate Films 3.3.2 Alginate-based Microneedles for Transdermal Drug Delivery 3.3.3 Alginate-based Electroresponsive Transdermal Drug Delivery System 3.4 Drug Delivery Application of Alginate Based Transdermal Carriers 3.4.1 Delivery of Antidiabetic Agents 3.4.2 Delivery of Anticancer Agents 3.4.3 Delivery of Anti-inflammatory Agents 3.4.4 Delivery of Antibiotics 3.4.5 Delivery of Antihypertensive Agents 3.4.6 Delivery of Antifungal Agents 3.4.7 Delivery of Antimicrobial Agents 3.4.8 Delivery of Antioxidants 3.4.9 Delivery of Anti-alopecia Agents 3.4.10 Miscellaneous 3.5 Conclusion References 4. Chitosan-based Nanocarriers for Drug Delivery: Advances and Challenges 4.1 Introduction 4.2 Chitosan-based Drug Delivery Nanocarriers 4.2.1 Nanoparticles 4.2.2 Nanogels 4.2.3 Nanomicelles 4.2.4 Physicochemical Characterization ofNanospheres, Nanocapsules, and Nanogels 4.2.5 Nanofibers 4.3 Summary and Future Perspectives Abbreviations Acknowledgements References 5. Hyaluronic Acid in Drug Delivery 5.1 Introduction 5.1.1 Properties 5.1.2 Synthesis and Degradation 5.2 Application of Hyaluronic Acid in Drug Delivery Systems 5.2.1 HA in Parenteral Delivery 5.2.2 HA in Pulmonary Delivery 5.2.3 HA in Ocular Delivery 5.2.4 HA in Nasal Delivery 5.2.5 HA in Oral Delivery 5.2.6 HA in Vaginal Delivery 5.2.7 HA in Topical Delivery 5.2.8 HA in Tissue and Regenerative Medicine 5.2.9 HA in Anti-cancer Drug Delivery Systems 5.2.10 HA in Protein and Peptide Delivery 5.2.11 HA in Targeted Drug Delivery Systems 5.2.12 HA in Self-assembling Systems 5.3 Application of Hyaluronic Acid in Gene Delivery Systems 5.4 Application of Hyaluronic Acid in Imaging 5.4.1 Fluorescence Imaging 5.4.2 Magnetic Resonance Imaging 5.4.3 Theranostic Applications 5.5 Challenges and Opportunities 5.6 Conclusion References 6. Dextran in the Delivery of Therapeutics: Chronicle of the Journey from Preclinical to Clinical Trials 6.1 Introduction 6.2 Dextran: An Extraordinary 'Slime' from the Bounty of Nature 6.2.1 Chemistry of Dextran 6.2.2 Physicochemical Properties of Dextran That Contribute to Its Superior Carrier Status 6.2.3 Methods of Synthesis 6.3 Preclinical Success Stories 6.4 Clinical Trials of Dextran as a Carrier 6.5 Future Perspectives 6.6 Conclusion Abbreviations References 7. Guar Gum-based Biomaterials in the Delivery of Therapeutics 7.1 Introduction 7.1.1 Gums/Polysaccharides as a Choice for Therapeutics 7.2 Why Guar Gum? 7.2.1 Guar Gum Processing 7.3 Synthesis of Guar Gum-based Therapeutics 7.3.1 Antihypertensive Drugs 7.3.2 Anticancer Drugs 7.3.3 Anti-infective Drugs 7.3.4 Anti-inflammatory 7.4 Different Ways of Giving Drugs Using a Polymer Blend 7.4.1 Particulate Level Blends 7.4.2 Colloidal Level Blends 7.4.3 The Molecular-level Blends 7.4.4 Excipients 7.4.5 Film Coatings and Oral Films 7.4.6 Tablets 7.4.7 Capsules 7.5 Applications 7.5.1 Guar Gum-based Microparticles for Drug Delivery 7.5.2 Guar Gum-based Nanoparticles for Drug Delivery 7.5.3 Guar Gum-based Nanoparticles as Self-healing, Injectable, and Antibacterial Biomaterials 7.5.4 Self-healing Properties 7.5.5 Injectable and Antibacterial