ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Polynomial Rings and Affine Algebraic Geometry: PRAAG 2018, Tokyo, Japan, February 12-16

دانلود کتاب حلقه‌های چند جمله‌ای و هندسه جبری افین: PRAAG 2018، توکیو، ژاپن، 12 تا 16 فوریه

Polynomial Rings and Affine Algebraic Geometry: PRAAG 2018, Tokyo, Japan, February 12-16

مشخصات کتاب

Polynomial Rings and Affine Algebraic Geometry: PRAAG 2018, Tokyo, Japan, February 12-16

ویرایش: [1 ed.] 
نویسندگان: , ,   
سری: Springer Proceedings in Mathematics & Statistics 
ISBN (شابک) : 303042135X, 9783030421359 
ناشر: Springer Nature 
سال نشر: 2020 
تعداد صفحات: 328
[317] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 3 Mb 

قیمت کتاب (تومان) : 41,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 5


در صورت تبدیل فایل کتاب Polynomial Rings and Affine Algebraic Geometry: PRAAG 2018, Tokyo, Japan, February 12-16 به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب حلقه‌های چند جمله‌ای و هندسه جبری افین: PRAAG 2018، توکیو، ژاپن، 12 تا 16 فوریه نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب حلقه‌های چند جمله‌ای و هندسه جبری افین: PRAAG 2018، توکیو، ژاپن، 12 تا 16 فوریه

این مجموعه مقالات، آثار منتخب و بررسی شده ارائه شده در کنفرانس حلقه‌های چندجمله‌ای و هندسه جبری را که در دانشگاه متروپولیتن توکیو در 12 تا 16 فوریه 2018 برگزار شد، گردآوری می‌کند. خوانندگان برخی از آخرین تحقیقات انجام شده توسط یک گروه بین‌المللی را خواهند یافت. متخصصان هندسه جبری افین و تصویری موضوعات تحت پوشش شامل کنش های گروهی و خطی سازی، گروه های اتومورفیسم و ​​ساختار آنها به عنوان انواع بی نهایت بعدی، نظریه ثابت، مسئله لغو، مسئله جاسازی، فضاهای ماتیو و حدس ژاکوبین، حدس دولگاچف-وایزفایلر، طبقه بندی منحنی ها و سطوح، اشکال واقعی انواع پیچیده، و پرسش‌هایی درباره عقلانیت، غیرعقلانی بودن، و دو عقلانی بودن. این مقالات برای همه محققان و دانشجویان فارغ التحصیل که در زمینه‌های هندسه جبری نزدیک و تصویری و همچنین در جنبه‌های خاصی از جبر جابه‌جایی، نظریه دروغ، هندسه سمپلتیک و منیفولدهای استاین کار می‌کنند، مورد توجه قرار خواهد گرفت.


توضیحاتی درمورد کتاب به خارجی

This proceedings volume gathers selected, peer-reviewed works presented at the Polynomial Rings and Affine Algebraic Geometry Conference, which was held at Tokyo Metropolitan University on February 12-16, 2018. Readers will find some of the latest research conducted by an international group of experts on affine and projective algebraic geometry. The topics covered include group actions and linearization, automorphism groups and their structure as infinite-dimensional varieties, invariant theory, the Cancellation Problem, the Embedding Problem, Mathieu spaces and the Jacobian Conjecture, the Dolgachev-Weisfeiler Conjecture, classification of curves and surfaces, real forms of complex varieties, and questions of rationality, unirationality, and birationality. These papers will be of interest to all researchers and graduate students working in the fields of affine and projective algebraic geometry, as well as on certain aspects of commutative algebra, Lie theory, symplectic geometry and Stein manifolds.



