دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Umoren S.A., Solomon M.M., Saji V.S. سری: ISBN (شابک) : 9780128238547 ناشر: Elsevier Inc. سال نشر: 2022 تعداد صفحات: 630 [632] زبان: english فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 23 Mb
در صورت تبدیل فایل کتاب Polymeric Materials in Corrosion Inhibition: Fundamentals and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مواد پلیمری در مهار خوردگی: مبانی و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
مواد پلیمری در بازدارندگی خوردگی: اصول و کاربردها آخرین اطلاعات و تکنیک ها را در تهیه و کاربرد طیف وسیعی از مواد پلیمری به عنوان بازدارنده های خوردگی در محیط های خورنده متنوع گرد هم می آورد. بخشها اصول مواد پلیمری، بازدارندههای خوردگی و خوردگی را معرفی میکنند و شامل پوشش روشی پلیمرها به عنوان بازدارندههای خوردگی، با بخشهای جداگانه برای پلیمرهای طبیعی و مصنوعی است. هر فصل خواننده را از طریق سنتز، خواص و کاربرد یک پلیمر خاص برای مهار خوردگی، از جمله تجزیه و تحلیل مزایا و معایب و راهنمایی در مورد روشهایی برای بهبود عملکرد راهنمایی میکند. فصل آخر سایر جنبهها و پیشرفتهای مهم، از جمله مکانیسمهای جذب، محاسبات شیمیایی کوانتومی، دینامیک مولکولی و شبیهسازی را پوشش میدهد. این یک مرجع ارزشمند برای محققان و دانشجویان پیشرفته در طیف وسیعی از رشته ها، از جمله علوم پلیمر، خوردگی، الکتروشیمی، علم مواد، مهندسی شیمی، و مهندسی نفت است.
Polymeric Materials in Corrosion Inhibition: Fundamentals and Applications brings together the very latest information and techniques in the preparation and application of a broad range of polymeric materials as corrosion inhibitors in diverse corrosive environments. Sections introduce the fundamentals of polymeric materials, corrosion and corrosion inhibitors and include methodical coverage of polymers as corrosion inhibitors, with separate sections for natural and synthetic polymers. Each chapter guides the reader through the synthesis, properties and application of a specific polymer for corrosion inhibition, including an analysis of advantages and disadvantages and guidance on methods for improved performance. Final chapter cover other important aspects and developments, including adsorption mechanisms, quantum chemical calculations, molecular dynamics and simulations. This is a valuable reference for researchers and advanced students across a range of disciplines, including polymer science, corrosion, electrochemistry, materials science, chemical engineering, and petroleum engineering.
Cover Half Title Polymeric Materials in Corrosion Inhibition: Fundamentals and Applications Copyright Contents About the authors Preface Acknowledgments I. The Fundamentals 1. Basic polymer concepts I 1.1 Introduction 1.2 Classification of polymers 1.2.1 Classification based on source 1.2.2 Classification based on structure of polymers 1.2.3 Classification based on mode of polymerization 1.2.4 Classification based on molecular forces 1.3 General properties of polymers 1.3.1 Thermal properties 1.3.2 Mechanical properties 1.3.3 Solubility properties 1.3.4 Optical properties 1.4 Polymerization reactions 1.4.1 Chain-growth or addition polymerization reactions 1.4.1.1 Free radical addition polymerization 1.4.1.1.1 Initiation of free radical polymerization 1.4.1.1.2 Propagation (chain growth) of free radical polymerization 1.4.1.1.3 Bonding types of monomer units 1.4.1.1.4 Termination of free radical polymerization 1.4.1.2 Kinetics of free radical polymerization 1.4.1.3 Features of free