دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: S.-T. Lee
سری:
ISBN (شابک) : 0367467518, 9780367467517
ناشر: CRC Press
سال نشر: 2022
تعداد صفحات: 334
[335]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 28 Mb
در صورت تبدیل فایل کتاب Polymeric Foams: Innovations in Technologies and Environmentally Friendly Materials به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فوم های پلیمری: نوآوری در فناوری ها و مواد دوستدار محیط زیست نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
فومهای پلیمری: نوآوریها در فناوریها و سازگار با محیط زیست مواد جدیدترین فناوریها و نوآوریهای محیطی را در زمینه پلیمری ارائه میدهند. فوم ها این نشان میدهد که چگونه تحقیقات کاربردی در فوم پلیمری میتواند به بهبود کیفیت زندگی و افزایش مسئولیت اجتماعی ادامه دهد.
این کتاب:
این کار برای محققان و متخصصان صنعت در سراسر شیمی، مکانیک، مواد، مهندسی پلیمر، و هر کس دیگری که این مواد پلیمری پیشرفته را توسعه و استفاده میکند، هدف قرار گرفته است. span>
Polymeric Foams: Innovations in Technologies and Environmentally Friendly Materials offers the latest in technology and environmental innovations within the field of polymeric foams. It outlines how application-focused research in polymeric foam can continue to improve living quality and enhance social responsibility.
This book:
This work is aimed at researchers and industry professionals across chemical, mechanical, materials, polymer engineering, and anyone else developing and applying these advanced polymeric materials.
Cover Half Title Series Page Title Page Copyright Page Dedication Table of Contents Preface Biography Contributors Chapter 1 Introduction 1.1 Introduction 1.2 Innovations 1.2.1 Polypropylene Foam Sheet 1.2.2 Elastomeric Foam 1.3 Environment: Degradable and Renewable Foam 1.3.1 Water-Soluble Foam 1.3.2 Renewable-Source Foam 1.3.3 Health Care 1.4 Machinery Advancement 1.4.1 Cooling Design Progression for Foam Extrusion 1.4.2 Pressure Mold Foaming for Engineered Polymers 1.5 Summary References Chapter 2 Modification of Rheological Responses under Elongational Flow 2.1 Introduction 2.2 Incorporation of Branch Points 2.3 Polymer Blend Techniques 2.3.1 Long-Chain Branched Polymer (Miscible System) 2.3.2 Weak Gel 2.3.3 Flexible Nanofiber 2.3.4 Long-Chain Branched Polymer (Immiscible System) 2.4 Non-Isothermal Condition 2.5 Conclusion Acknowledgment References Chapter 3 Bead Foams 3.1 Introduction 3.1.1 History of Bead Foams 3.1.2 General Properties 3.1.2.1 Expandable and Expanded Bead Foams 3.1.2.2 Mechanics 3.1.3 Applications of Bead Foams 3.2 Production Methods of Bead Foams 3.2.1 Suspension Polymerization 3.2.2 Batch Foaming 3.2.3 Continuous Bead Foam Extrusion 3.3 Molding of Bead Foams 3.3.1 Pre-Treatment 3.3.1.1 Pre-foaming of Expandable Beads 3.3.1.2 Pressure Loading of Expanded Beads 3.3.2 Steam-Chest Molding 3.3.3 Molding Mechanism 3.3.4 New Technologies 3.4 Commonly Used Bead Foams and Recent Innovations 3.4.1 Bead Foams Made from Common Polymers 3.4.1.1 Expandable Polystyrene (EPS) 3.4.1.2 Expanded Polypropylene (EPP) 3.4.2 Bead Foams Made from Engineering Polymers 3.4.2.1 Expanded Polybutylene Terephthalate (EPBT) 3.4.2.2 Expanded Polybutylene Terephthalate (EPET) 3.4.2.3 Expandable Polyethersulfone (EPESU) 3.4.2.4 Expanded Thermoplastic Polyurethane (ETPU ) 3.4.3 Bio-based or Biodegradable Bead Foams 3.4.3.1 Drop-In Solutions 3.4.3.2 Polylactic Acid (EPLA) 3.4.3.3 Polyhydroxyalkanoates (EPHA ) Acknowledgments References Chapter 4 Foam Injection Molding 4.1 Introduction 4.2 Technologies for Foam Injection Molding 4.2.1 Basic for the Foam Injection Molding Technologies 4.2.2 Chemical and Physical Foaming 4.2.3 Morphology the Foam Injection Molding 4.2.3.1 Gas Concentration (Weight Percentage) in Different Materials 4.2.3.2 Injection Velocity 4.2.3.3 Heterogeneous Nucleation (Fillers, Fiber Glasses, Colors, etc.) 4.2.3.4 Different Materials and Gases 4.2.3.5 The Volume of Mold Filling and Other Molding Conditions 4.2.4 Structural Foam Injection Molding (SFM) 4.2.5 Microcellular Foam Injection Molding 4.2.6 Special Foam Injection Molding for Better Surface Finish, Non-Foaming and Post Foaming 4.2.6.1 Co-Injection (Sandwich) Molding 4.2.6.2 Gas Counterpressure Molding 4.2.6.3 Overlapping Molding 4.2.6.4 Reversal Coining Molding 4.3 Part and Equipment Design for Foam Injection Molding 4.3.1 Part Design for Foam Injection Molding 4.3.2 Mold Design for Foam Injection Molding 4.3.3 Molding Machine Design for Foam Injection Molding 4.3.4 Gas System and Injector for Foam Injection Molding 4.4 Applications and Environmental Effects for Foam Injection Molding 4.4.1 Medical