ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Polymeric Foams: Innovations in Technologies and Environmentally Friendly Materials

دانلود کتاب فوم های پلیمری: نوآوری در فناوری ها و مواد دوستدار محیط زیست

Polymeric Foams: Innovations in Technologies and Environmentally Friendly Materials

مشخصات کتاب

Polymeric Foams: Innovations in Technologies and Environmentally Friendly Materials

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 0367467518, 9780367467517 
ناشر: CRC Press 
سال نشر: 2022 
تعداد صفحات: 334
[335] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 28 Mb 

قیمت کتاب (تومان) : 30,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 1


در صورت تبدیل فایل کتاب Polymeric Foams: Innovations in Technologies and Environmentally Friendly Materials به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب فوم های پلیمری: نوآوری در فناوری ها و مواد دوستدار محیط زیست نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب فوم های پلیمری: نوآوری در فناوری ها و مواد دوستدار محیط زیست



فوم‌های پلیمری: نوآوری‌ها در فناوری‌ها و سازگار با محیط زیست مواد جدیدترین فناوری‌ها و نوآوری‌های محیطی را در زمینه پلیمری ارائه می‌دهند. فوم ها این نشان می‌دهد که چگونه تحقیقات کاربردی در فوم پلیمری می‌تواند به بهبود کیفیت زندگی و افزایش مسئولیت اجتماعی ادامه دهد.

این کتاب:

    < /ul>
    • به نوآوری‌های فناوری از جمله فوم‌های مهره‌ای، قالب‌گیری تزریقی فوم، فوم‌ها در مهندسی بافت، فوم‌ها در عایق‌ها و فوم لاستیک سیلیکونی می‌پردازد. span>
    • در مورد نوآوری‌های سازگار با محیط زیست در فوم PET، فوم تجزیه‌پذیر و تجدیدپذیر و عوامل دمنده فیزیکی بحث می‌کند.
    • اصول و همچنین کاربردهای متخصصان فوم بین‌المللی را شرح می‌دهد

    این کار برای محققان و متخصصان صنعت در سراسر شیمی، مکانیک، مواد، مهندسی پلیمر، و هر کس دیگری که این مواد پلیمری پیشرفته را توسعه و استفاده می‌کند، هدف قرار گرفته است. span>


توضیحاتی درمورد کتاب به خارجی

Polymeric Foams: Innovations in Technologies and Environmentally Friendly Materials offers the latest in technology and environmental innovations within the field of polymeric foams. It outlines how application-focused research in polymeric foam can continue to improve living quality and enhance social responsibility.

This book:

  • Addresses technological innovations including those in bead foams, foam injection molding, foams in tissue engineering, foams in insulation, and silicon rubber foam
  • Discusses environmentally friendly innovations in PET foam, degradable and renewable foam, and physical blowing agents
  • Describes principles as well as applications from internationally recognized foam experts

This work is aimed at researchers and industry professionals across chemical, mechanical, materials, polymer engineering, and anyone else developing and applying these advanced polymeric materials.



