ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Polymers in Energy Conversion and Storage

دانلود کتاب پلیمرها در تبدیل و ذخیره انرژی

Polymers in Energy Conversion and Storage

مشخصات کتاب

Polymers in Energy Conversion and Storage

دسته بندی: انرژی
ویرایش:  
نویسندگان: , , ,   
سری:  
ISBN (شابک) : 2021055547, 9781003169727 
ناشر: CRC Press 
سال نشر: 2022 
تعداد صفحات: 363 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 141 مگابایت 

قیمت کتاب (تومان) : 43,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 4


در صورت تبدیل فایل کتاب Polymers in Energy Conversion and Storage به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب پلیمرها در تبدیل و ذخیره انرژی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Cover
Half Title
Title Page
Copyright Page
Table of Contents
Preface
Editors
Contributors
Chapter 1: History and Progress of Polymers for Energy Applications
	1.1 Introduction: Historical Perspective of Polymers in the Energy Field
	1.2 Polymer Materials for Energy Storage Applications
	1.3 Polymer Materials for Energy Conversion Applications
	1.4 Conclusion
	References
Chapter 2: Polymer Electrolytes for Supercapacitor Applications
	2.1 Introduction
		2.1.1 Effect of the Electrolyte on Supercapacitor Performance
		2.1.2 Essential Electrochemical Performance Parameters Controlled by the Electrolytes
		2.1.3 Characteristics of an Ideal Electrolyte
	2.2 Different Classes of Electrolytes for Supercapacitors
	2.3 Different Solid and Quasi-Solid Types of Electrolytes used in Supercapacitor Technology
		2.3.1 Solid Polymer Electrolytes
		2.3.2 Gel Polymer Electrolytes
			2.3.2.1 Hydrogel Polymer Electrolytes
				2.3.2.1.1 Synthesized Polymer Hydrogel Electrolytes
				2.3.2.1.2 Natural Biopolymer-Based Hydrogel Electrolytes
			2.3.2.2 Polymer Organogel Electrolytes
			2.3.2.3 Polymer Ionogel Electrolytes
			2.3.2.4 Proton-Conducting Gel Polymer Electrolytes
		2.3.3 Polyelectrolytes
	2.4 The Ionic Conduction Mechanism in Various Polymer Electrolytes
		2.4.1 Ionic Conduction in Solid (Solvent-Free) Polymer Electrolytes
		2.4.2 Ion Conduction in Gel Polymer Electrolytes
	2.5 Polymer-Based Multifunctional Flexible Supercapacitors
		2.5.1 Polymer-Based Stretchable or Compressible Supercapacitors
		2.5.2 Polymer-Based Self-Healable Supercapacitors
		2.5.3 Polymer-Electrolyte-Based Shape Memory Supercapacitors
		2.5.4 Polymer Electrolyte-Based Electrochromic Supercapacitors
		2.5.5 Polymer Electrolyte Based Self-Charging Supercapacitors
	2.6 Integrated Sensing Devices Powered by Polymer Electrolyte-Based Supercapacitors
	2.7 Conclusions
	Acknowledgment
	Declaration of Competing Interest
	References
Chapter 3: Polyaniline-Based Ternary Composites for Energy Accumulation in Electrochemical Capacitors
	3.1 Introduction
	3.2 Composite Materials for Supercapacitors
	3.3 Conducting Organic Polymer (COP) Based Ternary Composites for Supercapacitors
		3.3.1 Polyaniline
		3.3.2 Carbon - Based Materials
		3.3.3 Metal Oxides
		3.3.4 Polyaniline - Based Ternary Composites
	3.4 Conclusions
	References
Chapter 4: Self-Healing Gel Electrolytes for Flexible Supercapacitors
	4.1 Introduction
	4.2 An Overview of Self-Healing Gel Electrolytes
	4.3 Synthesis of Self-Healing Gels Based on Non-Covalent Interactions
	4.4 Synthesis of Self-Healing Gels Based on Covalent Interactions