radical polymerization reaction 1.4.2 Step-growth or condensation polymerization reaction 1.4.2.1 Characteristics of step-growth polymerization 1.4.2.2 Control of molar mass in step-growth polymerization reactions 1.4.3 Ionic polymerization 1.4.3.1 Cationic polymerization 1.4.3.1.1 Initiation of cationic polymerization 1.4.3.1.2 Propagation of cationic polymerization 1.4.3.1.3 Termination of cationic polymerization 1.4.3.2 The kinetics of cationic polymerization 1.4.3.2.1 Number-average degree of cationic polymerization 1.4.3.3 Anionic polymerization 1.4.3.3.1 The kinetics of anionic polymerization 1.4.4 Coordination polymerization 1.4.4.1 Preparation and structure of catalyst 1.4.4.2 Mechanism of polymerization on Ziegler–Natta catalysts 1.4.4.2.1 Monometallic mechanism 1.4.4.2.2 Factors affecting the Ziegler-Natta catalyst 1.4.5 Controlled radical polymerization 1.4.5.1 Atom transfer radical polymerization 1.4.5.1.1 Kinetics of atom transfer radical polymerization 1.4.5.1.2 Initiators, transition metals, and ligands for atom transfer radical polymerization 1.4.5.1.3 Alternative strategies for initiation of atom transfer radical polymerization 1.4.5.2 Reversible addition-fragmentation chain transfer radical polymerization 1.4.5.2.1 Reversible addition-fragmentation chain transfer radical polymerization agents 1.5 Polymerization techniques 1.5.1 Gas phase polymerization 1.5.2 Bulk polymerization 1.5.3 Solution polymerization 1.5.4 Suspension polymerization 1.5.5 Emulsion polymerization 1.5.6 Solid phase polymerization Further reading 2. Basic polymer concepts II 2.1 Molecular weight and molecular weight distribution 2.1.1 Methods of molecular weight determination 2.1.1.1 Osmometry techniques 2.1.1.2 End group analysis 2.1.1.3 Light-scattering technique 2.1.1.4 Sedimentation technique 2.1.1.5 Gel permeation chromatography 2.1.1.6 Viscometry 2.1.1.7 Matrix-assisted laser desorption/ionization mass spectroscopy 2.1.1.8 Diffusion-ordered nuclear magnetic resonance (NMR) spectroscopy 2.2 Copolymerization 2.2.1 Types of copolymers 2.2.2 Copolymer composition 2.2.2.1 Copolymerization equation and monomer reactivity ratios 2.2.2.2 Types of copolymerization 2.3 Biodegradable polymers 2.4 Uses of polymers 2.4.1 Polymers in corrosion control 2.4.2 Polymers as scale inhibitors 2.4.3 Polymers as adsorbents 2.4.4 Polymers in biomedical applications 2.4.5 Polymers for enhanced oil recovery 2.4.6 Other applications 2.4.6.1 Pharmaceutical applications 2.4.6.2 Packaging applications References Further reading 3. Basic concepts of corrosion 3.1 Introduction 3.2 Definition 3.3 Types of corrosion 3.3.1 Uniform or general corrosion 3.3.2 Galvanic or bimetallic corrosion 3.3.3 Pitting corrosion 3.3.4 Crevice corrosion 3.3.5 Intergranular corrosion 3.3.6 Dealloying 3.3.7 Flow-assisted corrosion 3.3.8 Stress corrosion cracking 3.3.9 Microbiologically influenced corrosion 3.3.10 Filiform corrosion 3.3.11 Exfoliation 3.3.12 Corrosion fatigue 3.3.13 Hydrogen embrittlement corrosion 3.3.14 Fretting corrosion 3.3.15 Sweet and sour corrosion 3.3.16 Top of the line corrosion 3.4 Factors influencing corrosion 3.4.1 Physical factors 3.4.2 Chemical factors 3.4.3 Biological factors 3.4.4 Surface area effect 3.5 Consequences and cost of corrosion 3.6 Theories of corrosion 3.7 Corrosion mitigation approaches 3.7.1 Protective coatings 3.7.1.1 Smart coatings 3.7.2 Material selection and design 