دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Santwana Padhi, Anindita Behera, Eric Lichtfouse سری: Environmental Chemistry for a Sustainable World, 71 ISBN (شابک) : 3031148479, 9783031148477 ناشر: Springer سال نشر: 2022 تعداد صفحات: 514 [515] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 19 Mb
در صورت تبدیل فایل کتاب Polymeric nanoparticles for the treatment of solid tumors به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نانوذرات پلیمری برای درمان تومورهای جامد نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب بر تحقیقات نوظهور در زمینه درمان تومورهای جامد
یا سرطان با سیستمهای جدید دارورسانی با استفاده از فناوری نانو
تمرکز دارد. نانوتکنولوژی زمینه خوبی برای توسعه راهبردهای
نوآورانه دارورسانی جدید برای افزایش اثربخشی درمانی داروهای ضد
سرطان با کاهش عوارض جانبی خارج از هدف به ما داده است. سرطان یکی
از علل اصلی مرگ و میر در سراسر جهان به دلیل محدودیت های درمان
های کلاسیک مانند حلالیت کم داروهای فعال، عوارض جانبی سمی بر
سلول های سالم و مقاومت سلول های تومور است. این مسائل تا حدی با
توسعه اخیر نانوذرات پلیمری حل شده است که جذب دارو و شاخص درمانی
را بهبود می بخشد و در عین حال عوارض جانبی را کاهش می دهد. حامل
های دارو باید زیست سازگار، زیست تخریب پذیر و غیر ایمنی زا
باشند. از نانوذرات پلیمری برای هدف قرار دادن سلولها یا
بافتهای بدخیم خاص و در نتیجه بهبود پایداری دارو، همراه با
لیگاندی که میل ترکیبی با آن سلول خاص دارد، استفاده میشود. این
کتاب آخرین پیشرفتها در کاربرد ذرات پلیمری برای درمان سرطان را
با تمرکز بر ریزمحیط تومور، سنتز، هدفگیری فعال و غیرفعال،
پتنتها، هدفگیری گیرندههای بیش از حد بیان شده، لیگاندهای
هدفدار تومور، ترانوستیک، تومورهای گلیوبلاستوما، سرطان ریه
ارائه میکند. ، سرطان سینه، سرطان پروستات و نانوذرات پاسخگو به
pH
This book focuses on the emerging research in the field
of treatment of solid tumors or cancer with new drug delivery
systems using nanotechnology. Nanotechnology has given us a
good scope for development of new innovative drug delivery
strategies to increase the therapeutic efficacy of anticancer
drugs with reduced off-target side effects. Cancer is one of
the main causes of death worldwide due to the limitations of
classical therapies such as low solubility of active drugs,
toxic side effects on healthy cells and resistance of tumor
cells. These issues are partly solved by the recent development
of polymeric nanoparticles, which improve drug absorption and
the therapeutic index, while reducing side effects. Drug
carriers must be biocompatible, biodegradable and
non-immunogenic. Coupled to a ligand that has affinity for that
particular cell, polymeric nanoparticles are used to target
specifically malignant cells or tissues and, in turn, improve
drug stability. This book presents the latest advances in the
application of polymeric particles for cancer treatment, with
focus on the tumor microenvironment, synthesis, active and
passive targeting, patents, targeting over-expressed receptors,
tumor-targeting ligands, theranostics, glioblastoma tumors,
lung cancer, breast cancer, prostate cancer and
pH-responsive nanoparticles