	4.5 Self-Healing Ionic Gel Electrolytes
	4.6 Redox-Active Self-Healing Gel Electrolytes
	4.7 Redox-Active Self-Healing Electrolytes for Supercapacitors
	4.8 Conclusion
	Acknowledgments
	References
Chapter 5: Polymeric Nanogenerators
	5.1 Introduction
	5.2 Piezoelectric Nanogenerators
		5.2.1 Polyvinylidene Fluoride and Its Co-Polymers
			5.2.1.1 Polyvinylidene Fluoride
			5.2.1.2 Polyvinylidene Fluoride- Trifluoroethylene
			5.2.1.3 Polyvinylidene Fluoride Hexafluoro- Propylene
		5.2.2 Polyamide
		5.2.3 Polyvinyl Chloride
		5.2.4 Poly-L-Lactic Acid
	5.3 Triboelectric Nanogenerators
		5.3.1 Polytetrafluoroethylene
		5.3.2 Fluorinated Ethylene Propylene
		5.3.3 Cellulose
		5.3.4 Polyvinylidene Fluoride
		5.3.5 Polyamide
		5.3.6 Polydimethylsiloxane
		5.3.7 Polyimide
	5.4 Electrostatic Nanogenerators
	5.5 Electromagnetic Induction Nanogenerators
	5.6 Conclusion
	References
Chapter 6: Pyroelectric and Piezoelectric Polymers
	6.1 Introduction
		6.1.1 The Concept of Piezoelectricity and the Figure of Merits
			6.1.1.1 Piezoelectric Coefficients
				6.1.1.1.1 Stretching
				6.1.1.1.2 Poling
		6.1.2 The Concept of Pyroelectricity and the Figures of Merit
		6.1.3 Piezoelectric and Pyroelectric Materials
			6.1.3.1 Types of Piezoelectric and Pyroelectric Materials
				6.1.3.1.1 Single Crystals
				6.1.3.1.2 Ceramics
				6.1.3.1.3 Inorganic Films
				6.1.3.1.4 Polymers
					6.1.3.1.4.1 Poly(Vinylidene Fluoride) (PVDF)
					6.1.3.1.4.2 Polyvinylidene Fluoride-Trifluoroethylene (P(VDF-TrFE))
					6.1.3.1.4.3 Polyvinylidene Fluoride-Hexafluoropropylene (P(VDF–HFP))
					6.1.3.1.4.4 Polyvinylidene Fluoride-Chlorotrifluoroethylene (P(VDF–CTFE))
					6.1.3.1.4.5 Poly(Vinylidene Fluoride-Tri Fluoroethylene-Chlorotri Fluoroethylene) (P(VDF-TrFE-CTFE))
				6.1.3.1.5 Polyamides (PA)
				6.1.3.1.6 Polyureas
				6.1.3.1.7 Biopolymers
			6.1.3.2 Polymer Nanocomposites for Piezo/Pyroelectricity
				6.1.3.2.1 PVDF and Its Copolymers
					6.1.3.2.1.1 Ceramic Fillers
					6.1.3.2.1.2 Carbon-Based Fillers
					6.1.3.2.1.3 Metal-Based Fillers
					6.1.3.2.1.4 Hybrid Fillers
				6.1.3.2.2 Polylactic Acid (PLA)
				6.1.3.2.3 Polyurethanes (PU)
					6.1.3.2.3.1 Polyamides (PA)
					6.1.3.2.3.2 Cellulose and Its Derivatives
	6.2 Other Polymer Composite Systems
		6.2.1 Piezo/PyroElectric Polymers for Energy Harvesting
			6.2.1.1 Energy Harvesting: Principles and Methods
	6.3 Conclusion
	References
Chapter 7: Polymers and Their Composites for Solar Cell Applications
	List of Abbreviations
	7.1 Introduction
	7.2 Polymer Composites for DSSC Applications
		7.2.1 Polymer Composites for Flexible Substrates in DSSCs
		7.2.2 Polymer Composites for Mesoporous TiO 2 Photoanodes in DSSCs
		7.2.3 Polymer Composites as Counter-Electrodes for DSSCs
			7.2.3.1 Polypyrrole (PPy)-Based CEs for DSSCs
			7.2.3.2 Polyaniline-Based CEs for DSSCs
			7.2.3.3 Poly(3,4-ethylenedioxythiophene) (PEDOT)-Based CEs for DSSCs
	7.3 Polymer-Based Electrolytes of DSSCs
		7.3.1 Thermoplastic Polymer Electrolytes
		7.3.2 Thermosetting Polymer Electrolytes
		7.3.3 Composite Polymer Electrolytes for DSSCs
	7.4 Application of Polymers in Perovskite Solar Cells
		7.4.1 Polymers for Regulating the Morphology of the Perovskite Layer
		7.4.2 Polymers as Hole Transport Layers
		7.4.3 Polymers as Electron Transport Layers
		7.4.4 Polymers as the Interlayer