فهرست مطالب

Preface
Contents
On Fano Schemes of Complete Intersections
	1 Introduction
	2 Hypersurfaces Containing Linear Subspaces
		2.1 Schubert Calculus
		2.2 Debarre–Manivel\'s Trick
		2.3 Bott\'s Residue Formula
	3 Fano Schemes of Complete Intersections
		3.1 Schubert Calculus
		3.2 Debarre–Manivel\'s Trick
	4 Numerical Invariants of Fano Schemes
	5 The Case of Fano Surfaces
	6 Irregular Fano Schemes
	7 Hypersurfaces Containing Conics
		7.1 The Codimension Count and Uniqueness
		7.2 The Degree Count
	References
Locally Nilpotent Sets of Derivations
	1 Preliminaries
	2 Locally Nilpotent Sets of Linear Maps
	3 Lie-Locally Nilpotent Sets of Linear Maps
	4 Nilpotency Conditions for Algebras
	5 Locally Nilpotent Sets of Derivations
	6 The Case of Derivation-Finite Algebras
	References
On the Theory of Gordan-Noether on Homogeneous Forms with Zero Hessian (Improved Version)
	1 Introduction
	2 Notation and Preliminaries
	3 Self-vanishing Systems of Polynomials
	4 Forms with Zero Hessian and Reduced Self-vanishing Systems
	5 Binary and Ternary Forms with Zero Hessian
	6 The Rational Map Defined by h
	7 Quaternary and Quinary Forms with Zero Hessian
	8 Proof of dim W leq1 in the Proof of Proposition 7.2
	9 Section6 of Gordan and Noether ch3GNzzz
	References
Rational Real Algebraic Models  of Compact Differential Surfaces  with Circle Actions
	1 Introduction
	2 Preliminaries
		2.1 Real and Complex Quasi-projective Algebraic Varieties
		2.2 Circle Actions as Real Forms of Hyperbolic mathbbGm-Actions
		2.3 Principal Homogeneous mathbbS1-Bundles
	3 Circle Actions on Smooth Real Affine Surfaces
		3.1 Real DPD-Presentations of Smooth Real Affine Surfaces with mathbbS1-Actions
		3.2 Real Fibers of the Quotient Morphism: Principal and Exceptional Orbits
	4 Rational Real Algebraic Models of Compact Differential Surfaces with Circle Actions
		4.1 Rational Affine Models with Compact Real Loci
		4.2 Uniqueness of Models up to Equivariant Birational Diffeomorphism
	References
The Super-Rank of a Locally Nilpotent Derivation of a Polynomial Ring
	1 Introduction
	2 The Affine Cone over a Determinantal Variety
	3 Derivations of Maximal Super-Rank
		3.1 The Derivation mathcalD(m,n)
		3.2 The Derivation D(m,n)
	References
Affine Space Fibrations
	1 Introduction
	2 Singular Fibers of mathbbA1- and mathbbP1-Fibrations
		2.1 Ga-Actions on Affine Surfaces
		2.2 Hidden Ga-Actions on Multiple Fiber Components
		2.3 Ga-Actions on Affine Threefolds
		2.4 Singular Fibers of mathbbP1-Fibrations on Smooth Projective Threefolds
		2.5 Freeness Conjecture of G. Freudenburg
	3 Equivariant Abhyankar-Sathaye Conjecture  in Dimension Three
		3.1 Arguments on Singular and Plinth Loci
		3.2 Statement of Theorem
	4 Forms of mathbbA3 with Unipotent Group Actions
		4.1 Preliminary Results
		4.2 Case of a Fixed-Point Free Ga-Action
		4.3 Case of an Effective GatimesGa-Action
		4.4 A k-Form of mathbbA4 with a Proper Action of a Unipotent Group of Dimension 2
		4.5 Forms of mathbbAntimesmathbbA1*
	5 Cancellation Problem in Dimension Three
	References
A Graded Domain Is Determined at Its Vertex. Applications to Invariant Theory
	1 Introduction
	2 Preliminaries
	3 Proof of Theorem 2
	4 Proof of Theorem 1
	References
Singularities of Normal Log Canonical del Pezzo Surfaces of Rank One
	1 Introduction
	2 Preliminaries
	3 Proof of Theorem 1
	References
O2(mathbbC)-Vector Bundles and Equivariant Real Circle Actions
	1 Introduction
	2 Real Structures
	3 O2(mathbbC)-Vector Bundles
	4 Real Vector Bundle Structures
	5 Families of Real Structures on Affine Four-Space
	6 Final Comments
	References
On Some Sufficient Conditions for Polynomials to Be Closed Polynomials over Domains