3.7.3 Cathodic protection 3.7.4 Corrosion inhibitors References Further reading 4. Fundamentals of corrosion inhibition 4.1 Introduction 4.2 Corrosion inhibitors 4.3 Classes of corrosion inhibitors 4.3.1 Passivating inhibitors 4.3.2 Cathodic inhibitors 4.3.3 Organic inhibitors 4.3.4 Precipitation inhibitors 4.3.5 Volatile corrosion inhibitors 4.3.6 Adsorption inhibitors 4.3.7 Surface reaction product inhibitors 4.3.8 Interphase inhibitors 4.3.9 Interface inhibitors 4.4 Factors affecting corrosion inhibitor effectiveness 4.5 Mechanism of corrosion inhibition 4.6 Techniques for corrosion rate and inhibition efficiency determination 4.6.1 Chemical techniques 4.6.1.1 Weight loss method 4.6.1.2 Gasometric method 4.6.1.3 Thermometric method 4.6.2 Electrochemical methods 4.6.2.1 Linear polarization resistance 4.6.2.2 Potentiodynamic polarization 4.6.2.3 Electrochemical noise 4.6.2.4 Electrochemical impedance spectroscopy 4.6.2.5 Electrochemical frequency modulation 4.7 Surface analysis methods 4.7.1 Atomic force microscopy 4.7.2 X-ray photoelectron spectroscopy 4.7.3 Scanning electron microscopy 4.7.4 Energy dispersive spectroscopy References Further reading II. Natural Polymers in Corrosion Inhibition 5. Chitosan 5.1 Introduction 5.2 Synthesis and properties of chitosan 5.2.1 Preparation 5.2.2 Properties 5.3 Application of chitosan as corrosion inhibitor in diverse media 5.3.1 Acid media 5.3.2 Other corrosive media 5.4 Enhancement of corrosion inhibition performance of chitosan 5.4.1 Combination for synergistic effect 5.4.2 Modification by compositing References 6. Chitosan derivatives 6.1 Introduction 6.1.1 Synthesis and characterization of chitosan derivatives 6.1.1.1 Chitosan-thiosemicarbazide/thiocarbohydrazide derivative 6.1.1.2 Chitosan–polyethylene glycol derivative 6.1.1.3 Chitosan–Schiff base derivatives 6.1.1.4 Chitosan-vanillin derivative 6.1.1.5 Quaternized chitosan derivatives 6.1.1.6 Aminotriazolethiol-chitosan derivative 6.1.1.7 Carboxymethyl-chitosan derivative 6.1.1.8 β-Cyclodextrin-chitosan derivative 6.1.1.9 Glucosyloxyethyl acrylate graft chitosan derivative 6.1.1.10 Oligochitosan derivatives 6.1.1.11 Surfactant-chitosan derivative 6.1.1.12 Chitosan-anionic surfactant derivative 6.1.1.13 Chitosan oligosaccharide derivatives 6.1.1.14 Chitosan-O-fumaryl derivative 6.1.1.15 Acetyl thiourea chitosan derivative 6.2 Application of chitosan derivatives as corrosion inhibitors in different media 6.2.1 Chitosan derivatives with diverse heteroatoms 6.2.2 Chitosan Schiff bases in corrosion inhibition 6.2.3 Other chitosan derivatives in corrosion inhibition 6.3 Enhancement of corrosion inhibition by chitosan derivatives References 7. Cellulose and its derivatives 7.1 Introduction 7.1.1 Carboxymethyl cellulose 7.1.1.1 Carboxymethyl cellulose as corrosion inhibitor 7.1.1.2 Enhancement of carboxymethyl cellulose as a corrosion inhibitor 7.2 Other cellulose derivatives 7.2.1 Other cellulose derivatives as corrosion inhibitors 7.2.2 Enhancement of corrosion inhibition performance of other cellulose derivatives References 8. Natural gums and their derivatives 8.1 Introduction 8.1.1 Classification of gums 8.2 Application of gums as corrosion inhibitors 8.2.1 Gum Arabic 8.2.2 Gum Arabic in corrosion inhibition 8.3 Guar gum 8.3.1 Preparation 8.3.2 Properties 8.3.3 Guar gum in corrosion inhibition 8.4 Xanthan gums 8.4.1 Xanthan gums in corrosion inhibition 8.5 