ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Polymeric Materials in Corrosion Inhibition: Fundamentals and Applications

دانلود کتاب مواد پلیمری در مهار خوردگی: مبانی و کاربردها

Polymeric Materials in Corrosion Inhibition: Fundamentals and Applications

مشخصات کتاب

Polymeric Materials in Corrosion Inhibition: Fundamentals and Applications

ویرایش:  
نویسندگان: , ,   
سری:  
ISBN (شابک) : 9780128238547 
ناشر: Elsevier Inc. 
سال نشر: 2022 
تعداد صفحات: 630
[632] 
زبان: english 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 23 Mb 

قیمت کتاب (تومان) : 36,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 1


در صورت تبدیل فایل کتاب Polymeric Materials in Corrosion Inhibition: Fundamentals and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مواد پلیمری در مهار خوردگی: مبانی و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب مواد پلیمری در مهار خوردگی: مبانی و کاربردها

مواد پلیمری در بازدارندگی خوردگی: اصول و کاربردها آخرین اطلاعات و تکنیک ها را در تهیه و کاربرد طیف وسیعی از مواد پلیمری به عنوان بازدارنده های خوردگی در محیط های خورنده متنوع گرد هم می آورد. بخش‌ها اصول مواد پلیمری، بازدارنده‌های خوردگی و خوردگی را معرفی می‌کنند و شامل پوشش روشی پلیمرها به عنوان بازدارنده‌های خوردگی، با بخش‌های جداگانه برای پلیمرهای طبیعی و مصنوعی است. هر فصل خواننده را از طریق سنتز، خواص و کاربرد یک پلیمر خاص برای مهار خوردگی، از جمله تجزیه و تحلیل مزایا و معایب و راهنمایی در مورد روش‌هایی برای بهبود عملکرد راهنمایی می‌کند. فصل آخر سایر جنبه‌ها و پیشرفت‌های مهم، از جمله مکانیسم‌های جذب، محاسبات شیمیایی کوانتومی، دینامیک مولکولی و شبیه‌سازی را پوشش می‌دهد. این یک مرجع ارزشمند برای محققان و دانشجویان پیشرفته در طیف وسیعی از رشته ها، از جمله علوم پلیمر، خوردگی، الکتروشیمی، علم مواد، مهندسی شیمی، و مهندسی نفت است.


توضیحاتی درمورد کتاب به خارجی

Polymeric Materials in Corrosion Inhibition: Fundamentals and Applications brings together the very latest information and techniques in the preparation and application of a broad range of polymeric materials as corrosion inhibitors in diverse corrosive environments. Sections introduce the fundamentals of polymeric materials, corrosion and corrosion inhibitors and include methodical coverage of polymers as corrosion inhibitors, with separate sections for natural and synthetic polymers. Each chapter guides the reader through the synthesis, properties and application of a specific polymer for corrosion inhibition, including an analysis of advantages and disadvantages and guidance on methods for improved performance. Final chapter cover other important aspects and developments, including adsorption mechanisms, quantum chemical calculations, molecular dynamics and simulations. This is a valuable reference for researchers and advanced students across a range of disciplines, including polymer science, corrosion, electrochemistry, materials science, chemical engineering, and petroleum engineering.