Properties 7.5.6 Guar Gum-based Grafted Systems for Drug Delivery 7.5.7 Guar Gum-based Hydrogel Systems for Drug Delivery 7.5.8 Guar Gum-based Buccal Film for Drug Delivery 7.5.9 Guar Gum-based Tablets for Drug Delivery 7.6 Guar Gum-based Microsphere for Delivery of Anticancer Drugs 7.7 Toxicity Status of Guar Gum-based Therapeutics 7.8 Alternatives to Guar Gum 7.9 Conclusion References 8. Gellan Gum-based Drug Delivery Carriers 8.1 Introduction 8.2 Sources and Production of Gellan Gum 8.2.1 Factors Affecting Gellan Gum Production 8.2.2 Isolation of Gellan Gum from the Culture Broth 8.2.3 Purification of Gellan Gum 8.3 Chemistry of Gellan Gum 8.4 Physicochemical Properties of Gellan Gum 8.5 Rationale of Gellan Gum as a Drug Carrier 8.6 Chemical Modifications of Gellan Gum for Benefits of Drug Delivery 8.6.1 Carboxymethylation 8.6.2 Graft-copolymerization 8.6.3 Oxidation 8.6.4 Alkylation 8.6.5 Gellan–Thioglycolic Acid Conjugate 8.7 Gellan Gum-based Drug Delivery Carriers 8.7.1 Gellan Gum-based Beads 8.7.2 Gellan Microparticles 8.7.3 Gellan Pellets 8.7.4 Gellan-based In Situ Gel 8.7.5 Tablets 8.7.6 Hydrogels 8.7.7 Micelles 8.7.8 Gellan Nanoparticles 8.7.9 Gellan as an Emulsion Stabilizer 8.7.10 Gellan-based Nanofiber 8.8 Conclusion References 9. Locust Bean Gum – A Potential Drug Delivery Carrier 9.1 Introduction 9.2 Locust Bean Gum 9.2.1 Manufacture 9.2.2 Processing 9.2.3 Composition 9.2.4 Chemical Structure 9.3 Properties of LBG 9.3.1 Solubility 9.3.2 Viscosity 9.3.3 Molecular Weight 9.3.4 Hydration Rate 9.3.5 Water Adsorption Isotherm 9.3.6 Synergistic Gel Formation 9.4 Biological Activity of LBG 9.5 Biocompatible and Biodegradable Nature of LBG 9.6 Drug Delivery Applications 9.6.1 Oral Drug Delivery 9.6.2 Buccal Drug Delivery 9.6.3 Colonic Drug Delivery 9.6.4 Topical Drug Delivery 9.6.5 Ocular Drug Delivery 9.6.6 Inhalable LBG Microparticles 9.6.7 Solubility Improvement of Poorly Water-soluble Drugs 9.6.8 Tissue Engineering Application of LBG 9.7 Conclusions Acknowledgements References 10. Pectin-based Vehicles for Delivery of Therapeutics 10.1 Introduction 10.2 Overview of Pectin as a Biomaterial 10.3 Variety of Pectin-based Delivery Vehicles 10.4 Pectin as a Suitable Mucoadhesive Vehicle 10.5 Range of Therapeutics Delivered via Pectin Vehicles 10.5.1 Pectin Vehicles for Small Molecular Drug Delivery 10.5.2 Pectin Vehicles for Gene Delivery 10.6 Therapeutic Applications of Pectin-based Drug Delivery Vehicles 10.6.1 Oral Delivery 10.6.2 Systemic Delivery 10.6.3 Intranasal Delivery 10.6.4 Topical Delivery 10.6.5 Ocular Delivery 10.6.6 Vaginal Delivery 10.7 Clinical Progress 10.8 Summary 10.9 Challenges and Future Perspectives List of Abbreviations Conflicts of interest Acknowledgements References 11. Pullulan in the Delivery of Therapeutics 11.1 Introduction and Background 11.2 Pullulan as a Drug Carrier 11.3 Pullulan Derivatives as Drug Carriers 11.4 Pullulan-based Therapeutic Laborers with Bactericidal and Fungicidal Activities 11.5 Pullulan-based Anticancer Laborers 11.6 Pullulan-based Antioxidant Laborers with Radical Leaching Potentiality 11.7 