Gellan gum 8.5.1 Preparation 8.5.2 Properties 8.5.3 Gellan gum in corrosion inhibition References 9. Other natural gums and gum modifications 9.1 Introduction 9.2 Carrageenan 9.2.1 Carrageenan in corrosion inhibition 9.3 Other exudate gums in corrosion inhibition 9.4 Enhancement of the corrosion inhibition performance of gums 9.4.1 Chemical modification 9.4.2 Synergism References 10. Pectin and derivatives 10.1 Introduction 10.2 Classification of pectin 10.3 Sources and preparation of pectin 10.4 Properties of pectin 10.5 Application of pectin as a corrosion inhibitor 10.6 Enhancement of the corrosion inhibition performance of pectin References 11. Alginate and its derivatives 11.1 Introduction 11.2 Preparation of alginate 11.3 Properties of alginates 11.4 Application of alginates as corrosion inhibitors 11.5 Enhancement of corrosion inhibition performance of alginates References 12. Starch and its derivatives 12.1 Introduction 12.2 Preparation of starch 12.3 Properties of starch 12.3.1 Physical properties 12.3.2 Chemical properties 12.4 Application of starch as a corrosion inhibitor 12.5 Enhancement of the corrosion inhibition performance of starch References 13. Other natural polymers: gelatin, dextrin, and dextran 13.1 Gelatins 13.1.1 Preparation and properties of gelatin 13.1.1.1 Preparation 13.1.1.2 Properties 13.2 Dextrin 13.2.1 Preparation and properties of dextrin 13.2.1.1 Preparation 13.2.1.2 Properties 13.3 Dextran 13.3.1 Preparation and properties of dextran 13.3.1.1 Preparation 13.3.1.2 Properties 13.4 Application of gelatin, dextrin, and dextran as corrosion inhibitors 13.5 Gelatin, dextrin, and dextran corrosion inhibition References III. Synthetic Polymers in Corrosion Inhibition 14. Polyglycols 14.1 Introduction 14.2 Polyethylene glycol 14.2.1 Preparation 14.2.2 Properties 14.3 Polypropylene glycol 14.3.1 Preparation 14.3.2 Properties 14.4 Corrosion inhibition by polyethylene glycol and polypropylene glycol 14.5 Enhancement of corrosion inhibition performance of polyethylene glycol and polypropylene glycol 14.5.1 Chemical modification 14.5.2 Enhancement through compositing and combination with synergists References 15. Acrylic polymers 15.1 Introduction 15.2 Polyacrylic acid 15.2.1 Synthesis and properties 15.2.1.1 Preparation 15.2.1.2 Properties 15.2.2 Polyacrylic acid and sodium polyacrylate as corrosion inhibitors 15.2.3 Enhancement of corrosion inhibition properties 15.3 Polymethacrylic acid 15.3.1 Synthesis and properties 15.3.1.1 Preparation 15.3.1.2 Properties 15.3.2 Polymethacrylic acid as a corrosion inhibitor 15.3.3 Enhancement of corrosion inhibition effect 15.4 Polyacrylamide 15.4.1 Preparation 15.4.2 Physical properties 15.4.3 Chemical properties 15.4.4 Polyacrylamide as a corrosion inhibitor 15.4.5 Ways to improve corrosion inhibition performance 15.4.5.1 Grafting 15.4.5.2 Nanocompositing 15.4.5.3 Combination with iodide ions References 16. Vinyl polymers 16.1 Introduction 16.2 Polyvinyl alcohol 16.2.1 Preparation and properties 16.2.1.1 Preparation 16.2.1.2 Physical properties 16.2.1.3 Chemical properties 16.2.2 Polyvinyl alcohol as a corrosion inhibitor 16.2.3 Enhancement of corrosion inhibition performance 16.3 Polyvinyl pyrrolidone 16.3.1 Preparation 16.3.1.1 Properties 16.3.2 Polyvinyl pyrrolidone as corrosion inhibitor 16.3.3 Ways to enhance corrosion inhibition performance References 17. Polyethers 17.1 Introduction 