	1 Introduction
	2 Criteria of Closed Polynomials over Domains
	3 Closed Polynomials in Special Cases
	References
Variations on the Theme of Zariski\'s Cancellation Problem
	1 Introduction
		1.1 Notation, Conventions, and Terminology
	2 The Zariski Cancellation Problem
	3 Terminology
	4 Examples of Locally Flattenable Varieties
		4.1 Homogeneous Spaces
		4.2 Vector Bundles and Homogeneous Fiber Spaces
		4.3 Spherical Varieties
		4.4 Blow-Ups with Nonsingular Centers
		4.5 Curves and Surfaces
	5 Local Version of (ZCP)
	6 Flattenable Varieties Versus Locally Flattenable Varieties
	7 Answering (LZCP)
	8 Equivariantly Flattenable Varieties
	9 Equivariant Flattenability Versus Linear Equivariant Flattenability
	10 Equivariant Flattenability Versus Linearizability
	11 Equivariantly Flattenable Subgroups of the Cremona Groups
	12 Equivariantly Flattenable Groups and Special Groups in the Sense of Serre
	13 Classifying Equivariantly Flattenable Groups
	14 Locally Equivariantly Flattenable Varieties
	References
Tango Structures on Curves in Characteristic 2
	1 Introduction
	2 Tango Structures and Pre-Tango Structures on Curves
	3 The Induced Uniruled Surfaces
	4 Differential Forms
	5 Case of Genus >11
	6 Case of Small Genera
		6.1 Case of Genus 11
		6.2 Case of Genus 10
		6.3 Case of Genus 8
		6.4 Case of Genus 7
		6.5 Case of Genus 6
		6.6 Case of Genus 4
	7 Automorphisms of the Induced Uniruled Surfaces
	References
Exponential Matrices of Size Five-By-Five
	1 Introduction
		1.1 Matm, n(mathfrakR), Mat(n, mathfrakR), tA, A(i, j), i = 1r Ai, kn, ei
		1.2 GL(n, R), SL(n, R), Sym(n, R), GLS(n, R), GLC(n + 1, …, n + s)(n + s, k), Polynomial Matrices and Their Equivalence
		1.3 SE
		1.4 S S\'
		1.5 τ A, τmathfrakS
		1.6 σi, j
		1.7 νn, J(f0, …, fn - 1)
		1.8 mathfrakP
		1.9 Exp( A(T) ), Φn, Ψn - 1
		1.10 mathfrakUn, mathfrakU[d1, …, dt]
		1.11 mathfrakJ[n]
		1.12 mathfrakJ[n, 1], mathfrakJ[n, 1]0, mathfrakJ[n, 1]1
		1.13 mathfrakJ[1, n], mathfrakJ[1, n]0, mathfrakJ[1, n]1
		1.14 mathfrakA(i1, i2, i3)
		1.15 mathfrakHm + 2, mathfrakHm + 2°
	2 Preliminaries
		2.1 mathfrakUnE
		2.2 mathfrakU[n]E
		2.3 mathfrakU[n, 1]E
		2.4 mathfrakU[1, n]E
		2.5 mathfrakA(i1, i2, i3)E
		2.6 (mathfrakHm + 2°)E
	3 Polynomial Matrices of mathfrakU[n, 2]
		3.1 mathfrakJ[n, 2]0, 0
		3.2 mathfrakJ[n, 2]0, 1
		3.3 mathfrakJ[n, 2]1, 0
		3.4 mathfrakJ[n, 2]1, 1
		3.5 mathfrakJ[n, 2]0, 0, mathfrakJ[n, 2]0, 1, mathfrakJ[n, 2]1, 0, mathfrakJ[n, 2]1, 1 Are Mutually GL(n + 2, k)-Disjoint
		3.6 Exponential Matrices of mathfrakU[n , 2]
	4 Polynomial Matrices of mathfrakU[2, n]
	5 A Construction of Exponential Matrices
	6 Polynomial Matrices of mathfrakU5
		6.1 mathfrakH5
		6.2 mathfrakHmathfrakH5, mathfrakHmathfrakH5°
		6.3 mathfrakU[3, 1, 1], mathfrakU[1, 3, 1], mathfrakU[1, 1, 3]
		6.4 mathfrakU[2, 2, 1], mathfrakU[2, 1, 2], mathfrakU[1, 2, 2]
		6.5 mathfrakU[2, 1, 1, 1], mathfrakU[1, 2, 1, 1], mathfrakU[1, 1, 2, 1], mathfrakU[1, 1, 1, 2], mathfrakU[1, 1, 1, 1, 1]
		6.6 mathfrakU5
		6.7 Exponential Matrices of mathfrakU5
	7 Exponential Algebras
		7.1 Basics
		7.2 mathfrakj[n]
		7.3 mathfrakj[n, 2]1, 0(S)
		7.4 mathfrakj[n, 2]1, 1(λ)
		7.5 mathfrakj[2, n]0, 1(S)
		7.6 mathfrakj[2, n]1, 1(λ)
		7.7 mathfraka(i1, i2, i3)
		7.8 mathfrakhm + 2(S)
		7.9 mathfrakhhm + 3(S1, S2)
	8 Exponential Algebras and Modular Representations of Elementary Abelian p-Groups
	9 Five-Dimensional Modular Representations of Elementary Abelian p-Groups
	References
Mathieu-Zhao Spaces and the Jacobian Conjecture
	1 Introduction
	2 Mathieu-Zhao Spaces: Examples
	3 Background and History
	4 New Conjectures
	References




نظرات کاربران