Preface Contents About the Editors Chapter 1: The Tumor Microenvironment 1.1 Introduction 1.2 Abnormal Cellular Constituents of the Tumour Microenvironment 1.2.1 Pericytes 1.2.2 Endothelial Cells 1.2.3 Cancer-Associated Fibroblasts 1.2.4 Tumour-Associated Macrophages 1.2.5 Circulating Tumour Cells 1.2.6 Exosomes 1.2.7 Apoptotic Bodies 1.2.8 Circulating Tumour DNA 1.2.9 Inflammatory Mediators and Immune Cells 1.2.10 Adipose Tissue 1.2.11 Neuroendocrine System Involvement 1.2.12 Tumour Microenvironment Components 1.3 Abnormal Physiological Conditions of the Tumour Microenvironment 1.3.1 pH 1.3.2 Angiogenesis 1.3.2.1 Vascular Endothelial Growth Factor Family 1.3.2.2 Fibroblast Growth Factor and Fibroblasts 1.3.2.3 Notch Signalling Pathway 1.3.2.4 Transforming Growth Factor-β 1.3.3 Extracellular Matrix 1.3.4 Hypoxia 1.4 Conclusion References Chapter 2: Methods to Formulate Polymeric Nanoparticles 2.1 Introduction 2.2 Methods for Preparation of Polymeric Nanoparticle 2.2.1 Nanoprecipitation 2.2.2 Solvent Diffusion 2.2.3 Emulsification Solvent Evaporation 2.2.4 Interfacial Polymer Deposition 2.2.5 Salting Out 2.2.6 Supercritical Fluid Expansion 2.2.7 Complex Coacervation 2.2.8 Polymerization 2.2.9 Ionotropic Gelation 2.2.10 Spray Drying 2.2.11 Phase Separation Technique 2.3 Advanced Techniques for Preparation of Nanoparticles 2.3.1 Ring Opening Polymerization 2.3.2 Electro-Hydrodynamic Atomization 2.3.3 Desolvation of Macromolecules 2.3.4 Mussel-Inspired Chemistry for Polymerization 2.3.5 Self-Polymerization 2.4 Conclusion References Chapter 3: Natural Polymers-Based Nanoparticles Targeted to Solid Tumors 3.1 Introduction 3.2 Formulation and Characteristics of Natural Polymers 3.2.1 Polysaccharides 3.2.1.1 Chitosan Formulation of Chitosan-Based Nanoparticles 3.2.1.2 Hyaluronic Acid Formulations of Hyaluronic Acid-Based Nanoparticles 3.2.1.3 Alginates Formulation of Alginate-Based Nanoparticles 3.2.1.4 Dextran Formulation of Dextran-Based Nanoparticles 3.2.2 Protein-Based Polymers 3.2.2.1 Collagen 3.2.2.2 Gelatin Formulation of Gelatin-Based Nanoparticles 3.2.2.3 Albumin Formulation of Albumin-Based Nanoparticles 3.3 Application of Polymeric Nanoparticles in Targeting Solid Tumors 3.3.1 Active Targeting 3.3.2 Passive Targeting 3.4 Conclusion References Chapter 4: Optimization of Physicochemical Properties of Polymeric Nanoparticles for Targeting Solid Tumors 4.1 Introduction 4.2 Physiology of Solid Tumors 4.3 Physicochemical Properties of Polymeric Nanoparticles for Targeting Solid Tumors 4.3.1 Size and Molecular Weight 4.3.2 Hydrophobicity 4.3.3 Surface Charge 4.3.4 Crystallinity 4.3.5 Biocompatibility 4.4 Controlled Drug Release to Solid Tumors by Polymeric Nanoparticles 4.5 Polymeric Nanoparticles for Stimuli-Responsive Targeted Drug Delivery 4.6 Conclusion References Chapter 5: Passive and Active Targeting for Solid Tumors 5.1 Introduction 5.2 Targeting Methods 5.2.1 Passive Targeting 5.2.2 Active Targeting 5.2.2.1 Targeting of Cancer Cell 5.2.2.2 Targeting of the Tumoral Endothelium 5.2.2.3 Stimuli-Responsive Nanocarriers Internal Stimuli External Stimuli 5.3 Surface-Modified Targeted Nanoplatforms 5.3.1 Antibody, Enzymes and Proteins 5.3.2 Aptamers 5.3.3 Folate 5.3.4 Transferrin 5.3.5 Albumin 5.3.6 Biotin 5.3.7 Hyaluronic Acid 5.3.8 Toxins 5.3.9 Nucleic Acid 5.3.10 Virus 5.3.11 Affibodies 5.3.12 Peptides and Polypeptides 5.3.13 Miscellaneous 5.4 Challenges 5.4.1 Extravasation and the Enhanced Permeability and Retention Effect 5.4.2 Tumor Microenvironment and Tumor Interstitium 5.4.3 Physiological Barriers and pH 5.4.4 Efficacy Versus Toxicity 5.4.5 Translation from the In Vivo Model to the Human Model 5.4.6 Metastasis 5.4.7 Selection