دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Monleón Pradas. Manuel, Vicent. Maria J سری: ISBN (شابک) : 9780470596388, 0470596384 ناشر: Wiley سال نشر: 2014 تعداد صفحات: 424 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 4 مگابایت
کلمات کلیدی مربوط به کتاب پلیمرها در پزشکی بازساختی: کاربردهای زیست پزشکی از ساختارهای نانو تا کلان: پلیمرها نانو پزشکی طب احیا کننده. مهندسی بافت. نانوپزشکی -- روندها پزشکی احیا کننده -- گرایش ها مهندسی بافت -- گرایش ها سلامت و تناسب اندام -- کل نگری. HEALTH & FITNESS -- مرجع. پزشکی -- طب جایگزین. پزشکی -- اطلس. پزشکی -- مقالات. پزشکی -- خانواده و مطب عمومی. پزشکی -- پزشکی کل نگر. پزشکی -- استئوپاتی.
در صورت تبدیل فایل کتاب Polymers in regenerative medicine : biomedical applications from nano- to macro-structures به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب پلیمرها در پزشکی بازساختی: کاربردهای زیست پزشکی از ساختارهای نانو تا کلان نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Content: Preface xi Contributors xvii Part A Methods for Synthetic Extracellular Matrices and Scaffolds 1 1 Polymers as Materials for Tissue Engineering Scaffolds 3 Ana Valles Lluch Dunia Mercedes Garcia Cruz Jorge Luis Escobar Ivirico Cristina Martinez Ramos and Manuel Monleon Pradas 1.1 The Requirements Imposed by Application on Material Structures Intended as Tissue Engineering Scaffolds 3 1.2 Composition and Function 5 1.2.1 General Considerations 5 1.2.2 Some Families of Polymers for Tissue Engineering Scaffolds 8 1.2.3 Composite Scaffold Matrices 12 1.3 Structure and Function 14 1.3.1 General Considerations 14 1.3.2 Structuring Polymer Matrices 15 1.4 Properties of Scaffolds Relevant for Tissue Engineering Applications 24 1.4.1 Porous Architecture 24 1.4.2 Solid State Properties: Glass Transition Crystallinity 25 1.4.3 Mechanical and Structural Properties 26 1.4.4 Swelling Properties 28 1.4.5 Degradation Properties 29 1.4.6 Diffusion and Permeation 30 1.4.7 Surface Tension and Contact Angle 31 1.4.8 Biological Properties 31 1.5 Compound Multicomponent Constructs 32 1.5.1 Scaffold-Cum-Gel Constructs 32 1.5.2 Scaffolds and Membranes Containing Microparticles 34 1.5.3 Other Multicomponent Scaffold Constructs 34 1.6 Questions Arising from Manipulation and Final Use 35 1.6.1 Sterilization 35 1.6.2 Cell Seeding Cell Culture Analysis 36 1.6.3 In the Surgeon s Hands 37 References 37 2 Natural-Based and Stimuli-Responsive Polymers for Tissue Engineering and Regenerative Medicine 49 Mariana B. Oliveira and Joao F. Mano 2.1 Introduction 49 2.2 Natural Polymers and Their Application in TE & RM 52 2.2.1 Polysaccharides 52 2.2.2 Protein-Based Polymers 60 2.2.3 Polyesters 65 2.3 Natural Polymers in Stimuli-Responsive Systems 65 2.3.1 pH-Sensitive Natural Polymers 67 2.3.2 Temperature Sensitive Natural Polymers 67 2.3.3 Natural Polymers Modified to Show Thermoresponsive Behavior Modifying Responsive Polymers and Agents 71 2.3.4 Light-Sensitive Polymers Potential Use of Azobenzene/ -Cyclodextrin Inclusion Complexes 72 2.4 Conclusions 73 References 74 3 Matrix Proteins Interactions with Synthetic Surfaces 91 Patricia Rico Marco Cantini George Altankov and Manuel Salmeron-Sanchez 3.1 Introduction 91 3.2 Protein Adsorption 92 3.2.1 Cell Adhesion Proteins 93 3.2.2 Experimental Techniques to Follow Protein Adsorption 94 3.2.3 Effect of Surface Properties on Protein Adsorption 97 3.3 Cell Adhesion 109 3.3.1 Experimental Techniques to Characterize Cell Adhesion 112 3.3.2 Cell Adhesion at Cell Material Interface 115 3.4 Remodeling of the Adsorbed Proteins 122 3.4.1 Protein Reorganization and Secretion at the Cell Material Interface 122 3.4.2 Proteolytic Remodeling at Cell Materials Interface 126 References 128 4 Focal Adhesion Kinase in Cell Material Interactions 147 Cristina Gonzalez-Garcia Manuel Salmeron-Sanchez and Andres J. Garcia 4.1 Introduction 147 4.2 Role of FAK in Cell Proliferation 149 4.3 Role of FAK in Migratory and Mechanosensing Responses 150 4.4 Role of FAK in the Generation of Adhesives Forces 152 4.5 Influence of Material Surface Properties on FAK Signaling 156 4.5.1 Effect of Mechanical Properties on FAK Signaling 156 4.5.2 Effect of Surface Topography on FAK Signaling 160 4.5.3 