	7.5 Summary and Future Perspectives
	References
Chapter 8: Polymers and Composites for Fuel Cell Applications
	8.1 Introduction
	8.2 The Working Principle of the Fuel Cell
	8.3 Polymers in Fuel Cells
		8.3.1 Electronic and Ionic Properties of Polymers
		8.3.2 Biopolymers
		8.3.3 Synthetic Polymers
	8.4 Polymers as Electrolytes for Batteries, Supercapacitors, and Fuel Cells
	8.5 Overview of Polymers in Membrane-Electrode Assemblies
	8.6 Role of Polymers in Fuel Cells
		8.6.1 Polymers as Ion Exchange Media
		8.6.2 Polymer Composites as Ion-Exchange Media
		8.6.3 Polymers and Their Composites as Electrocatalysts
	8.7 Challenges in Designing Compatible Polymer-Based Membrane Electrode Assemblies
	8.8 Conclusion and Future Prospects
	Acknowledgments
	References
Chapter 9: Solid Polymer Electrolytes for Solid State Batteries
	9.1 Introduction
	9.2 Polymer Solid Electrolytes for Batteries
		9.2.1 Polyethylene Oxide (PEO)
		9.2.2 Polyacrylonitrile
		9.2.3 Polyvinylidene Difluoride
		9.2.4 Polyacrylates
	9.3 Solid Polymer Composite Electrolytes (SPCs)
		9.3.1 Inert-Polymer Filler Electrolytes
		9.3.2 Active-Polymer Filler Electrolytes
			9.3.2.1 Garnet-Polymer Solid Electrolytes
			9.3.2.2 NASICON-Polymer Electrolytes
			9.3.2.3 Perovskite-Polymer Electrolytes
			9.3.2.4 Sulfide-Polymer Electrolytes
	9.4 Polymer Electrolytes for Hopped-Up Batteries
	9.5 Solid Polymer Composite Electrolytes in Rechargeable Batteries
	9.6 Conclusion and Perspectives
	Acknowledgments
	References
Chapter 10: Polymer Batteries
	10.1 Introduction
		10.1.1 Rechargeable Batteries
			10.1.1.1 Lead-Acid Battery
			10.1.1.2 Nickel-Cadmium (Ni-Cd) Battery
			10.1.1.3 Nickel-Metal Hydride Battery (Ni-MH Battery)
			10.1.1.4 Rechargeable Lithium Batteries (R-LBs)
	10.2 Battery Components and Parameters
	10.3 Electrolytes for Rechargeable Lithium Batteries
		10.3.1 Liquid Electrolytes
		10.3.2 Solid Electrolytes
			10.3.2.1 Inorganic Solid Electrolytes
				10.3.2.1.1 Crystalline or Polycrystalline Solid Electrolytes
				10.3.2.1.2 Glassy Solid Electrolytes
			10.3.2.2 Polymer Electrolytes (PEs)
				10.3.2.2.1 Solid Polymer Electrolytes (SPEs)
				10.3.2.2.2 Plasticized Polymer Electrolytes
				10.3.2.2.3 Ionic Liquid-Based Gel Polymer Electrolytes (IL-GPEs)
	10.4 Electrochemical Characterizations of IL-GPEs for LPBs
		10.4.1 Ionic and Lithium-Ion Conductivity of IL-GPEs
		10.4.2 Solid Electrolyte Interface (SEI)
		10.4.3 Electrochemical Stability Window (ESW)
		10.4.4 Charge–Discharge Performance of Lithium Batteries Using IL-GPEs
	10.5 Summary
	Acknowledgments
	References
Chapter 11: Polymer Semiconductors
	11.1 Introduction
	11.2 Semiconducting Polymers
	11.3 Synthesis of Semiconductors Polymers
		11.3.1 Building Block Selection
			11.3.1.1 Acceptor Building Blocks
			11.3.1.2 Donor Building Blocks
		11.3.2 Backbone Halogenation
			11.3.2.1 Fluorination
			11.3.2.2 Synthesis of Fluorinated Conjugated Polymers
			11.3.2.3 Chlorination
		11.3.3 Side-Chain Engineering
		11.3.4 Random Copolymerization
	11.4 Properties
		11.4.1 Electronic Properties
		11.4.2 Charge Carrier Mobility
			11.4.2.1 Intrinsic Charge Trapping
			11.4.2.2 Light Polymers
		11.4.3 Charge Carrier Transport
			11.4.3.1 Single-Layer (SL) Transportation
			11.4.3.2 n-Type (Electron-Transporting)
			11.4.3.3 p-Type (Hole-Transporting)
		11.4.4 Intra- and Interchain Charge Transport