فهرست مطالب

Cover
Half Title
Series Page
Title Page
Copyright Page
Dedication
Table of Contents
Preface
Biography
Contributors
Chapter 1 Introduction
	1.1 Introduction
	1.2 Innovations
		1.2.1 Polypropylene Foam Sheet
		1.2.2 Elastomeric Foam
	1.3 Environment: Degradable and Renewable Foam
		1.3.1 Water-Soluble Foam
		1.3.2 Renewable-Source Foam
		1.3.3 Health Care
	1.4 Machinery Advancement
		1.4.1 Cooling Design Progression for Foam Extrusion
		1.4.2 Pressure Mold Foaming for Engineered Polymers
	1.5 Summary
	References
Chapter 2 Modification of Rheological Responses under
Elongational Flow
	2.1 Introduction
	2.2 Incorporation of Branch Points
	2.3 Polymer Blend Techniques
		2.3.1 Long-Chain Branched Polymer (Miscible System)
		2.3.2 Weak Gel
		2.3.3 Flexible Nanofiber
		2.3.4 Long-Chain Branched Polymer (Immiscible System)
	2.4 Non-Isothermal Condition
	2.5 Conclusion
	Acknowledgment
	References
Chapter 3 Bead Foams
	3.1 Introduction
		3.1.1 History of Bead Foams
		3.1.2 General Properties
			3.1.2.1 Expandable and Expanded Bead Foams
			3.1.2.2 Mechanics
		3.1.3 Applications of Bead Foams
	3.2 Production Methods of Bead Foams
		3.2.1 Suspension Polymerization
		3.2.2 Batch Foaming
		3.2.3 Continuous Bead Foam Extrusion
	3.3 Molding of Bead Foams
		3.3.1 Pre-Treatment
			3.3.1.1 Pre-foaming of Expandable Beads
			3.3.1.2 Pressure Loading of Expanded Beads
		3.3.2 Steam-Chest Molding
		3.3.3 Molding Mechanism
		3.3.4 New Technologies
	3.4 Commonly Used Bead Foams and Recent Innovations
		3.4.1 Bead Foams Made from Common Polymers
			3.4.1.1 Expandable Polystyrene (EPS)
			3.4.1.2 Expanded Polypropylene (EPP)
		3.4.2 Bead Foams Made from Engineering Polymers
			3.4.2.1 Expanded Polybutylene Terephthalate (EPBT)
			3.4.2.2 Expanded Polybutylene Terephthalate (EPET)
			3.4.2.3 Expandable Polyethersulfone (EPESU)
			3.4.2.4 Expanded Thermoplastic Polyurethane (ETPU )
		3.4.3 Bio-based or Biodegradable Bead Foams
			3.4.3.1 Drop-In Solutions
			3.4.3.2 Polylactic Acid (EPLA)
			3.4.3.3 Polyhydroxyalkanoates (EPHA )
	Acknowledgments
	References
Chapter 4 Foam Injection Molding
	4.1 Introduction
	4.2 Technologies for Foam Injection Molding
		4.2.1 Basic for the Foam Injection Molding Technologies
		4.2.2 Chemical and Physical Foaming
		4.2.3 Morphology the Foam Injection Molding
			4.2.3.1 Gas Concentration (Weight Percentage) in
Different Materials
			4.2.3.2 Injection Velocity
			4.2.3.3 Heterogeneous Nucleation (Fillers, Fiber Glasses, Colors, etc.)
			4.2.3.4 Different Materials and Gases
			4.2.3.5 The Volume of Mold Filling and Other
Molding Conditions
		4.2.4 Structural Foam Injection Molding (SFM)
		4.2.5 Microcellular Foam Injection Molding
		4.2.6 Special Foam Injection Molding for Better Surface Finish,
Non-Foaming
and Post Foaming
			4.2.6.1 Co-Injection
(Sandwich) Molding
			4.2.6.2 Gas Counterpressure Molding
			4.2.6.3 Overlapping Molding
			4.2.6.4 Reversal Coining Molding
	4.3 Part and Equipment Design for Foam Injection Molding
		4.3.1 Part Design for Foam Injection Molding
		4.3.2 Mold Design for Foam Injection Molding
		4.3.3 Molding Machine Design for Foam Injection Molding
		4.3.4 Gas System and Injector for Foam Injection Molding
	4.4 Applications and Environmental Effects for Foam Injection Molding
		4.4.1 Medical Industry
		4.4.2 Packaging Industry
		4.4.3 Automotive Industry
		4.4.4 Commercial and Consumer Products
		4.4.5 Construction Industry
		4.4.6 Others
	4.5 Comparisons between FIM and Other Foaming Technologies
	4.6 Recent Innovations and Future for Foam Injection Molding
		4.6.1 Surface-Enhanced
Material
		4.6.2 LGF PP MuCell® Part
		4.6.3 Gas-Laden
Pellets for FIM
		4.6.4 Environmentally Safe Materials and Recycle of Used Foam Parts
		4.6.5 Super Microcellular (Nanocellular)
		4.6.6 High-Pressure
Microcellular Injection Molding
	4.7 Conclusions
	References
Chapter 5 High-Pressure Foam Injection Molding of Polylactide/Nano-Fibril Composites with Mold Opening
	5.1 PLA Foam Injection Molding
	5.2 Nano-Fibrillation Technology
