دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: انرژی ویرایش: نویسندگان: Inamuddin, Mohd Imran Ahamed, Rajender Boddula, Tariq Altalhi سری: ISBN (شابک) : 2021055547, 9781003169727 ناشر: CRC Press سال نشر: 2022 تعداد صفحات: 363 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 141 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Polymers in Energy Conversion and Storage به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب پلیمرها در تبدیل و ذخیره انرژی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half Title Title Page Copyright Page Table of Contents Preface Editors Contributors Chapter 1: History and Progress of Polymers for Energy Applications 1.1 Introduction: Historical Perspective of Polymers in the Energy Field 1.2 Polymer Materials for Energy Storage Applications 1.3 Polymer Materials for Energy Conversion Applications 1.4 Conclusion References Chapter 2: Polymer Electrolytes for Supercapacitor Applications 2.1 Introduction 2.1.1 Effect of the Electrolyte on Supercapacitor Performance 2.1.2 Essential Electrochemical Performance Parameters Controlled by the Electrolytes 2.1.3 Characteristics of an Ideal Electrolyte 2.2 Different Classes of Electrolytes for Supercapacitors 2.3 Different Solid and Quasi-Solid Types of Electrolytes used in Supercapacitor Technology 2.3.1 Solid Polymer Electrolytes 2.3.2 Gel Polymer Electrolytes 2.3.2.1 Hydrogel Polymer Electrolytes 2.3.2.1.1 Synthesized Polymer Hydrogel Electrolytes 2.3.2.1.2 Natural Biopolymer-Based Hydrogel Electrolytes 2.3.2.2 Polymer Organogel Electrolytes 2.3.2.3 Polymer Ionogel Electrolytes 2.3.2.4 Proton-Conducting Gel Polymer Electrolytes 2.3.3 Polyelectrolytes 2.4 The Ionic Conduction Mechanism in Various Polymer Electrolytes 2.4.1 Ionic Conduction in Solid (Solvent-Free) Polymer Electrolytes 2.4.2 Ion Conduction in Gel Polymer Electrolytes 2.5 Polymer-Based Multifunctional Flexible Supercapacitors 2.5.1 Polymer-Based Stretchable or Compressible Supercapacitors 2.5.2 Polymer-Based Self-Healable Supercapacitors 2.5.3 Polymer-Electrolyte-Based Shape Memory Supercapacitors 2.5.4 Polymer Electrolyte-Based Electrochromic Supercapacitors 2.5.5 Polymer Electrolyte Based Self-Charging Supercapacitors 2.6 Integrated Sensing Devices Powered by Polymer Electrolyte-Based Supercapacitors 2.7 Conclusions Acknowledgment Declaration of Competing Interest References Chapter 3: Polyaniline-Based Ternary Composites for Energy Accumulation in Electrochemical Capacitors 3.1 Introduction 3.2 Composite Materials for Supercapacitors 3.3 Conducting Organic Polymer (COP) Based Ternary Composites for Supercapacitors 3.3.1 Polyaniline 3.3.2 Carbon - Based Materials 3.3.3 Metal Oxides 3.3.4 Polyaniline - Based Ternary Composites 3.4 Conclusions References Chapter 4: Self-Healing Gel Electrolytes for Flexible Supercapacitors 4.1 Introduction 4.2 An Overview of Self-Healing Gel Electrolytes 4.3 Synthesis of Self-Healing Gels Based on Non-Covalent Interactions 4.4 Synthesis of Self-Healing Gels Based on Covalent Interactions 4.5 Self-Healing Ionic Gel Electrolytes 4.6 Redox-Active Self-Healing Gel Electrolytes 4.7 Redox-Active