Pullulan-based Therapeutic Laborers withAnti-inflammatory and Immunomodulatory Performance 11.8 Pullulan-based Therapeutic Laborers for Bone Illness 11.9 Conclusion References 12. Carrageenan-based Carriers for Therapeutic Delivery 12.1 Introduction 12.2 Sources of Carrageenan 12.3 Extraction of Carrageenan 12.4 Production 12.5 Chemical Structure 12.6 General Properties 12.7 Modification of Carrageenan 12.8 Carrageenan-based Carriers 12.8.1 Hydrogels 12.8.2 Tablets 12.8.3 Beads 12.8.4 Suppositories 12.8.5 Oral Suspensions 12.8.6 Pallets 12.8.7 Internasal Systems 12.8.8 Micro/nanoparticles 12.8.9 Wafers 12.9 Applications of Carrageenan in Therapeutic Delivery 12.9.1 Oral Delivery 12.9.2 Opthalmic 12.9.3 Nasal Delivery 12.9.4 Transdermal 12.10 Conclusion References 13. Xanthan Gum in Drug Carriers 13.1 Introduction 13.1.1 History of Xanthan Gum 13.1.2 Production 13.1.3 Chemical Composition and Structure 13.1.4 Physico-chemical Properties 13.2 Modifications 13.2.1 Carboxymethylation 13.2.2 Grafting 13.2.3 Phosphorylation 13.2.4 Esterification 13.2.5 Miscellaneous Modifications 13.3 Xanthan Gum for Drug Delivery Applications 13.3.1 Nanoparticles 13.3.2 Microparticles 13.3.3 Hydrogels 13.3.4 Polyelectrolyte Complex 13.3.5 Tablets 13.3.6 Gels 13.3.7 Complex Matrix 13.4 Conclusion Acknowledgements References 14. Cellulose-based Biomaterials in Drug Delivery Applications 14.1 Sources of Cellulose Biopolymer 14.1.1 Cellulose Structure 14.1.2 Cellulose Allomorphs 14.1.3 Characterization of Allomorphs 14.2 Cellulose Classification 14.2.1 Microcrystalline Cellulose (MCC) 14.2.2 Cellulose Nanofibrils (CNF) 14.2.3 Cellulose Nanocrystals (CNC) 14.3 Cellulose Derivatives 14.3.1 Cellulose Ethers 14.4 Cellulose-based Gels in Drug Delivery 14.4.1 Nanocellulose Hydrogels 14.4.2 Hydrogels by Modified Cellulose 14.4.3 Cellulose Derivative Hydrogels 14.4.4 Cellulose Aerogels 14.4.5 Cellulose Nanocrystal Gels 14.4.6 Bacterial Cellulose Hydrogel Membranes 14.4.7 Cellulose Derivative as Hydrogels 14.5 Other Cellulose Materials for Drug Delivery Applications 14.5.1 Microcrystalline Cellulose 14.5.2 Cellulose Nanofibers 14.5.3 Carboxymethyl Cellulose 14.5.4 Hydroxymethylpropyl and Hydroxypropyl Cellulose 14.6 Conclusions References 15. Starch-based Drug Delivery System: A Review on Pharmaceutical and Biomedical Applications 15.1 Introduction 15.2 Major Composition of Starch and its Sources 15.3 Methods Used in the Fabrication of Starch-based Micro/nano DDSs 15.3.1 Graft Copolymerization 15.3.2 Microemulsion 15.3.3 Ultrasonication 15.3.4 Hydrolysis 15.3.5 Electrospinning 15.4 Significance of Starch as a Drug Delivery System 15.5 Limitations in Starch and Starch-based DDSs 15.6 Application of Starch-based DDSs 15.6.1 Antimicrobial Evaluations of Starch-based DDSs 15.6.2 Antioxidant Potential of Starch-based DDSs 15.6.3 Cellular Uptake, Cellular Viability, and Cytotoxic Effects of Starch-based DDSs 15.6.4 Drug Loading and Releasing Assessment of Starch-based DDSs as a Futuristic Prospect 15.7 Conclusion Acknowledgements References 16. Tamarind Seed Polysaccharide in Novel Drug Delivery and