فهرست مطالب

Cover
Half Title
Polymeric Materials in Corrosion Inhibition: Fundamentals and Applications
Copyright
Contents
About the authors
Preface
Acknowledgments
I. The Fundamentals
	1. Basic polymer concepts I
		1.1 Introduction
		1.2 Classification of polymers
			1.2.1 Classification based on source
			1.2.2 Classification based on structure of polymers
			1.2.3 Classification based on mode of polymerization
			1.2.4 Classification based on molecular forces
		1.3 General properties of polymers
			1.3.1 Thermal properties
			1.3.2 Mechanical properties
			1.3.3 Solubility properties
			1.3.4 Optical properties
		1.4 Polymerization reactions
			1.4.1 Chain-growth or addition polymerization reactions
				1.4.1.1 Free radical addition polymerization
					1.4.1.1.1 Initiation of free radical polymerization
					1.4.1.1.2 Propagation (chain growth) of free radical polymerization
					1.4.1.1.3 Bonding types of monomer units
					1.4.1.1.4 Termination of free radical polymerization
				1.4.1.2 Kinetics of free radical polymerization
				1.4.1.3 Features of free radical polymerization reaction
			1.4.2 Step-growth or condensation polymerization reaction
				1.4.2.1 Characteristics of step-growth polymerization
				1.4.2.2 Control of molar mass in step-growth polymerization reactions
			1.4.3 Ionic polymerization
				1.4.3.1 Cationic polymerization
					1.4.3.1.1 Initiation of cationic polymerization
					1.4.3.1.2 Propagation of cationic polymerization
					1.4.3.1.3 Termination of cationic polymerization
				1.4.3.2 The kinetics of cationic polymerization
					1.4.3.2.1 Number-average degree of cationic polymerization
				1.4.3.3 Anionic polymerization
					1.4.3.3.1 The kinetics of anionic polymerization
			1.4.4 Coordination polymerization
				1.4.4.1 Preparation and structure of catalyst
				1.4.4.2 Mechanism of polymerization on Ziegler–Natta catalysts
					1.4.4.2.1 Monometallic mechanism
					1.4.4.2.2 Factors affecting the Ziegler-Natta catalyst
			1.4.5 Controlled radical polymerization
				1.4.5.1 Atom transfer radical polymerization
					1.4.5.1.1 Kinetics of atom transfer radical polymerization
					1.4.5.1.2 Initiators, transition metals, and ligands for atom transfer radical polymerization
					1.4.5.1.3 Alternative strategies for initiation of atom transfer radical polymerization
				1.4.5.2 Reversible addition-fragmentation chain transfer radical polymerization
					1.4.5.2.1 Reversible addition-fragmentation chain transfer radical polymerization agents
		1.5 Polymerization techniques
			1.5.1 Gas phase polymerization
			1.5.2 Bulk polymerization
			1.5.3 Solution polymerization
			1.5.4 Suspension polymerization
			1.5.5 Emulsion polymerization
			1.5.6 Solid phase polymerization
		Further reading
	2. Basic polymer concepts II
		2.1 Molecular weight and molecular weight distribution
			2.1.1 Methods of molecular weight determination
				2.1.1.1 Osmometry techniques
				2.1.1.2 End group analysis
				2.1.1.3 Light-scattering technique
				2.1.1.4 Sedimentation technique
				2.1.1.5 Gel permeation chromatography
				2.1.1.6 Viscometry
				2.1.1.7 Matrix-assisted laser desorption/ionization mass spectroscopy
				2.1.1.8 Diffusion-ordered nuclear magnetic resonance (NMR) spectroscopy
		2.2 Copolymerization
			2.2.1 Types of copolymers
			2.2.2 Copolymer composition
				2.2.2.1 Copolymerization equation and monomer reactivity ratios
				2.2.2.2 Types of copolymerization
		2.3 Biodegradable polymers
		2.4 Uses of polymers
			2.4.1 Polymers in corrosion control
			2.4.2 Polymers as scale inhibitors
			2.4.3 Polymers as adsorbents
			2.4.4 Polymers in biomedical applications
			2.4.5 Polymers for enhanced oil recovery
			2.4.6 Other applications
				2.4.6.1 Pharmaceutical applications
				2.4.6.2 Packaging applications
		References
		Further reading
	3. Basic concepts of corrosion
		3.1 Introduction
		3.2 Definition
		3.3 Types of corrosion
			3.3.1 Uniform or general corrosion