Self-Healing Electrolytes for Supercapacitors 4.8 Conclusion Acknowledgments References Chapter 5: Polymeric Nanogenerators 5.1 Introduction 5.2 Piezoelectric Nanogenerators 5.2.1 Polyvinylidene Fluoride and Its Co-Polymers 5.2.1.1 Polyvinylidene Fluoride 5.2.1.2 Polyvinylidene Fluoride- Trifluoroethylene 5.2.1.3 Polyvinylidene Fluoride Hexafluoro- Propylene 5.2.2 Polyamide 5.2.3 Polyvinyl Chloride 5.2.4 Poly-L-Lactic Acid 5.3 Triboelectric Nanogenerators 5.3.1 Polytetrafluoroethylene 5.3.2 Fluorinated Ethylene Propylene 5.3.3 Cellulose 5.3.4 Polyvinylidene Fluoride 5.3.5 Polyamide 5.3.6 Polydimethylsiloxane 5.3.7 Polyimide 5.4 Electrostatic Nanogenerators 5.5 Electromagnetic Induction Nanogenerators 5.6 Conclusion References Chapter 6: Pyroelectric and Piezoelectric Polymers 6.1 Introduction 6.1.1 The Concept of Piezoelectricity and the Figure of Merits 6.1.1.1 Piezoelectric Coefficients 6.1.1.1.1 Stretching 6.1.1.1.2 Poling 6.1.2 The Concept of Pyroelectricity and the Figures of Merit 6.1.3 Piezoelectric and Pyroelectric Materials 6.1.3.1 Types of Piezoelectric and Pyroelectric Materials 6.1.3.1.1 Single Crystals 6.1.3.1.2 Ceramics 6.1.3.1.3 Inorganic Films 6.1.3.1.4 Polymers 6.1.3.1.4.1 Poly(Vinylidene Fluoride) (PVDF) 6.1.3.1.4.2 Polyvinylidene Fluoride-Trifluoroethylene (P(VDF-TrFE)) 6.1.3.1.4.3 Polyvinylidene Fluoride-Hexafluoropropylene (P(VDF–HFP)) 6.1.3.1.4.4 Polyvinylidene Fluoride-Chlorotrifluoroethylene (P(VDF–CTFE)) 6.1.3.1.4.5 Poly(Vinylidene Fluoride-Tri Fluoroethylene-Chlorotri Fluoroethylene) (P(VDF-TrFE-CTFE)) 6.1.3.1.5 Polyamides (PA) 6.1.3.1.6 Polyureas 6.1.3.1.7 Biopolymers 6.1.3.2 Polymer Nanocomposites for Piezo/Pyroelectricity 6.1.3.2.1 PVDF and Its Copolymers 6.1.3.2.1.1 Ceramic Fillers 6.1.3.2.1.2 Carbon-Based Fillers 6.1.3.2.1.3 Metal-Based Fillers 6.1.3.2.1.4 Hybrid Fillers 6.1.3.2.2 Polylactic Acid (PLA) 6.1.3.2.3 Polyurethanes (PU) 6.1.3.2.3.1 Polyamides (PA) 6.1.3.2.3.2 Cellulose and Its Derivatives 6.2 Other Polymer Composite Systems 6.2.1 Piezo/PyroElectric Polymers for Energy Harvesting 6.2.1.1 Energy Harvesting: Principles and Methods 6.3 Conclusion References Chapter 7: Polymers and Their Composites for Solar Cell Applications List of Abbreviations 7.1 Introduction 7.2 Polymer Composites for DSSC Applications 7.2.1 Polymer Composites for Flexible Substrates in DSSCs 7.2.2 Polymer Composites for Mesoporous TiO 2 Photoanodes in DSSCs 7.2.3 Polymer Composites as Counter-Electrodes for DSSCs 7.2.3.1 Polypyrrole (PPy)-Based CEs for DSSCs 7.2.3.2 Polyaniline-Based CEs for DSSCs 7.2.3.3 Poly(3,4-ethylenedioxythiophene) (PEDOT)-Based CEs for DSSCs 7.3 Polymer-Based Electrolytes of DSSCs 7.3.1 Thermoplastic Polymer Electrolytes 7.3.2 Thermosetting Polymer Electrolytes 7.3.3 Composite Polymer Electrolytes for DSSCs 7.4 Application of Polymers in Perovskite Solar Cells 7.4.1 Polymers for Regulating the Morphology of the Perovskite Layer 7.4.2 Polymers as Hole Transport Layers 7.4.3 Polymers as Electron Transport Layers 7.4.4 Polymers as the Interlayer 7.5 Summary and Future Perspectives References Chapter 8: Polymers and Composites for Fuel Cell Applications 