		11.4.5 Optical Properties
		11.4.6 Mechanical Properties of Organic Semiconductors
		11.4.7 Physical Properties
	11.5 Polymer Semiconductor Characterization Techniques
		11.5.1 Physicochemical Characterization Techniques
			11.5.1.1 Microscopy Based Characterization Techniques
			11.5.1.2 Spectroscopy Based Characterization Techniques
			11.5.1.3 X-ray Based Characterization Techniques
		11.5.2 Electrical and Optical Polymer Semiconductor Characterization Techniques
			11.5.2.1 Recombination Lifetime Characterization
			11.5.2.2 Deep Level Transient Spectroscopy (DLTS)
			11.5.2.3 Fourier Transform Infrared Spectroscopy
			11.5.2.4 Ellipsometric Spectroelectrochemistry
	11.6 Devices Based on Organic Polymer Semiconductors
		11.6.1 Hybrid Organic–Inorganic Materials
		11.6.2 Polymeric Field-Effect Thin-Film Transistors (PTFTs)
			11.6.2.1 Classification of the Transistors Based on Semiconductor Polymers
				11.6.2.1.1 p-Channel Polymer Transistors: Ability to Conduct Holes
				11.6.2.1.2 n-Channel Polymer Transistors: Ability to Conduct Electrons
					11.6.2.1.2.1 Imide-Functionalized n-Type Polymers
					11.6.2.1.2.2 Amide-Functionalized n-Type Polymers
					11.6.2.1.2.3 B–N Embedded Polymers
					11.6.2.1.2.4 Cyano-Functionalized Polymers
			11.6.2.2 Ambipolar Polymeric Semiconductors
		11.6.3 Current Techniques of Transistor Fabrication
			11.6.3.1 Inkjet Printing
			11.6.3.2 Push Coating
			11.6.3.3 Improvements in PTFT Structure
				11.6.3.3.1 Low Voltage PTFTs on Plastic (Ion-Gel Gate)
				11.6.3.3.2 Self-Encapsulation
				11.6.3.3.3 Nucleic Agents
		11.6.4 Sensors
			11.6.4.1 Chemical Sensors
			11.6.4.2 Metal-Organic Frameworks as Chemical Sensors
			11.6.4.3 Gas Sensors
		11.6.5 Organic Photovoltaics
			11.6.5.1 Carbon Nanotubes for Organic Photovoltaics
	11.7 Conclusion
	References
Chapter 12: Polymer Organic Photovoltaics
	12.1 Introduction
	12.2 Materials for Organic Photovoltaics
	12.3 Processing of OPV Cells
	12.4 The Basic Operational Process of OPV
	12.5 Current Density (J)–Voltage (V) Characteristics for OPVs
	12.6 Small Molecule-Based OPVs
	12.7 Polymer-Based OPVs
	12.8 Hybrid Organic–Inorganic Photovoltaic Devices
	12.9 Tandem Organic Photovoltaic Devices
	12.10 Effects of Temperature on OPV Cells
	12.11 Fundamental Limitations of OPVs
	12.12 Future Development Regarding the PCE Enhancement of OPVs
	12.13 Status of the OPV Industry
	12.14 Conclusions
	Acknowledgments
	References
Chapter 13: Polymers and Their Composites for Wearable Electronics
	13.1 Wearable Electronics: Definition and Driving Forces
	13.2 Conductive Polymers and Their Composites in WEs
	13.3 Composites of Carbon-Based Nanomaterials and Polymers for Wearable Electronics
		13.3.1 Graphene
		13.3.2 Carbon Nanotubes
		13.3.3 Graphene Nanoribbons
		13.3.4 Graphene Quantum Dots
	13.4 Chitin and Its Derivatives for WEs
	13.5 Piezoelectric Elastomers and Their Composites for WEs
	13.6 Rare-Earth-Based Composites
	13.7 Conclusion
	Acknowledgments
	References
Chapter 14: Polymer-Based Organic Electronics
	14.1 Introduction
	14.2 History of Conjugated Polymers
	14.3 Conjugated Polymers
	14.4 One-Dimensional (1D) Conjugated Polymers
		14.4.1 Conjugated Polyphenylenes
			14.4.1.1 Linear and Ladder-Type Polyphenylenes
			14.4.1.2 Stepladder Polyphenylenes with Bridging Atoms
				14.4.1.2.1 Polyfluorenes (PFs)