Effect of Surface Chemistry on FAK Signaling 163 4.5.4 Effect of Surface Functionalization in FAK Expression 165 References 168 5 Complex Cell Materials Microenvironments in Bioreactors 177 Stergios C. Dermenoudis and Yannis F. Missirlis 5.1 Introduction 177 5.2 Cell ECM Interactions 178 5.2.1 ECM Chemistry 179 5.2.2 ECM Topography 181 5.2.3 ECM Mechanical Properties 183 5.2.4 ECM 3D Structure 184 5.2.5 ECM-Induced Mechanical Stimuli 186 5.3 Cell Nutrient Medium 187 5.3.1 Composition and Volume-Related Phenomena 188 5.3.2 Mechanical Stresses Induced by Nutrient Medium 191 5.4 Other Aspects of Interaction 194 5.4.1 Co-Culture Systems 195 5.4.2 Material Interactions 196 5.5 Conclusions 197 References 197 Part B N anostructures for Tissue Engineering 207 6 Self-Curing Systems for Regenerative Medicine 209 Julio San Roman Blanca Vazquez and Maria Rosa Aguilar 6.1 Introduction 209 6.2 Self-Curing Systems for Hard Tissue Regeneration 210 6.2.1 Antimicrobial Self-Curing Formulations 211 6.2.2 Self-Curing Formulations for Osteoporotic Bone 214 6.2.3 Antineoplastic Drug-Loaded Self-Curing Formulations 216 6.2.4 Nonsteroidal Anti-Inflammatory Drug-Loaded Formulations 217 6.2.5 Self-Curing Formulations with Biodegradable Components 218 6.3 Self-Curing Hydrogels for Soft Tissue Regeneration 219 6.3.1 Chemically Cross-Linked Hydrogels 220 6.3.2 Chemically and Physically Cross-Linked Hydrogels 225 6.4 Expectative and Future Directions 226 References 226 7 Self-Assembling Peptides as Synthetic Extracellular Matrices 235 M.T. Fernandez Muinos and C.E. Semino 7.1 Introduction 235 7.2 In Vitro Applications 238 7.3 In Vivo Applications 242 References 245 8 Polymer Therapeutics as Nano-Sized Medicines for Tissue Regeneration and Repair 249 Ana Arminan Pilar Sepulveda and Maria J. Vicent 8.1 Polymer Therapeutics as Nano-Sized Medicines 249 8.1.1 The Concept and Biological Rationale behind Polymer Therapeutics 249 8.1.2 Current Status and Future Trends 252 8.2 Polymer Therapeutics for Tissue Regeneration and Repair 254 8.2.1 Ischemia/Reperfusion Injuries 255 8.2.2 Wound Healing/Repair 260 8.2.3 Musculoskeletal Disorders 263 8.2.4 Diseases of the Central Nervous System 267 8.3 Conclusions and Future Perspectives 272 References 273 9 How Regenerative Medicine Can Benefit from Nucleic Acids Delivery Nanocarriers? 285 Erea Borrajo Anxo Vidal Maria J. Alonso and Marcos Garcia-Fuentes 9.1 Introduction 285 9.1.1 Learning from Viruses: How to Overcome Cellular Barriers 286 9.2 Nanotechnology in Gene Delivery 292 9.2.1 Lipid Nanocarriers 292 9.2.2 Polymeric Nanocarriers 294 9.2.3 Inorganic Nanoparticles 300 9.3 Nanotechnology in Regenerative Medicine 302 9.3.1 Bone Regeneration 303 9.3.2 Cartilage Regeneration 305 9.3.3 Tendon Regeneration 308 9.3.4 Myocardium Regeneration 309 9.3.5 Neurological Tissue 311 9.4 Conclusions 313 References 313 10 Functionalized Mesoporous Materials with Gate-Like Scaffoldings for Controlled Delivery 337 Elena Aznar Estela Climent Laura Mondragon Felix Sancenon and Ramon Martinez-Manez 10.1 Introduction 337 10.2 Mesoporous Silica Materials with Gate-Like Scaffoldings 339 10.2.1 Controlled Delivery by pH Changes 339 10.2.2 Controlled Delivery Using Redox Reactions 345 10.2.3 Controlled Delivery Using Photochemical Reactions 349 10.2.4 Controlled Delivery via Temperature Changes 352 10.2.5 Controlled Delivery Using Small Molecules 355 10.2.6 Controlled Delivery Using Biomolecules 356 10.3 Concluding Remarks 360 References 361 11 Where Are We Going? Future Trends and Challenges 367 Sang Jin Lee and Anthony Atala 11.1 Introduction 367 11.2 Classification of Biomaterials in Tissue Engineering and Regenerative Medicine 368 11.2.1 N aturally Derived Materials 368 11.2.2 Biodegradable Synthetic Polymers 370 11.2.3 Tissue Matrices 372 11.3 Basic Principles of Biomaterials in Tissue Engineering 373 11.4 Development of Smart Biomaterials 374 11.5 Scaffold Fabrication Technologies 376 11.5.1 Injectable Hydrogels 376 11.5.2 Electrospinning 377 11.5.3 Computer-Aided Scaffold Fabrication 378 11.5.4 Functionalization of Tissue-Engineered Biomaterial Scaffolds 379 11.6 Summary and Future Directions 381 References 384 Index 391