Biomedical Applications 16.1 Introduction 16.1.1 Synonyms 16.1.2 Botanical Source and Chemical Structure 16.1.3 Selective Properties of TSP 16.1.4 Safety 16.1.5 Commercial Products of TSP 16.2 Pharmaceutical Applications of TSP and Chemically Modified TSP 16.3 Applications of TSP in Conventional Drug Delivery Systems 16.4 Applications in Novel Drug Delivery Systems and Biomedical Fields 16.4.1 Novel Drug Delivery Systems 16.4.2 Applications of TSP in Futuristic NDDS 16.4.3 Biomedical Applications of Tamarind Seed Polysaccharide 16.5 Conclusion Abbreviations Acknowledgements References 17. Chitosan-derived Biomaterials in Cancer Therapeutics and Biomedical Imaging 17.1 Introduction to Anti-cancer Drug Delivery Systems 17.1.1 Biopolymeric Carriers for Anti-cancer Agents 17.1.2 Chitosan as a Versatile Biopolymer and Drug Delivery Vehicle 17.2.1 Method of Preparation of ChitosanNanoparticles and Microparticles for Anti-cancer Agents 17.2.2 Significance of Chitosan Nanoparticles in Anti-cancer Drug Delivery 17.2.3 Significance of Chitosan Microparticles in Anti-cancer Drug Delivery 17.3 Chitosan-derived Metal Nanoparticles 17.3.1 Synthesis Protocol of Gold and Silver Nanoparticles Using Chitosan 17.3.2 Significance of Chitosan-derived Metal Nanoparticles in Cancer Therapeutics 17.4 Chitosan-based Nanocomposites 17.5 Chitosan-based Hydrogels 17.5.1 Classification of Hydrogels in Current Biomedical Applications 17.5.2 Method of Preparation of Chitosan Hydrogels for Anti-cancer Therapeutics 17.5.3 Significance of Chitosan Hydrogels in Anti-cancer Therapeutics 17.6 Chitosan-based Conjugates 17.7 Derivatives of Chitosan as Anticancer Agents 17.7.1 Chemical Modifications of Chitosan 17.7.2 Some Anticancer Derivatives of Chitosan 17.7.3 Significance of Chitosan Derivatives in Anti-cancer Therapeutics 17.8 Chitosan-based Imaging System for Cancer Diagnosis 17.8.1 Chitosan Nanomaterials for Fluorescence-based Imaging of Cancer 17.8.2 Chitosan Nanomaterials for Enhancement of CT and MRI Resolution 17.8.3 Chitosan Nanomaterials for Multimodal Imaging 17.9 Conclusion References 18. Polysaccharide-based Scaffolds for Tissue Engineering Applications 18.1 Introduction 18.2 Chemical Modifications of Polysaccharides 18.3 Graft Polymerization 18.4 Sulfation 18.5 Carboxymethylation 18.6 Esterification 18.7 Alginate and Dextran-based Scaffolds 18.7.1 Hydrogels Based on Alginate and Dextran 18.7.2 Microspheres Based on Alginate and Dextran 18.7.3 Scaffolds Based on Alginate and Dextran 18.8 Applications of Alginate/Dextran Scaffolds 18.8.1 Wound Healing 18.8.2 Cartilage Repair 18.8.3 Drug Delivery 18.9 Chitosan-based Scaffolds 18.9.1 Chitosan Derivatives for Tissue Engineering 18.9.2 Chitosan-based Scaffold Fabrication Methods 18.9.3 Chitosan in Tissue Applications 18.10 HA-based Brain Tissue Engineering 18.10.1 HA-based Adipose Tissue Engineering 18.10.2 HA-based Cartilage Tissue Engineering 18.10.3 HA-based Nerve Tissue Engineering 18.10.4 HA-based Skin Tissue Engineering 18.10.5 HA-based Other Soft Tissue Engineering 18.11 Future Prospects and Conclusions References Subject Index