8.1 Introduction 8.2 The Working Principle of the Fuel Cell 8.3 Polymers in Fuel Cells 8.3.1 Electronic and Ionic Properties of Polymers 8.3.2 Biopolymers 8.3.3 Synthetic Polymers 8.4 Polymers as Electrolytes for Batteries, Supercapacitors, and Fuel Cells 8.5 Overview of Polymers in Membrane-Electrode Assemblies 8.6 Role of Polymers in Fuel Cells 8.6.1 Polymers as Ion Exchange Media 8.6.2 Polymer Composites as Ion-Exchange Media 8.6.3 Polymers and Their Composites as Electrocatalysts 8.7 Challenges in Designing Compatible Polymer-Based Membrane Electrode Assemblies 8.8 Conclusion and Future Prospects Acknowledgments References Chapter 9: Solid Polymer Electrolytes for Solid State Batteries 9.1 Introduction 9.2 Polymer Solid Electrolytes for Batteries 9.2.1 Polyethylene Oxide (PEO) 9.2.2 Polyacrylonitrile 9.2.3 Polyvinylidene Difluoride 9.2.4 Polyacrylates 9.3 Solid Polymer Composite Electrolytes (SPCs) 9.3.1 Inert-Polymer Filler Electrolytes 9.3.2 Active-Polymer Filler Electrolytes 9.3.2.1 Garnet-Polymer Solid Electrolytes 9.3.2.2 NASICON-Polymer Electrolytes 9.3.2.3 Perovskite-Polymer Electrolytes 9.3.2.4 Sulfide-Polymer Electrolytes 9.4 Polymer Electrolytes for Hopped-Up Batteries 9.5 Solid Polymer Composite Electrolytes in Rechargeable Batteries 9.6 Conclusion and Perspectives Acknowledgments References Chapter 10: Polymer Batteries 10.1 Introduction 10.1.1 Rechargeable Batteries 10.1.1.1 Lead-Acid Battery 10.1.1.2 Nickel-Cadmium (Ni-Cd) Battery 10.1.1.3 Nickel-Metal Hydride Battery (Ni-MH Battery) 10.1.1.4 Rechargeable Lithium Batteries (R-LBs) 10.2 Battery Components and Parameters 10.3 Electrolytes for Rechargeable Lithium Batteries 10.3.1 Liquid Electrolytes 10.3.2 Solid Electrolytes 10.3.2.1 Inorganic Solid Electrolytes 10.3.2.1.1 Crystalline or Polycrystalline Solid Electrolytes 10.3.2.1.2 Glassy Solid Electrolytes 10.3.2.2 Polymer Electrolytes (PEs) 10.3.2.2.1 Solid Polymer Electrolytes (SPEs) 10.3.2.2.2 Plasticized Polymer Electrolytes 10.3.2.2.3 Ionic Liquid-Based Gel Polymer Electrolytes (IL-GPEs) 10.4 Electrochemical Characterizations of IL-GPEs for LPBs 10.4.1 Ionic and Lithium-Ion Conductivity of IL-GPEs 10.4.2 Solid Electrolyte Interface (SEI) 10.4.3 Electrochemical Stability Window (ESW) 10.4.4 Charge–Discharge Performance of Lithium Batteries Using IL-GPEs 10.5 Summary Acknowledgments References Chapter 11: Polymer Semiconductors 11.1 Introduction 11.2 Semiconducting Polymers 11.3 Synthesis of Semiconductors Polymers 11.3.1 Building Block Selection 11.3.1.1 Acceptor Building Blocks 11.3.1.2 Donor Building Blocks 11.3.2 Backbone Halogenation 11.3.2.1 Fluorination 11.3.2.2 Synthesis of Fluorinated Conjugated Polymers 11.3.2.3 Chlorination 11.3.3 Side-Chain Engineering 11.3.4 Random Copolymerization 11.4 Properties 11.4.1 Electronic Properties 11.4.2 Charge Carrier Mobility 11.4.2.1 Intrinsic Charge Trapping 11.4.2.2 Light Polymers 11.4.3 Charge Carrier Transport 11.4.3.1 Single-Layer (SL) Transportation 11.4.3.2 n-Type (Electron-Transporting) 11.4.3.3 p-Type (Hole-Transporting) 11.4.4 Intra- and Interchain Charge Transport 11.4.5 Optical Properties 11.4.6 