					14.4.1.2.1.1 PFs: Polymers for Blue PLEDs
					14.4.1.2.1.2 PFs: Hosts for Red, Green, Blue, as well as for White PLEDs
					14.4.1.2.1.3 PFs: Electron Rich Material for PSCs
				14.4.1.2.2 C-Bridged Stepladder Polyphenylenes
				14.4.1.2.3 PCz and Heteroatom Bridged Stepladder Polyphenylenes
		14.4.2 Polycyclic Aromatic Hydrocarbon (PAH)-Based Conjugated Polymers
		14.4.3 Thiophene-Containing Conjugated Polymers
		14.4.4 Polythiophenes and Their Derivatives
		14.4.5 Thienoacene-Containing Conjugated Polymers
		14.4.6 Naphthodithiophene-Containing Conjugated Polymers
		14.4.7 Donor-Acceptor (D-A) Polymers
	14.5 Two-Dimensional (2D) Conjugated Polymers
		14.5.1 Conjugated Macrocycles
		14.5.2 Two-Dimensional (2D) D-A Polymers
	14.6 Future Scope and Conclusions
	References
Chapter 15: Polymers and Their Composites for Thermoelectric Applications
	15.1 Introduction: Background and Motivation
	15.2 Fundamentals of Thermoelectrics and Key Parameters
		15.2.1 Conversion Efficiency (η) of Thermoelectric Devices
		15.2.2 The Dimensionless Figure of Merit (ZT) of Thermoelectric Materials
		15.2.3 Seebeck Coefficient (S) of Thermoelectric Materials
		15.2.4 Electrical Conductivity (σ) of Thermoelectric Materials
		15.2.5 Thermal Conductivity (κ) of Thermoelectric Materials
	15.3 Fundamental Studies on Improving Thermoelectric Performance
	15.4 Development of Polymer-Based Thermoelectric Materials
	15.5 Development of Polymer-Based Composites for Thermoelectric Materials
	15.6 Summary and Outlook
	References
Chapter 16: Polymeric Materials for Hydrogen Storage
	16.1 Introduction
	16.2 Hydrogen Storage Measurement
	16.3 Polymer-Based Hydrogen Storage Systems
		16.3.1 Organic Polymers
			16.3.1.1 Polymers of Intrinsic Microporosity (PIM)
			16.3.1.2 Synthesis
			16.3.1.3 Characterization
			16.3.1.4 Hydrogen Uptake and BET Surface Area
		16.3.2 Nanoporous Organic Polymers
			16.3.2.1 Synthesis
			16.3.2.2 Characterization
			16.3.2.3 Hydrogen Uptake and BET Surface Area
		16.3.3 Soluble Polymers
			16.3.3.1 Synthesis
			16.3.3.2 Characterization
			16.3.3.3 Hydrogen Uptake and BET Surface Area
		16.3.4 Polymer-Based Composites
			16.3.4.1 Synthesis
			16.3.4.2 Characterization
			16.3.4.3 Hydrogen Uptake and BET Surface Area
	16.4 Conclusion
	References
Chapter 17: Polymers and Their Composites for Water-Splitting Applications
	17.1 Introduction
	17.2 Electrolysis
		17.2.1 HTS Electrolysis
			17.2.1.1 Polymer-Obtained Boron-Doped Bismuth Oxide Nanocomposites
		17.2.2 PEM Electrolysis
			17.2.2.1 Ir and Ru Modified PANI Polymers
			17.2.2.2 Polymeric Nanofibers
			17.2.2.3 Nanocages Obtained from Polymer/Co Complexes
			17.2.2.4 Polymeric Binders
		17.2.3 AW Electrolysis
			17.2.3.1 Organic Polymers
				17.2.3.1.1 Ion-Conductive Polymers
				17.2.3.1.2 Conjugated Polymers
				17.2.3.1.3 Carbon Materials Obtained from Organic Polymers
			17.2.3.2 Carbonized Porous Conducting Polymers
			17.2.3.3 3D Printed Polymers
		17.2.4 PE Electrolysis
			17.2.4.1 Poly Urethane Acrylate
			17.2.4.2 Polymer-Based Dye-Sensitized Cells
			17.2.4.3 Polymer Electrolytes
			17.2.4.4 Polymer-Templated Nanospiders
	17.3 Photocatalysis
		17.3.1 Photolysis
			17.3.1.1 Conjugated Polymers
		17.3.2 Photosynthesis
		17.3.3 Cocatalysis
	17.4 Radiolysis
	17.5 Thermolysis
	References
Index




نظرات کاربران