دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Mohammad Abu Jafar Mazumder, Mumtaz A. Quraishi, Amir Al-Ahmed سری: ISBN (شابک) : 3527349928, 9783527349920 ناشر: Wiley-VCH سال نشر: 2022 تعداد صفحات: 448 زبان: English فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 40 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Polymeric Corrosion Inhibitors for Greening the Chemical and Petrochemical Industry به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب بازدارنده های خوردگی پلیمری برای سبز کردن صنایع شیمیایی و پتروشیمی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
مرجع اولیه در مورد بازدارنده های خوردگی پلیمری برای محققان و متخصصان صنایع شیمیایی و پتروشیمی
بازدارندههای خوردگی پلیمری برای سبز کردن صنعت شیمیایی و پتروشیمی مروری کلی بر بازدارندههای خوردگی پلیمری برای صنایع شیمیایی و پتروشیمی - از طراحی، سنتز، و خصوصیات - تا کاربردها ارائه میکند. این متن رسانههای مختلفی را که در آنها خوردگی مشاهده میشود مورد بحث قرار میدهد و خوانندگان را قادر میسازد تا با برخورد مناسب با خوردگی، از خرابی لولهها و سایر سیستمهای کارخانه جلوگیری کنند.
با توجه به اهمیت بالای توسعه بازدارندههای خوردگی برای صنایع شیمیایی و پتروشیمی، این کتاب با هدف ارائه عملکرد اساسی و فعلی با پوشش جامع پیشرفتهای اخیر بازدارندههای خوردگی پلیمری سبز ارائه میکند. که قابل استفاده بود متن به طور سیستماتیک اصول، توسعه به روز و کاربردهای صنعتی بازدارنده های خوردگی پلیمری را ارائه می دهد.
در بازدارندههای خوردگی پلیمری برای سبز کردن صنعت شیمیایی و پتروشیمی، خوانندگان میتوانند انتظار داشته باشند اطلاعات خاصی در مورد زیر بیابند: /span>
بازدارنده های خوردگی پلیمری برای سبز کردن صنعت شیمیایی و پتروشیمی < /span> مرجع اولیه برای محققان و متخصصان علوم مواد، شیمی و الکتروشیمی، صنایع شیمیایی، مکانیک و مهندسی متالورژی است که مایل به مقابله با پیامدهای اقتصادی و زیستمحیطی خوردگی در سیستمهای مختلف کارخانه هستند.
Primary reference on polymeric corrosion inhibitors for researchers and professionals in the chemical and petrochemical industries
Polymeric Corrosion Inhibitors for Greening the Chemical and Petrochemical Industry provides an extensive overview of polymeric corrosion inhibitors for chemical and petrochemical industry—from design, synthesis, and characterization—to applications. The text discusses the different media in which corrosion is observed and enables readers to minimize/prevent pipes and other plant systems’ failures by adequately dealing with corrosion.
Considering the high importance of corrosion inhibitors development for the chemical and petrochemical industries, this book aims to provide fundamental and current practice with comprehensive coverage of the recent advancements of green polymeric corrosion inhibitors that could be used. The text systematically presents fundamentals, up-to-date development, and industrial applications of polymeric corrosion inhibitors.
In Polymeric Corrosion Inhibitors for Greening the Chemical and Petrochemical Industry, readers can expect to find specific information on:
Polymeric Corrosion Inhibitors for Greening the Chemical and Petrochemical Industry is a primary reference for researchers and professionals in the material science, chemistry and electrochemistry, chemical, mechanical, and metallurgical engineering industries who wish to counter the economic and environmental consequences of corrosion in various plant systems.