of Material for Designing Nanocarriers 5.5 Preclinical and Clinical Intervention for Transposing to Market 5.6 Commercialization and Government Regulations 5.7 Conclusion References Chapter 6: Polymeric Nanoparticles to Entrap Natural Drugs for Cancer Therapy 6.1 Introduction 6.2 Cancer 6.3 Drugs of Natural Origin in Cancer Chemotherapy 6.4 Role of Nanoparticles in Cancer Therapy 6.4.1 Concept and Recent Development of Polymeric Nanoparticles Conjugated with target-specific ligands 6.4.1.1 Active Targeting 6.4.1.2 Passive Targeting 6.4.1.3 Advances of Polymeric Nanoparticles in Conjugation with target-specific ligands 6.5 Polymeric Nanocarriers in Guided Cancer Therapy 6.6 Polymeric Nanoparticles Entrapping Drugs of Natural Origin 6.6.1 Polymers and Drugs of Natural Origin 6.6.1.1 Natural and Synthetic Polymers for the Preparation of Polymeric Nanoparticles 6.6.1.2 Drugs of Natural Origin for Polymeric Nanoparticles in Cancer Therapeutics 6.6.2 Mechanism of Drug Release for Polymeric Nanoparticles 6.6.2.1 Diffusion Through Water-Filled Pores 6.6.2.2 Diffusion Through the Polymeric Matrix 6.6.2.3 Osmotic Pumping 6.6.2.4 Erosion 6.6.3 Clinical Applicability 6.6.4 Recent Patents and Marketed Products Approved for Cancer Treatment 6.7 Regulatory Compliance 6.8 Perspective 6.9 Conclusion References Chapter 7: Polymeric Nanoparticles that Entrap Drug Combinations Targeted to Solid Tumors 7.1 Introduction 7.2 Types of Polymeric Nanoparticles 7.2.1 Chitosan 7.2.2 Gelatin 7.2.3 Polyethylene Glycol 7.2.4 Polyalkyl Cyanoacrylate 7.2.5 Polyesters 7.2.6 Polylactic Acid 7.2.7 Polyglycolide 7.2.8 Poly(Lactic-Co-Glycolic Acid) 7.2.9 Polycaprolactone 7.2.10 Polyvinyl Alcohol 7.3 Advantages of Combinational Therapy Versus Single Drug in Nanosystems 7.4 The Targeting Approach 7.4.1 Passive Targeting of Polymeric Nanoparticles Entrapping Combination of Drugs 7.4.2 Active Targeting of Polymeric Nanoparticles Entrapping Combination of Drugs 7.5 Conclusion References Chapter 8: Ligands Specific to Over-expressed Receptors in Solid Tumors 8.1 Introduction 8.2 Interventions for the Treatment of Solid Tumors 8.3 Ideal Anticancer Drug Formulation 8.4 Selective Targeting of Cancer Tissues 8.5 Active Targeting or Smart Targeting 8.6 Over-Expressed Receptors and Their Ligands in Solid Tumors 8.6.1 Epidermal Growth Factor Receptor 8.6.2 Folate Receptors 8.6.3 Fibroblast Growth Factor Receptors 8.6.4 Guanine Nucleotide Binding Protein Coupled Receptors 8.6.5 Integrin Receptor 8.6.6 Sigma Receptor 8.6.7 Transferrin Receptor 8.6.8 Vascular Endothelial Growth Factor Receptor 8.6.9 Other Receptors 8.7 Factors Affecting the Selection of Targeting Ligand 8.8 Drug Delivery Systems, Drug Carriers and Smart Vehicles 8.9 Conclusion References Chapter 9: Ligand Targeted Polymeric Nanoparticles for Cancer Chemotherapy 9.1 Introduction 9.2 Mechanism of Ligand Decorated Nanoparticles Uptake by the Cell 9.3 Ligand Directed Active Targeting for Cancer Treatment 9.3.1 Small Molecule Directed Active Targeting Polymeric Nanoparticles 9.3.1.1 Folic Acid 9.3.1.2 Biotin 9.3.1.3 Glycyrrhetinic Acid 9.3.2 Polysaccharide Directed Active Targeting Polymeric Nanoparticles 9.3.2.1 Galactosamine 9.3.2.2 Hyaluronic Acid 9.3.3 Proteins Directed Active Targeting Polymeric Nanoparticles 9.3.3.1 Transferrin 9.3.3.2 Lactoferrin 9.3.3.3 Epidermal Growth Factor 