Mechanical Properties of Organic Semiconductors 11.4.7 Physical Properties 11.5 Polymer Semiconductor Characterization Techniques 11.5.1 Physicochemical Characterization Techniques 11.5.1.1 Microscopy Based Characterization Techniques 11.5.1.2 Spectroscopy Based Characterization Techniques 11.5.1.3 X-ray Based Characterization Techniques 11.5.2 Electrical and Optical Polymer Semiconductor Characterization Techniques 11.5.2.1 Recombination Lifetime Characterization 11.5.2.2 Deep Level Transient Spectroscopy (DLTS) 11.5.2.3 Fourier Transform Infrared Spectroscopy 11.5.2.4 Ellipsometric Spectroelectrochemistry 11.6 Devices Based on Organic Polymer Semiconductors 11.6.1 Hybrid Organic–Inorganic Materials 11.6.2 Polymeric Field-Effect Thin-Film Transistors (PTFTs) 11.6.2.1 Classification of the Transistors Based on Semiconductor Polymers 11.6.2.1.1 p-Channel Polymer Transistors: Ability to Conduct Holes 11.6.2.1.2 n-Channel Polymer Transistors: Ability to Conduct Electrons 11.6.2.1.2.1 Imide-Functionalized n-Type Polymers 11.6.2.1.2.2 Amide-Functionalized n-Type Polymers 11.6.2.1.2.3 B–N Embedded Polymers 11.6.2.1.2.4 Cyano-Functionalized Polymers 11.6.2.2 Ambipolar Polymeric Semiconductors 11.6.3 Current Techniques of Transistor Fabrication 11.6.3.1 Inkjet Printing 11.6.3.2 Push Coating 11.6.3.3 Improvements in PTFT Structure 11.6.3.3.1 Low Voltage PTFTs on Plastic (Ion-Gel Gate) 11.6.3.3.2 Self-Encapsulation 11.6.3.3.3 Nucleic Agents 11.6.4 Sensors 11.6.4.1 Chemical Sensors 11.6.4.2 Metal-Organic Frameworks as Chemical Sensors 11.6.4.3 Gas Sensors 11.6.5 Organic Photovoltaics 11.6.5.1 Carbon Nanotubes for Organic Photovoltaics 11.7 Conclusion References Chapter 12: Polymer Organic Photovoltaics 12.1 Introduction 12.2 Materials for Organic Photovoltaics 12.3 Processing of OPV Cells 12.4 The Basic Operational Process of OPV 12.5 Current Density (J)–Voltage (V) Characteristics for OPVs 12.6 Small Molecule-Based OPVs 12.7 Polymer-Based OPVs 12.8 Hybrid Organic–Inorganic Photovoltaic Devices 12.9 Tandem Organic Photovoltaic Devices 12.10 Effects of Temperature on OPV Cells 12.11 Fundamental Limitations of OPVs 12.12 Future Development Regarding the PCE Enhancement of OPVs 12.13 Status of the OPV Industry 12.14 Conclusions Acknowledgments References Chapter 13: Polymers and Their Composites for Wearable Electronics 13.1 Wearable Electronics: Definition and Driving Forces 13.2 Conductive Polymers and Their Composites in WEs 13.3 Composites of Carbon-Based Nanomaterials and Polymers for Wearable Electronics 13.3.1 Graphene 13.3.2 Carbon Nanotubes 13.3.3 Graphene Nanoribbons 13.3.4 Graphene Quantum Dots 13.4 Chitin and Its Derivatives for WEs 13.5 Piezoelectric Elastomers and Their Composites for WEs 13.6 Rare-Earth-Based Composites 13.7 Conclusion Acknowledgments References Chapter 14: Polymer-Based Organic Electronics 14.1 Introduction 14.2 History of Conjugated Polymers 14.3 Conjugated Polymers 14.4 One-Dimensional (1D) Conjugated Polymers 14.4.1 Conjugated Polyphenylenes 14.4.1.1 Linear and Ladder-Type Polyphenylenes 14.4.1.2 Stepladder Polyphenylenes with Bridging Atoms 14.4.1.2.1 Polyfluorenes (PFs) 14.4.1.2.1.1 PFs: Polymers for Blue PLEDs 14.4.1.2.1.2 PFs: Hosts for Red, Green, Blue, as well as for White PLEDs 14.4.1.2.1.3 PFs: Electron Rich Material for PSCs 14.4.1.2.2 C-Bridged Stepladder Polyphenylenes 14.4.1.2.3 PCz and Heteroatom Bridged Stepladder Polyphenylenes 14.4.2 Polycyclic Aromatic Hydrocarbon (PAH)-Based Conjugated Polymers 14.4.3 Thiophene-Containing Conjugated Polymers 14.4.4 Polythiophenes and Their Derivatives 14.4.5 Thienoacene-Containing Conjugated Polymers 14.4.6 Naphthodithiophene-Containing Conjugated Polymers 14.4.7 Donor-Acceptor (D-A) Polymers 14.5 Two-Dimensional (2D) Conjugated Polymers 14.5.1 Conjugated Macrocycles 14.5.2 Two-Dimensional (2D) D-A Polymers 14.6 Future Scope and Conclusions References Chapter 15: Polymers and Their Composites for Thermoelectric Applications 15.1 Introduction: Background and Motivation 15.2 Fundamentals of Thermoelectrics and Key Parameters 15.2.1 Conversion Efficiency (η) of Thermoelectric Devices 15.2.2 The Dimensionless Figure of Merit (ZT) of Thermoelectric Materials 15.2.3 Seebeck Coefficient (S) of Thermoelectric Materials 15.2.4 Electrical Conductivity (σ) of Thermoelectric Materials 15.2.5 Thermal Conductivity (κ) of Thermoelectric Materials 15.3 Fundamental Studies on Improving Thermoelectric Performance 15.4 Development of Polymer-Based Thermoelectric Materials 15.5 Development of Polymer-Based Composites for Thermoelectric Materials 15.6 Summary and Outlook References Chapter 16: Polymeric Materials for Hydrogen Storage 16.1 Introduction 16.2 Hydrogen Storage Measurement 16.3 Polymer-Based Hydrogen Storage Systems 16.3.1 Organic Polymers 16.3.1.1 Polymers of Intrinsic Microporosity (PIM) 16.3.1.2 Synthesis 16.3.1.3 Characterization 16.3.1.4 Hydrogen Uptake and BET Surface Area 16.3.2 Nanoporous Organic Polymers 16.3.2.1 Synthesis 16.3.2.2 Characterization 16.3.2.3 Hydrogen Uptake and BET Surface Area 16.3.3 Soluble Polymers 16.3.3.1 Synthesis 16.3.3.2 Characterization 16.3.3.3 Hydrogen Uptake and BET Surface Area 16.3.4 Polymer-Based Composites 16.3.4.1 Synthesis 16.3.4.2 Characterization 16.3.4.3 Hydrogen Uptake and BET Surface Area 16.4 Conclusion References Chapter 17: Polymers and Their Composites for Water-Splitting Applications 17.1 Introduction 17.2 Electrolysis 17.2.1 HTS Electrolysis 17.2.1.1 Polymer-Obtained Boron-Doped Bismuth Oxide Nanocomposites 17.2.2 PEM Electrolysis 17.2.2.1 Ir and Ru Modified PANI Polymers 17.2.2.2 Polymeric Nanofibers 17.2.2.3 Nanocages Obtained from Polymer/Co Complexes 17.2.2.4 Polymeric Binders 17.2.3 AW Electrolysis 17.2.3.1 Organic Polymers 17.2.3.1.1 Ion-Conductive Polymers 17.2.3.1.2 Conjugated Polymers 17.2.3.1.3 Carbon Materials Obtained from Organic Polymers 17.2.3.2 Carbonized Porous Conducting Polymers 17.2.3.3 3D Printed Polymers 17.2.4 PE Electrolysis 17.2.4.1 Poly Urethane Acrylate 17.2.4.2 Polymer-Based Dye-Sensitized Cells 17.2.4.3 Polymer Electrolytes 17.2.4.4 Polymer-Templated Nanospiders 17.3 Photocatalysis 17.3.1 Photolysis 17.3.1.1 Conjugated Polymers 17.3.2 Photosynthesis 17.3.3 Cocatalysis 17.4 Radiolysis 17.5 Thermolysis References Index