Cover Title Page Copyright Contents Preface Acknowledgments About the Editors Chapter 1 Green Polymeric Corrosion Inhibitors: Design, Synthesis, and Characterization 1.1 Introduction 1.2 Corrosion and Its Economic Significance 1.3 Corrosion Inhibitors 1.3.1 Green Corrosion Inhibitors 1.3.2 Importance of Biopolymers as Corrosion Inhibitors 1.4 Polysaccharides as Corrosion Inhibitors 1.5 Proteins and Polyamino Acids as Corrosion Inhibitors 1.6 Chemically Modified Biopolymers as Corrosion Inhibitors 1.7 Biopolymer Nanoparticles as Corrosion Inhibitors 1.8 Biopolymer Composites as Corrosion Inhibitors 1.9 Adsorption and Protection Mechanism of Biopolymers on the Metal Surface 1.10 Conclusions and Prospects Acknowledgment References Chapter 2 Natural Polymers and Their Derivatives as Corrosion Inhibitors for the Oil and Gas Industry 2.1 Introduction 2.2 Reliable Methods for the Study of Polymeric Corrosion Inhibitors 2.2.1 Gravimetric Method 2.2.2 Electrochemical Methods 2.2.3 Gasometric Method 2.2.4 Surface Morphological Studies 2.3 Natural Polymeric Corrosion Inhibitors 2.3.1 Chitosan and its Derivatives 2.3.2 Cellulose and its Derivatives 2.3.3 Starch and Its Derivatives 2.3.4 Pectin and Its Derivatives 2.3.5 Dextrin and Its Derivatives 2.3.6 Natural Gums and Their Derivatives 2.4 Mechanism for Natural Polymeric Corrosion Inhibition 2.5 Conclusion and Outtake for Future Work References Chapter 3 Current Applications of Carbohydrates as Green Corrosion Inhibitors for the Oil and Gas Industry 3.1 Introduction 3.1.1 Corrosion: An Introduction and Associated Social and Economic Issues 3.1.2 Strategies to Control Corrosion 3.2 Carbohydrate Polymers: A Sustainable Alternatives 3.2.1 Limitations of Using Carbohydrate Polymers as Anticorrosive Material 3.2.2 Emerging Trends in Corrosion Protection Offered by Carbohydrates Polymer 3.2.2.1 Carbohydrate Polymer Schiff Bases 3.2.2.2 Heterocyclic Compound‐Modified Carbohydrate Polymers 3.2.2.3 Grafted Polymer 3.2.2.4 PEG Cross‐linked Polymer 3.2.2.5 Polymer‐Based Surfactant 3.2.2.6 Carbohydrate Polymer–Nanoparticle Composites 3.2.2.7 Synergistic Effect of Salts/Surfactants with Carbohydrate Polymer 3.3 Conclusion Acknowledgments References Chapter 4 Poly(Amino Acid) Corrosion Inhibitors 4.1 Introduction 4.2 Poly(Amino Acid) Homopolymers as Corrosion Inhibitors 4.3 Modified Poly(Amino Acid) and Poly(Amino Acid) Copolymers as Corrosion Inhibitors 4.4 Poly(Amino Acid) Composite Polymers as Corrosion Inhibitors 4.5 Conclusion References Chapter 5 Water‐Soluble Polymeric Corrosion Inhibitors 5.1 Introduction 5.2 Polymers as Water‐Soluble Corrosion Inhibitors 5.2.1 Mild Steel 5.2.2 Carbon Steel 5.2.3 Iron 5.2.4 Aluminum 5.2.5 Copper 5.2.6 Brass 5.3 Industrial Applications of Water‐Soluble Polymeric Corrosion Inhibitors 5.4 Conclusions Acknowledgments References Chapter 6 High‐Temperature Polymeric Corrosion Inhibitors 6.1 Introduction 6.2 Polymer as Corrosion Inhibitor for High‐Temperature Oil‐Well Acidization 6.3 Polymer as