9.3.3.4 Lectin 9.3.3.5 Monoclonal Antibody 9.4 Conclusion References Chapter 10: Polymeric Nanoparticles as Theranostics for Targeting Solid Tumors 10.1 Introduction 10.2 Theranostic Polymeric Nanomedicine for the Treatment of Solid Tumor Cancer 10.2.1 Polymeric Gold Nanoparticles 10.2.2 Polymeric Micelles 10.2.3 Polymeric Superparamagnetic Nanoparticles 10.2.4 Quantum Dots-Loaded Polymeric Nanoparticles 10.2.5 Polymeric Nanoparticles Containing Dendrimers 10.2.6 Polymeric Nanoparticles Along with Carbon Nanotubes 10.2.7 Miscellaneous Carriers 10.2.7.1 Polymeric Liposomes 10.2.7.2 Polymersomes 10.3 Polymeric Nanoparticles in Clinical Trials 10.4 Conclusion References Chapter 11: Oral Delivery of Polymeric Nanoparticles for Solid Tumors 11.1 Introduction 11.2 Gastrointestinal Tract Physiology 11.3 Physiological Barriers as Hurdles for the Oral Delivery of Chemotherapeutics 11.3.1 Biochemical Barrier 11.3.2 Mucosal Barrier 11.3.3 Cellular Permeability Barrier 11.4 Biopolymeric Nano-Drug Delivery Systems for Oral Administration of Chemotherapeutics 11.4.1 Protein-Based Biopolymers 11.4.1.1 Gelatin 11.4.1.2 Collagen 11.4.2 Poly-Amino and Poly-Ester Based Biopolymers 11.4.2.1 Poly(Lactic-Co-Glycolic Acid) 11.4.2.2 Polyglutamic Acid 11.4.3 Polysaccharide-Based Biopolymers 11.4.3.1 Chitosan 11.4.3.2 Pullulan 11.4.3.3 Hyaluronic Acid 11.4.3.4 Alginates 11.5 Conclusion References Chapter 12: Polymeric Nanoparticles to Target Glioblastoma Tumors 12.1 Introduction 12.2 Glioblastoma 12.3 Advances in the Development of Novel Therapeutics for Glioblastoma 12.4 Drug Delivery to the Brain 12.5 Polymeric Nanoparticles for Targeting Glioblastoma 12.6 Peptide-Receptor as a Dual-Targeting Drug Delivery Approach 12.7 Dual-Targeting of Both Glioma and Neovascular Cells 12.8 Aptamer-Peptide Conjugates as a Dual-Targeting Delivery System 12.9 Routes of Administration of Nanoparticles in the Treatment of Malignant Gliomas 12.10 Challenges Related to Nanotherapy of Malignant Gliomas 12.10.1 Reticulo Endothelial System 12.10.2 Renal System 12.10.3 Blood Brain Barrier 12.10.4 Pathophysiological Barriers in Cancer 12.10.5 Multidrug Resistance 12.11 Conclusion References Chapter 13: Polymeric Nanoparticles to Target Lung Cancer 13.1 Introduction 13.1.1 Pathology of Lung Cancer 13.2 Modalities for the Treatment of Lung Cancer and Limitations 13.2.1 Photodynamic Therapy 13.2.2 Surgery 13.2.3 Chemotherapy 13.2.4 Radiation Therapy 13.3 Advances in Drug Delivery Systems for the Diagnosis of Lung Cancer 13.4 Polymer-Based Nanoparticulate System for the Management of Lung Cancer 13.4.1 Poly(Lactic-Co-Glycolic Acid) Based Nanoparticles 13.4.2 Polylactic Acid Based Nanoparticles 13.4.3 Cellulose Acetate Phthalate-Based Nanoparticles 13.4.4 Polycaprolactone-Based Nanoparticles 13.4.5 Hyaluronic Acid Nanoparticles 13.4.6 Other 13.5 Benefits of Drug Delivery Systems for the Management of Lung Cancer 13.6 Recent Patents and Clinical Trials on Drug Delivery Systems for Lung Cancer 13.7 Conclusion References Chapter 14: Polymer-Based Nanoplatforms for Targeting Breast Cancer 14.1 Introduction 14.1.1 Breast Cancer Types and Cellular Targets 14.1.2 Types of Polymeric Materials and Nanoplatforms 14.1.3 Current Trends 14.2 Strategies for Choosing Polymeric Nanomaterials 14.3 Polymeric Nanoplatforms for Cargo Delivery to Tumor Cells 14.3.1 Polymeric