			3.3.2 Galvanic or bimetallic corrosion
			3.3.3 Pitting corrosion
			3.3.4 Crevice corrosion
			3.3.5 Intergranular corrosion
			3.3.6 Dealloying
			3.3.7 Flow-assisted corrosion
			3.3.8 Stress corrosion cracking
			3.3.9 Microbiologically influenced corrosion
			3.3.10 Filiform corrosion
			3.3.11 Exfoliation
			3.3.12 Corrosion fatigue
			3.3.13 Hydrogen embrittlement corrosion
			3.3.14 Fretting corrosion
			3.3.15 Sweet and sour corrosion
			3.3.16 Top of the line corrosion
		3.4 Factors influencing corrosion
			3.4.1 Physical factors
			3.4.2 Chemical factors
			3.4.3 Biological factors
			3.4.4 Surface area effect
		3.5 Consequences and cost of corrosion
		3.6 Theories of corrosion
		3.7 Corrosion mitigation approaches
			3.7.1 Protective coatings
				3.7.1.1 Smart coatings
			3.7.2 Material selection and design
			3.7.3 Cathodic protection
			3.7.4 Corrosion inhibitors
		References
		Further reading
	4. Fundamentals of corrosion inhibition
		4.1 Introduction
		4.2 Corrosion inhibitors
		4.3 Classes of corrosion inhibitors
			4.3.1 Passivating inhibitors
			4.3.2 Cathodic inhibitors
			4.3.3 Organic inhibitors
			4.3.4 Precipitation inhibitors
			4.3.5 Volatile corrosion inhibitors
			4.3.6 Adsorption inhibitors
			4.3.7 Surface reaction product inhibitors
			4.3.8 Interphase inhibitors
			4.3.9 Interface inhibitors
		4.4 Factors affecting corrosion inhibitor effectiveness
		4.5 Mechanism of corrosion inhibition
		4.6 Techniques for corrosion rate and inhibition efficiency determination
			4.6.1 Chemical techniques
				4.6.1.1 Weight loss method
				4.6.1.2 Gasometric method
				4.6.1.3 Thermometric method
			4.6.2 Electrochemical methods
				4.6.2.1 Linear polarization resistance
				4.6.2.2 Potentiodynamic polarization
				4.6.2.3 Electrochemical noise
				4.6.2.4 Electrochemical impedance spectroscopy
				4.6.2.5 Electrochemical frequency modulation
		4.7 Surface analysis methods
			4.7.1 Atomic force microscopy
			4.7.2 X-ray photoelectron spectroscopy
			4.7.3 Scanning electron microscopy
			4.7.4 Energy dispersive spectroscopy
		References
		Further reading
II. Natural Polymers in Corrosion Inhibition
	5. Chitosan
		5.1 Introduction
		5.2 Synthesis and properties of chitosan
			5.2.1 Preparation
			5.2.2 Properties
		5.3 Application of chitosan as corrosion inhibitor in diverse media
			5.3.1 Acid media
			5.3.2 Other corrosive media
		5.4 Enhancement of corrosion inhibition performance of chitosan
			5.4.1 Combination for synergistic effect
			5.4.2 Modification by compositing
		References
	6. Chitosan derivatives
		6.1 Introduction
			6.1.1 Synthesis and characterization of chitosan derivatives
				6.1.1.1 Chitosan-thiosemicarbazide/thiocarbohydrazide derivative
				6.1.1.2 Chitosan–polyethylene glycol derivative
				6.1.1.3 Chitosan–Schiff base derivatives
				6.1.1.4 Chitosan-vanillin derivative
				6.1.1.5 Quaternized chitosan derivatives
				6.1.1.6 Aminotriazolethiol-chitosan derivative
				6.1.1.7 Carboxymethyl-chitosan derivative
				6.1.1.8 β-Cyclodextrin-chitosan derivative
				6.1.1.9 Glucosyloxyethyl acrylate graft chitosan derivative
				6.1.1.10 Oligochitosan derivatives
				6.1.1.11 Surfactant-chitosan derivative
				6.1.1.12 Chitosan-anionic surfactant derivative
				6.1.1.13 Chitosan oligosaccharide derivatives
				6.1.1.14 Chitosan-O-fumaryl derivative
				6.1.1.15 Acetyl thiourea chitosan derivative
		6.2 Application of chitosan derivatives as corrosion inhibitors in different media
			6.2.1 Chitosan derivatives with diverse heteroatoms
			6.2.2 Chitosan Schiff bases in corrosion inhibition
			6.2.3 Other chitosan derivatives in corrosion inhibition
		6.3 Enhancement of corrosion inhibition by chitosan derivatives
		References
	7. Cellulose and its derivatives
		7.1 Introduction
			7.1.1 Carboxymethyl cellulose
				7.1.1.1 Carboxymethyl cellulose as corrosion inhibitor
				7.1.1.2 Enhancement of carboxymethyl cellulose as a corrosion inhibitor
		7.2 Other cellulose derivatives