Corrosion Inhibitor for High‐Temperature Sour and Sweet Environment 6.4 Polymer as Corrosion Inhibitor for High‐Temperature Naphthenic Acids Environment 6.5 Computational Studies of Polymeric Corrosion Inhibitors 6.6 Conclusions and Outlook Acknowledgements References Chapter 7 Polyurethane Corrosion Inhibitor 7.1 Introduction 7.2 Polyurethane (PU) 7.2.1 PU Synthesis 7.2.2 Structure 7.3 Polymer as an Inhibitor 7.4 PU as Corrosion Inhibitor (PUCI) 7.4.1 Plant‐Resourced PUCI 7.4.2 Nanocomposite 7.4.3 Triblock Copolymers 7.4.4 Polyurea‐Based PUCI 7.4.5 Sulfonated‐Based PUCI 7.4.6 Waterborne PUCI 7.5 Mechanism of PUCI Inhibition 7.6 Conclusions and Perspectives References Chapter 8 Dual‐Purpose Kinetic Hydrate and Corrosion Inhibitors 8.1 Introduction 8.2 Corrosion Inhibitors (CIs) 8.3 Kinetic Hydrate Inhibitors (KHIs) 8.4 Dual‐Purpose Chemicals 8.5 Dual‐Purpose Corrosion Inhibitor and KHIs (GHCIs) 8.5.1 Mechanism of Action of GHCIs 8.5.2 Performance Testing and Evaluation of GHCIs 8.5.3 Factors Controlling the Performance of GHCIs 8.5.3.1 Size/Molecular Weight of GHCIs 8.5.3.2 Chain Length Specific to Corrosion Inhibitor 8.5.3.3 Charge Distribution of Corrosion Inhibitors 8.5.3.4 Operational Conditions 8.6 Conclusion and Future Prospects Acknowledgments List of abbreviation References Chapter 9 Polymers as Corrosion Inhibitors for Sweet Environment 9.1 Introduction 9.2 An Overview of Corrosion 9.2.1 Corrosion and Its Economic Impact 9.2.2 Corrosion Inhibitors 9.3 Sweet Corrosion 9.3.1 Mechanism Details of CO2 Corrosion 9.3.2 Key Parameters Governing Sweet Corrosion 9.3.2.1 Temperature 9.3.2.2 CO2 Partial Pressure 9.3.2.3 pH 9.3.3 Survey of Literature on Sweet Corrosion Inhibitors 9.4 Polymers as Sweet CI 9.4.1 Significance of Polymers as Sweet CI 9.4.2 Literature Survey of Polymers as Sweet CI 9.4.3 Modified Polymers as Sweet CI 9.5 Computational Modeling of Polymeric Inhibitors for Sweet Corrosion 9.6 Mechanism of Adsorption and Inhibition 9.7 Conclusions and Prospects References Chapter 10 Green Polymeric Inhibitors for Corrosion of Metals in Alkaline Media 10.1 Definitions of Corrosion 10.1.1 Influence of Corrosion on the Economy Sector 10.2 Main Reasons for Metals Corrosion 10.3 Theories of Corrosion 10.3.1 Electrochemical Theory 10.4 General Types of Corrosions 10.4.1 Galvanic Corrosion 10.4.2 Uniform Corrosion 10.4.3 Other Types of Corrosion 10.4.3.1 General and Local Electrochemical Corrosion 10.4.3.2 Crevice Corrosion 10.4.3.3 Intergranular Corrosion 10.4.3.4 Pitting Corrosion 10.4.3.5 Stress Corrosion Cracking (SCC) 10.4.3.6 Fretting Corrosion 10.4.3.7 Erosion–Corrosion 10.4.3.8 Stray Current Corrosion 10.4.3.9 Cavitation Corrosion 10.5 Corrosion Reactions of Al in Alkaline Media 10.6 Techniques for Prevention and Protection of Metals from Corrosion 10.6.1 Green Polymeric Inhibitors for Inhibition of Al Metal Dissolution in Alkaline Media 10.6.2 Natural Polymers 10.6.2.1 Polysaccharides 10.6.2.2 Solubility of Polysaccharides 10.6.2.3 Behavior of Water‐Soluble