Nanoparticles 14.3.2 Polymer-Based Nanocomposites 14.3.3 Polymeric Nanoplexes 14.3.4 Surface-Modified Nanoplatforms 14.3.5 Antibodies and Immunological Agents 14.3.6 Aptamers 14.3.7 Small Interfering RNA and Messenger RNA 14.3.8 Miscellaneous 14.4 Polymeric Nanoparticles and Nanomaterials-Based Theranostic Strategies 14.5 Toxicological Perspectives of Polymeric Nanoplatforms 14.6 Conclusion References Chapter 15: pH-Sensitive Polymeric Nanoparticles for Cancer Treatment 15.1 Introduction 15.2 Mechanism of Action of pH-Sensitive Polymeric Nanoparticles 15.3 Designing of pH-Sensitive Polymeric Nanoparticles 15.3.1 Charge Shifting Polymers 15.3.2 Acid Labile Linkers as Pendant Functionality 15.3.3 Acid Linkers to Produce Cross-Linked Particles 15.4 Characteristics of Polymers Used for pH-Sensitive Polymeric Nanoparticles 15.5 Application of pH-Sensitive Polymeric Nanoparticles in the Treatment of Cancer 15.5.1 Change of Hydrophobic Property to Hydrophilic Property by Transfer of Charge 15.5.2 Change of Hydrophilic Property to Hydrophobic Property by Transfer of Charge 15.5.3 pH-Responsive Polymers with Acid Labile Linkages 15.5.4 Crosslinking 15.6 Conclusion References Chapter 16: Polymeric Nanoplatforms for the Targeted Treatment of Prostate Cancer 16.1 Introduction 16.2 The Emerging Era of Polymeric Nanoparticles 16.3 Surface Engineered Polymeric Nanoparticles for Prostate Cancer 16.3.1 Passive Targeting 16.3.2 Ligand-Based Targeting 16.4 Polymeric Nanoparticles for Targeting Prostate Cancer 16.4.1 Solid Dispersion of Polymeric Nanoparticles 16.4.2 Conjugated Polymeric Nanoparticles 16.4.3 Polymer-Lipid Hybrid Systems 16.4.4 Polymeric Micelles 16.4.5 Polyplexes 16.4.6 Miscellaneous Polymeric Nanoparticles 16.5 Stimuli-Responsive Polymeric Nanoparticles 16.5.1 pH-Responsive Polymeric Nanoparticles 16.5.2 Enzyme-Responsive Polymeric Nanoparticles 16.5.3 Ultrasound-Triggered Polymeric Nanoparticles 16.5.4 Dual-Responsive Polymeric Platforms 16.6 Advances in Polymeric Nanoparticles for Prostate Cancer 16.6.1 Polymer-Based Superparamagnetic Nanoparticles 16.6.2 Polymeric Nanoparticles Bearing Radionuclide, Magnetic Resonance Imaging Agents and Metal Nanoparticles 16.6.3 Miscellaneous Advanced Polymeric Platform 16.7 Challenges 16.8 Conclusion References Chapter 17: Cellular Internalization and Toxicity of Polymeric Nanoparticles 17.1 Introduction 17.2 Factors Affecting Cellular Internalization of Polymeric Nanoparticles in Tumors 17.2.1 Particle Size 17.2.2 Particle Shape 17.2.3 Surface Charge 17.2.4 Conjugating Ligands 17.3 Toxicity of Nanoparticles 17.4 Conclusion References Chapter 18: Prospects and Challenges in the Treatment of Solid Tumors 18.1 Introduction 18.2 Current Treatment of Solid Tumors 18.2.1 Chemotherapy 18.2.2 Radiotherapy 18.2.2.1 Types of radiotherapy 18.2.3 Surgery 18.3 Advantages and Disadvantages of Treatments 18.3.1 Advantages 18.3.2 Disadvantages 18.4 Challenges 18.4.1 Immune Evasion Mechanisms in Tumors 18.4.2 Clinical Implementation of Next-Generation Sequencing Technologies 18.4.3 Conducting Biomarker-Driven Clinical Trials 18.4.4 Tumor Heterogeneity and Resistance 18.5 Perspective 18.5.1 Better Classification of Tumors 18.5.2 Simplification and Acceleration of the Drug Development System 18.5.3 Design of Trials 18.5.4 Role of Nano-Formulation 18.6 Conclusion References Index