	5.3 PLA/PTFE Nano-Fibril Composites Blown with HPFIM-MO
	5.4 PLA/PET Nano-Fibril Composites Blown with HPFIM-MO
	References
Chapter 6 Foams in Tissue Engineering
	6.1 Introduction
	6.2 Developmental History
	6.3 Tissue Engineering Scaffolds
		6.3.1 Materials for Tissue Engineering Applications
			6.3.1.1 Natural Materials
			6.3.1.2 Metals
			6.3.1.3 Ceramic
			6.3.1.4 Polymers
		6.3.2 Fabrication Methods for Tissue Engineering Scaffolds
			6.3.2.1 Textile Technologies
			6.3.2.2 Solvent Casting and Particulate Leaching
			6.3.2.3 Freeze-Drying/Phase Separation
			6.3.2.4 Gas Foaming
			6.3.2.5 Microsphere Aggregation
			6.3.2.6 Electrospinning
			6.3.2.7 3D Printing
			6.3.2.8 Laser-Assisted Bioprinting
			6.3.2.9 Injectable Scaffolds
		6.3.3 Porous Structure for Tissue Engineering Scaffolds
	6.4 Cells and Signals
	6.5 Tissue Engineering Products
	6.6 Current Challenges and Future Outlook
	References
Chapter 7 Foam in Insulation
	7.1 Foam in Insulation
	7.2 Insulation Foams
	7.3 Heat Transfer in Insulation Foams
		7.3.1 Heat Transfer in Solid Phase
			7.3.1.1 Heat Conduction in Solid Phase
			7.3.1.2 Heat Radiation in Solid Phase
			7.3.1.3 Reduction of Thermal Radiation by Using Infrared Attenuation Agents
		7.3.2 Blowing Agents and Gas-Phase Conduction
			7.3.2.1 Modeling Thermal Conductivity of a Binary Gas Mixture
			7.3.2.2 Thermal Conductivity Prediction of Binary Gas Phase
	7.4 Other Tracks Impacting Insulation Foams
		7.4.1 Diffusion of Air and Blowing Agents
		7.4.2 Water Absorption Is Destructive to Thermal Insulation
		7.4.3 Advantages from Nano-Sized Pores
		7.4.4 Flammability of Blowing Agents
	7.5 Conclusions
	Acknowledgments
	References
Chapter 8 Advancements in Foam Injection Molding
	8.1 Introduction
	8.2 Advancement of the FIM Configuration
	8.3 FIM without Pressurizing PBA to SCF
	8.4 Conclusion
	References
Chapter 9 Silicone Foams: A World Different from Other Foams
	9.1 Introduction
	9.2 Foam Preparation
	9.3 Applications and Properties
	9.4 Expected Innovations and Environmental Aspects
	9.5 Conclusion
	References
Chapter 10 Lab Analysis of Melt-Foaming Behaviors of Long-Chain Branched Polyethylene Terephthalate Using Supercritical CO[sub(2)] as Blowing Agent
	10.1 Introduction
	10.2 Determination of the Melt Foamability of PETs with Different
Chain Structures Based on Their Complex Rheological Properties
Characterization
		10.2.1 Characterization of Stress and Elongation Behavior of
PETs with Different Chain Structures
		10.2.2 Analysis of Bubble Coalescence and Foamability with the
Pressure Balanced Bubble-Growth (PBB) Model
		10.2.3 Fast Prediction of PET Foamability Using Relaxation
Time Spectrum
	10.3 Extrusion Foaming Behaviors of LCB-PET with Enhanced Crystallization Property
	10.4 Effect of Post Crystallization on Mechanical Properties of PET Extruded Foams
	10.5 Summary
	10.6 Future
	References
Chapter 11 Extrusion Foam of Polylactic Acid Using Stereocomplex Crystals
	11.1 Introduction
	11.2 Modelling PLA Foaming Process
	11.3 Stereocomplex Crystals in PLA Foaming
		11.3.1 Different PLA Architectures by Polymerisation
		11.3.2 Introduction of Network Structures in the Melt: Usage of Stereocomplex Functionalities
	11.4 Extrusion Foaming Technology for PLA Foams
	11.5 Effect of Die Design in PLA Foaming
	11.6 Conclusion
	Acknowledgements
	References
Chapter 12 Nanocellular Polymers
	12.1 Introduction: Relevance of Nanocellular Polymers
	12.2 Production of Nanocellular Polymers
		12.2.1 Fabrication Processes
		12.2.2 Gas Dissolution Foaming
			12.2.2.1 Homogeneous Nucleation
			12.2.2.2 Heterogeneous Nucleation
		12.2.3 Overview of the State of the Art and Current Limitations
	12.3 Properties of Nanocellular Polymers
		12.3.1 Transparency
		12.3.2 Thermal Conductivity
			12.3.2.1 Conduction through the Gas Phase
			12.3.2.2 Conduction through the Solid Phase
			12.3.2.3 Radiation
		12.3.3 Mechanical Properties and Confinement Effect of the Solid Phase
		12.3.4 Other Properties
	12.4 Conclusions and Future Perspectives
	References
Index




نظرات کاربران