Polymeric Macromolecules in Alkaline Media 10.6.2.4 Types of Polysaccharides 10.6.3 Synthetic Polymers 10.6.3.1 Poly (Vinyl Alcohol) (PVA) 10.7 Applied Methodologies for Measurements of Corrosion Rates 10.7.1 Methodology Techniques 10.7.1.1 Hydrogen Gas Evolution (Gasometric Technique) 10.7.1.2 Weight‐loss Method 10.8 Factors Affecting the Corrosion Process 10.8.1 Nature of the Metal 10.8.2 Nature of the Corroding Environment 10.8.2.1 Dependence of Corrosion Rates on Nature and Concentration of Corrosive Media 10.8.2.2 Dependence of Corrosion Rates on Nature and Concentration of Inhibitors 10.8.2.3 Dependence of Corrosion Rate on Temperature 10.8.3 Corrosion Mechanisms 10.8.4 Absorption Isotherm Models Identification 10.8.5 Electrochemical Measurements 10.9 Conclusion Acknowledgment References Chapter 11 Polymeric Corrosion Inhibitors for Acid Media 11.1 Background 11.2 Outward and Inward Acid Corrosion 11.3 Organic and Inorganic Corrosion Inhibitor in Acid Media 11.3.1 Challenges of the Organic and Inorganic Components in Corrosion Inhibitor 11.3.2 Polymeric Corrosion Inhibitor in Acidic Media 11.4 Natural Polymeric Materials 11.5 Essential Oils 11.5.1 Terpenes and Isoprene 11.5.2 Tannins and Flavonoids 11.6 Carbohydrates (CHO) 11.6.1 Starch 11.6.2 Cellulose 11.6.3 Pectin 11.6.4 Exudates\' fluids 11.6.5 Carrageenan 11.6.6 Dextrin 11.6.7 Alginates 11.6.8 Chitosan 11.7 Natural Proteins 11.7.1 Soy Polymer 11.7.2 Casein 11.7.3 Zein 11.7.4 Hydrolysate from Shrimp By‐products 11.8 Synthetic Polymeric Materials 11.8.1 Polyglycols 11.8.2 Polyamines Derivatives 11.8.2.1 Polyethyleneimine (PEI) 11.8.2.2 Polyaniline (PANI) and Polydiamines (PDAs) 11.8.2.3 Polydopamine (PDM) 11.8.3 Polyamides Derivatives 11.8.4 Polyvinyl Derivatives 11.8.5 Polyzwitterion 11.9 Conclusion Acknowledgments References Chapter 12 Polymeric Corrosion Inhibitors for Microbiologically Influenced Corrosion 12.1 Introduction to Microbiologically Influenced Corrosion (MIC) 12.2 Microbes in MIC 12.2.1 Sulfur Reducing Bacteria 12.2.2 Metal Oxidizing Bacteria (MOB) 12.2.3 Acid Producing Bacteria (APB) 12.3 Biofilms 12.3.1 Biofilm Studies and Characterization 12.4 MIC Issues in Industry: Oil and Gas 12.4.1 Pipeline Internal Corrosion 12.4.2 Water Network Systems 12.4.3 Hydrocarbon Product Storage Tanks 12.5 Corrosion Inhibitors for MIC 12.5.1 Inorganic Corrosion Inhibitors 12.5.2 Organic Corrosion Inhibitors 12.5.3 Green Corrosion Inhibitors 12.6 Polymeric Corrosion Inhibitors 12.6.1 Polymeric Corrosion Inhibitors for Microbial Corrosion 12.6.1.1 Corrosion Inhibition by Extracellular Polymeric Substances of Biofilms 12.7 Conclusions References Chapter 13 Smart Polymers Coating for Upstream Oil and Gas Industry to Slow Down the Corrosion 13.1 Introduction 13.1.1 Corrosion in the Primary Manufacturing Processes 13.2 Mechanism of Corrosion 13.2.1 Electrochemical Nature of Corrosion 13.3 Kinds of Corrosion in Industry 13.3.1 Electrochemical Corrosion 13.3.1.1 Corrosion due to Galvanic Reaction 13.3.1.2 