			7.2.1 Other cellulose derivatives as corrosion inhibitors
			7.2.2 Enhancement of corrosion inhibition performance of other cellulose derivatives
		References
	8. Natural gums and their derivatives
		8.1 Introduction
			8.1.1 Classification of gums
		8.2 Application of gums as corrosion inhibitors
			8.2.1 Gum Arabic
			8.2.2 Gum Arabic in corrosion inhibition
		8.3 Guar gum
			8.3.1 Preparation
			8.3.2 Properties
			8.3.3 Guar gum in corrosion inhibition
		8.4 Xanthan gums
			8.4.1 Xanthan gums in corrosion inhibition
		8.5 Gellan gum
			8.5.1 Preparation
			8.5.2 Properties
			8.5.3 Gellan gum in corrosion inhibition
		References
	9. Other natural gums and gum modifications
		9.1 Introduction
		9.2 Carrageenan
			9.2.1 Carrageenan in corrosion inhibition
		9.3 Other exudate gums in corrosion inhibition
		9.4 Enhancement of the corrosion inhibition performance of gums
			9.4.1 Chemical modification
			9.4.2 Synergism
		References
	10. Pectin and derivatives
		10.1 Introduction
		10.2 Classification of pectin
		10.3 Sources and preparation of pectin
		10.4 Properties of pectin
		10.5 Application of pectin as a corrosion inhibitor
		10.6 Enhancement of the corrosion inhibition performance of pectin
		References
	11. Alginate and its derivatives
		11.1 Introduction
		11.2 Preparation of alginate
		11.3 Properties of alginates
		11.4 Application of alginates as corrosion inhibitors
		11.5 Enhancement of corrosion inhibition performance of alginates
		References
	12. Starch and its derivatives
		12.1 Introduction
		12.2 Preparation of starch
		12.3 Properties of starch
			12.3.1 Physical properties
			12.3.2 Chemical properties
		12.4 Application of starch as a corrosion inhibitor
		12.5 Enhancement of the corrosion inhibition performance of starch
		References
	13. Other natural polymers: gelatin, dextrin, and dextran
		13.1 Gelatins
			13.1.1 Preparation and properties of gelatin
				13.1.1.1 Preparation
				13.1.1.2 Properties
		13.2 Dextrin
			13.2.1 Preparation and properties of dextrin
				13.2.1.1 Preparation
				13.2.1.2 Properties
		13.3 Dextran
			13.3.1 Preparation and properties of dextran
				13.3.1.1 Preparation
				13.3.1.2 Properties
		13.4 Application of gelatin, dextrin, and dextran as corrosion inhibitors
		13.5 Gelatin, dextrin, and dextran corrosion inhibition
		References
III. Synthetic Polymers in Corrosion Inhibition
	14. Polyglycols
		14.1 Introduction
		14.2 Polyethylene glycol
			14.2.1 Preparation
			14.2.2 Properties
		14.3 Polypropylene glycol
			14.3.1 Preparation
			14.3.2 Properties
		14.4 Corrosion inhibition by polyethylene glycol and polypropylene glycol
		14.5 Enhancement of corrosion inhibition performance of polyethylene glycol and polypropylene glycol
			14.5.1 Chemical modification
			14.5.2 Enhancement through compositing and combination with synergists
		References
	15. Acrylic polymers
		15.1 Introduction
		15.2 Polyacrylic acid
			15.2.1 Synthesis and properties
				15.2.1.1 Preparation
				15.2.1.2 Properties
			15.2.2 Polyacrylic acid and sodium polyacrylate as corrosion inhibitors
			15.2.3 Enhancement of corrosion inhibition properties
		15.3 Polymethacrylic acid
			15.3.1 Synthesis and properties
				15.3.1.1 Preparation
				15.3.1.2 Properties
			15.3.2 Polymethacrylic acid as a corrosion inhibitor
			15.3.3 Enhancement of corrosion inhibition effect
		15.4 Polyacrylamide
			15.4.1 Preparation
			15.4.2 Physical properties
			15.4.3 Chemical properties
			15.4.4 Polyacrylamide as a corrosion inhibitor
			15.4.5 Ways to improve corrosion inhibition performance
				15.4.5.1 Grafting
				15.4.5.2 Nanocompositing
				15.4.5.3 Combination with iodide ions
		References
	16. Vinyl polymers
		16.1 Introduction
		16.2 Polyvinyl alcohol
			16.2.1 Preparation and properties
				16.2.1.1 Preparation
				16.2.1.2 Physical properties
				16.2.1.3 Chemical properties
			16.2.2 Polyvinyl alcohol as a corrosion inhibitor