17.2 Polyethylene oxide 17.2.1 Preparation of polyethylene oxide 17.2.2 Properties of polyethylene oxide 17.2.2.1 Physical properties 17.2.2.2 Chemical properties 17.3 Polypropylene oxide 17.3.1 Preparation of polypropylene oxide 17.3.2 Properties of polypropylene oxide 17.4 Polyethers as corrosion inhibitors 17.4.1 Enhanced performance of polyether-potassium iodide mixture 17.4.2 Enhanced performance of polyethers nanocomposites and copolymers 17.4.3 Corrosion inhibition property of macrocyclic polyethers References 18. Resin based polymers 18.1 Introduction 18.2 Synthesis and properties of resin-based polymers 18.2.1 Epoxy resins 18.2.1.1 Phenolic resins 18.2.1.2 Urea formaldehyde resins 18.2.2 Preparation and properties 18.2.2.1 Melamine formaldehyde resins 18.2.2.2 Preparation 18.2.2.3 Properties 18.3 Resin-based polymers in corrosion inhibition References 19. Conducting polymers 19.1 Introduction 19.2 Classification of conducting polymers 19.2.1 Polyacetylenes 19.2.2 Polyphenylenes 19.2.3 Polythiophene 19.2.4 Polypyrrole 19.2.5 Poly(arylene vinylenes) 19.2.6 Polyaniline 19.3 Conducting polymers in corrosion inhibition References 20. Dendrimers 20.1 Introduction 20.1.1 Classification/types of dendrimers 20.2 Synthesis and properties of dendrimers 20.2.1 Synthesis 20.2.1.1 Divergent approach 20.2.1.2 Convergent approach 20.2.1.3 Double exponential growth technique 20.2.1.4 Double-stage convergent method or hypercore approach 20.2.1.5 Hypermonomer method or the branched monomer approach 20.2.2 Properties 20.3 Dendrimers as corrosion inhibitors References 21. Copolymers 21.1 Introduction 21.1.1 Random or statistical copolymers 21.1.2 Alternating copolymers 21.1.3 Block copolymers 21.1.3.1 Synthesis by anionic polymerization 21.1.3.2 Synthesis by cationic polymerization 21.1.3.3 Synthesis by controlled radical polymerization 21.1.4 Graft copolymers 21.1.5 Copolymer synthesis 21.1.5.1 Chain-growth copolymerization 21.1.5.2 Step-growth copolymerization 21.2 Synthetic polymer–based copolymers as corrosion inhibitors 21.3 Natural polymer–based copolymers as corrosion inhibitors 21.4 Conducting polymer–based copolymers as corrosion inhibitors 21.5 Other polymer-based copolymers as corrosion inhibitors References 22. Polyaspartic acid and poly(vinylpyridine) polymers 22.1 Introduction 22.1.1 Polyaspartic acid/polyaspartate 22.1.2 Polyaspartic acid/polyaspartate preparation 22.2 Poly(4-vinylpyridine) 22.2.1 Properties 22.3 Application of polyaspartic acid and poly(vinylpyridine) polymers as corrosion inhibitors 22.3.1 Polyaspartic acid as a corrosion inhibitor 22.3.2 Poly(vinylpyridine) as a corrosion inhibitor References 23. Other synthetic polymers 23.1 Introduction 23.2 Polyethyleneimine 23.2.1 Preparation and properties 23.3 Polyamides 23.3.1 Properties 23.3.2 Preparation 23.4 Polyvinyl acetate 23.4.1 Preparation and properties 23.5 Other synthetic polymers 23.6 Application of synthetic polymers as corrosion inhibitors 23.6.1 Polyamide as a corrosion inhibitor 23.6.2 Polyethyleneimine as a corrosion inhibitor 23.6.3 Corrosion inhibition performance of other synthetic polymers References 24. Mechanism of corrosion inhibition by polymers 24.1 Introduction 24.2 Adsorption mechanism of polymers 24.3 Quantum chemical calculations 24.4 Molecular dynamics and Monte Carlo simulations 24.4.1 Molecular dynamics 24.4.2 Monte Carlo simulation References Index Cover back