Pitting Corrosion 13.3.2 Mechanical Corrosion 13.3.2.1 Stress Corrosion Cracking (SCC) 13.3.3 Chemical Corrosion 13.3.3.1 H2S Corrosion 13.3.3.2 CO2 Corrosion 13.3.3.3 Oxygen Corrosion 13.4 Conventional Corrosion Prevention Methods 13.4.1 Tar Coatings 13.4.2 Alloyed Steel (Stainless) 13.4.3 Cathodic Protection 13.4.4 Galvanic Coatings 13.4.5 Polyolefin Coatings 13.4.6 Fusion Bonded Epoxy (FBE) Coating 13.5 Smart Coatings 13.5.1 Polymer Composite Coating 13.5.2 Conducting Polymer Coating 13.5.2.1 Polyaniline 13.5.2.2 Polypyrrole 13.5.2.3 Polycarbazole and its Derivatives 13.5.3 Self‐healing Polymers for Coatings 13.5.3.1 Synthesis of Micro/Nano‐Capsule 13.5.3.2 Mechanism of Self‐healing Polymers 13.6 Conclusion Acknowledgment References Chapter 14 Surface Characterization Techniques in Corrosion Inhibition Research 14.1 Introduction 14.2 Method of Weight Loss 14.2.1 Concentration of Inhibitor 14.2.2 Temperature Effect and Parameters of Activation 14.3 Parameters of Adsorption 14.3.1 Isotherms 14.3.2 Energy of Adsorption 14.4 Electrochemical Techniques 14.4.1 Open‐Circuit Potential Curves 14.4.2 Electrochemical Impedance Spectroscopy 14.4.3 Potentiodynamic Polarization 14.4.3.1 Kinetics of Corrosion 14.4.4 Electrochemical Frequency Modulation Trend (EFMT)/Electrochemical Frequency Modulation Trend (EFM) 14.4.5 Linear Polarization Resistance 14.5 Surface Analytical Techniques 14.5.1 Scanning Electron Microscopy 14.5.2 Energy‐Dispersive X‐ray Spectroscopy 14.5.3 Water Contact Angle 14.5.4 Atomic Force Microscopy 14.5.5 X‐Ray Photoelectron Spectroscopy 14.5.6 X‐Ray Diffraction 14.5.7 Scanning Electrochemical Microscopy (SECM) 14.5.8 Scanning Kelvin Probe (SKP) Method 14.5.9 Scanning Vibrating Electrode Technique (SVET) 14.5.10 Time‐of‐Flight Secondary Ion Mass Spectrometry 14.5.11 Fourier‐Transform Infrared Spectroscopy 14.6 Conclusion Acknowledgment Important Websites References Chapter 15 Guidelines for Designing Corrosion Inhibitors for Oil and Gas Production 15.1 Introduction 15.2 Classification of Corrosion 15.2.1 Crevice and Pitting Corrosions 15.2.2 Stress‐Corrosion Cracking (SCC) 15.2.3 Fretting and Erosion–Corrosion 15.2.4 Uniform Corrosion 15.3 Corrosion Inhibitors 15.3.1 Sour Corrosion Inhibitor 15.3.1.1 Amine‐Based Inhibitor 15.3.1.2 Imidazoline‐Based Inhibitor 15.3.1.3 Gemini Surfactants‐Based Inhibitor 15.3.1.4 Polymer‐Based Inhibitor 15.3.2 Sweet Corrosion Inhibitor 15.3.2.1 Imidazolines‐Based Inhibitor 15.3.2.2 Amines‐Based Inhibitor 15.3.2.3 Amides/Amido‐Based Inhibitor 15.3.2.4 Aldehydes/Carboxylates‐Based Inhibitor 15.4 Corrosion Inhibitor Management 15.4.1 Identify Application Window 15.4.2 Define Corrosion Inhibition Test/Validation Program 15.4.3 Selection of Corrosion Inhibitor 15.4.4 Assurance of Corrosion Inhibitor (Laboratory Testing/Field Trial) 15.4.5 Implementation and Surveillance of Corrosion Inhibitor Application 15.5 Safety on Designing Corrosion Inhibitor 15.6 Conclusions Acknowledgment List of Abbreviations References Index EULA