Industry 4.4.2 Packaging Industry 4.4.3 Automotive Industry 4.4.4 Commercial and Consumer Products 4.4.5 Construction Industry 4.4.6 Others 4.5 Comparisons between FIM and Other Foaming Technologies 4.6 Recent Innovations and Future for Foam Injection Molding 4.6.1 Surface-Enhanced Material 4.6.2 LGF PP MuCell® Part 4.6.3 Gas-Laden Pellets for FIM 4.6.4 Environmentally Safe Materials and Recycle of Used Foam Parts 4.6.5 Super Microcellular (Nanocellular) 4.6.6 High-Pressure Microcellular Injection Molding 4.7 Conclusions References Chapter 5 High-Pressure Foam Injection Molding of Polylactide/Nano-Fibril Composites with Mold Opening 5.1 PLA Foam Injection Molding 5.2 Nano-Fibrillation Technology 5.3 PLA/PTFE Nano-Fibril Composites Blown with HPFIM-MO 5.4 PLA/PET Nano-Fibril Composites Blown with HPFIM-MO References Chapter 6 Foams in Tissue Engineering 6.1 Introduction 6.2 Developmental History 6.3 Tissue Engineering Scaffolds 6.3.1 Materials for Tissue Engineering Applications 6.3.1.1 Natural Materials 6.3.1.2 Metals 6.3.1.3 Ceramic 6.3.1.4 Polymers 6.3.2 Fabrication Methods for Tissue Engineering Scaffolds 6.3.2.1 Textile Technologies 6.3.2.2 Solvent Casting and Particulate Leaching 6.3.2.3 Freeze-Drying/Phase Separation 6.3.2.4 Gas Foaming 6.3.2.5 Microsphere Aggregation 6.3.2.6 Electrospinning 6.3.2.7 3D Printing 6.3.2.8 Laser-Assisted Bioprinting 6.3.2.9 Injectable Scaffolds 6.3.3 Porous Structure for Tissue Engineering Scaffolds 6.4 Cells and Signals 6.5 Tissue Engineering Products 6.6 Current Challenges and Future Outlook References Chapter 7 Foam in Insulation 7.1 Foam in Insulation 7.2 Insulation Foams 7.3 Heat Transfer in Insulation Foams 7.3.1 Heat Transfer in Solid Phase 7.3.1.1 Heat Conduction in Solid Phase 7.3.1.2 Heat Radiation in Solid Phase 7.3.1.3 Reduction of Thermal Radiation by Using Infrared Attenuation Agents 7.3.2 Blowing Agents and Gas-Phase Conduction 7.3.2.1 Modeling Thermal Conductivity of a Binary Gas Mixture 7.3.2.2 Thermal Conductivity Prediction of Binary Gas Phase 7.4 Other Tracks Impacting Insulation Foams 7.4.1 Diffusion of Air and Blowing Agents 7.4.2 Water Absorption Is Destructive to Thermal Insulation 7.4.3 Advantages from Nano-Sized Pores 7.4.4 Flammability of Blowing Agents 7.5 Conclusions Acknowledgments References Chapter 8 Advancements in Foam Injection Molding 8.1 Introduction 8.2 Advancement of the FIM Configuration 8.3 FIM without Pressurizing PBA to SCF 8.4 Conclusion References Chapter 9 Silicone Foams: A World Different from Other Foams 9.1 Introduction 9.2 Foam Preparation 9.3 Applications and Properties 9.4 Expected Innovations and Environmental Aspects 9.5 Conclusion References Chapter 10 Lab Analysis of Melt-Foaming Behaviors of Long-Chain Branched Polyethylene Terephthalate Using Supercritical CO[sub(2)] as Blowing Agent 10.1 Introduction 10.2 Determination of the Melt Foamability of PETs with Different Chain Structures Based on Their Complex Rheological Properties Characterization 10.2.1 Characterization of Stress and Elongation Behavior of PETs with Different Chain Structures 10.2.2 Analysis of Bubble Coalescence and Foamability with the Pressure Balanced Bubble-Growth (PBB) Model 10.2.3 Fast Prediction of PET Foamability Using Relaxation Time Spectrum 10.3 Extrusion Foaming Behaviors of LCB-PET with Enhanced Crystallization Property 10.4 Effect of Post Crystallization on Mechanical Properties of PET Extruded Foams 10.5 Summary 10.6 Future References Chapter 11 Extrusion Foam of Polylactic Acid Using Stereocomplex Crystals 11.1 Introduction 11.2 Modelling PLA Foaming Process 11.3 Stereocomplex Crystals in PLA Foaming 11.3.1 Different PLA Architectures by Polymerisation 11.3.2 Introduction of Network Structures in the Melt: Usage of Stereocomplex Functionalities 11.4 Extrusion Foaming Technology for PLA Foams 11.5 Effect of Die Design in PLA Foaming 11.6 Conclusion Acknowledgements References Chapter 12 Nanocellular Polymers 12.1 Introduction: Relevance of Nanocellular Polymers 12.2 Production of Nanocellular Polymers 12.2.1 Fabrication Processes 12.2.2 Gas Dissolution Foaming 12.2.2.1 Homogeneous Nucleation 12.2.2.2 Heterogeneous Nucleation 12.2.3 Overview of the State of the Art and Current Limitations 12.3 Properties of Nanocellular Polymers 12.3.1 Transparency 12.3.2 Thermal Conductivity 12.3.2.1 Conduction through the Gas Phase 12.3.2.2 Conduction through the Solid Phase 12.3.2.3 Radiation 12.3.3 Mechanical Properties and Confinement Effect of the Solid Phase 12.3.4 Other Properties 12.4 Conclusions and Future Perspectives References Index