			16.2.3 Enhancement of corrosion inhibition performance
		16.3 Polyvinyl pyrrolidone
			16.3.1 Preparation
				16.3.1.1 Properties
			16.3.2 Polyvinyl pyrrolidone as corrosion inhibitor
			16.3.3 Ways to enhance corrosion inhibition performance
		References
	17. Polyethers
		17.1 Introduction
		17.2 Polyethylene oxide
			17.2.1 Preparation of polyethylene oxide
			17.2.2 Properties of polyethylene oxide
				17.2.2.1 Physical properties
				17.2.2.2 Chemical properties
		17.3 Polypropylene oxide
			17.3.1 Preparation of polypropylene oxide
			17.3.2 Properties of polypropylene oxide
		17.4 Polyethers as corrosion inhibitors
			17.4.1 Enhanced performance of polyether-potassium iodide mixture
			17.4.2 Enhanced performance of polyethers nanocomposites and copolymers
			17.4.3 Corrosion inhibition property of macrocyclic polyethers
		References
	18. Resin based polymers
		18.1 Introduction
		18.2 Synthesis and properties of resin-based polymers
			18.2.1 Epoxy resins
				18.2.1.1 Phenolic resins
				18.2.1.2 Urea formaldehyde resins
			18.2.2 Preparation and properties
				18.2.2.1 Melamine formaldehyde resins
				18.2.2.2 Preparation
				18.2.2.3 Properties
		18.3 Resin-based polymers in corrosion inhibition
		References
	19. Conducting polymers
		19.1 Introduction
		19.2 Classification of conducting polymers
			19.2.1 Polyacetylenes
			19.2.2 Polyphenylenes
			19.2.3 Polythiophene
			19.2.4 Polypyrrole
			19.2.5 Poly(arylene vinylenes)
			19.2.6 Polyaniline
		19.3 Conducting polymers in corrosion inhibition
		References
	20. Dendrimers
		20.1 Introduction
			20.1.1 Classification/types of dendrimers
		20.2 Synthesis and properties of dendrimers
			20.2.1 Synthesis
				20.2.1.1 Divergent approach
				20.2.1.2 Convergent approach
				20.2.1.3 Double exponential growth technique
				20.2.1.4 Double-stage convergent method or hypercore approach
				20.2.1.5 Hypermonomer method or the branched monomer approach
			20.2.2 Properties
		20.3 Dendrimers as corrosion inhibitors
		References
	21. Copolymers
		21.1 Introduction
			21.1.1 Random or statistical copolymers
			21.1.2 Alternating copolymers
			21.1.3 Block copolymers
				21.1.3.1 Synthesis by anionic polymerization
				21.1.3.2 Synthesis by cationic polymerization
				21.1.3.3 Synthesis by controlled radical polymerization
			21.1.4 Graft copolymers
			21.1.5 Copolymer synthesis
				21.1.5.1 Chain-growth copolymerization
				21.1.5.2 Step-growth copolymerization
		21.2 Synthetic polymer–based copolymers as corrosion inhibitors
		21.3 Natural polymer–based copolymers as corrosion inhibitors
		21.4 Conducting polymer–based copolymers as corrosion inhibitors
		21.5 Other polymer-based copolymers as corrosion inhibitors
		References
	22. Polyaspartic acid and poly(vinylpyridine) polymers
		22.1 Introduction
			22.1.1 Polyaspartic acid/polyaspartate
			22.1.2 Polyaspartic acid/polyaspartate preparation
		22.2 Poly(4-vinylpyridine)
			22.2.1 Properties
		22.3 Application of polyaspartic acid and poly(vinylpyridine) polymers as corrosion inhibitors
			22.3.1 Polyaspartic acid as a corrosion inhibitor
			22.3.2 Poly(vinylpyridine) as a corrosion inhibitor
		References
	23. Other synthetic polymers
		23.1 Introduction
		23.2 Polyethyleneimine
			23.2.1 Preparation and properties
		23.3 Polyamides
			23.3.1 Properties
			23.3.2 Preparation
		23.4 Polyvinyl acetate
			23.4.1 Preparation and properties
		23.5 Other synthetic polymers
		23.6 Application of synthetic polymers as corrosion inhibitors
			23.6.1 Polyamide as a corrosion inhibitor
			23.6.2 Polyethyleneimine as a corrosion inhibitor
			23.6.3 Corrosion inhibition performance of other synthetic polymers
		References
	24. Mechanism of corrosion inhibition by polymers
		24.1 Introduction
		24.2 Adsorption mechanism of polymers
		24.3 Quantum chemical calculations
		24.4 Molecular dynamics and Monte Carlo simulations
			24.4.1 Molecular dynamics
			24.4.2 Monte Carlo simulation
		References
Index
Cover back




نظرات کاربران