دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Ravin Narain (editor)
سری:
ISBN (شابک) : 0128168064, 9780128168066
ناشر: Elsevier
سال نشر: 2020
تعداد صفحات: 470
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 46 مگابایت
در صورت تبدیل فایل کتاب Polymer Science and Nanotechnology: Fundamentals and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب علوم و فناوری نانو پلیمر: مبانی و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
علوم و نانوتکنولوژی پلیمر: مبانی و کاربردها آخرین پیشرفتها در علم پلیمر و علم نانو را گرد هم میآورد. بخشها مبانی علم پلیمر، از جمله جنبهها و روشهای کلیدی را از نظر ساختار مولکولی، سنتز، خصوصیات، ریزساختار، ساختار فازی و پردازش و خواص، قبل از بحث در مورد مواد مورد علاقه و کاربردی برای کاربردهای جدید، مانند هیدروژلها، پلیمرهای طبیعی توضیح میدهند. ، پلیمرهای هوشمند و بیومواد پلیمری. بخش دوم کتاب به بررسی تکنیک های ضروری در فناوری نانو با تاکید بر استفاده از مواد پلیمری پیشرفته در زمینه علم نانو می پردازد.
در سرتاسر کتاب، فصل هایی تهیه شده است تا بتوان مواد و محصولات را تنظیم کرد. نسبت به برنامه های کاربردی خاص دو فصل به تفصیل، حوزههای کاربردی اصلی، از جمله سوخت و سلولهای خورشیدی، مهندسی بافت، تحویل دارو و ژن، غشاها، تصفیه آب و بازیابی نفت را پوشش میدهد.
Polymer Science and Nanotechnology: Fundamentals and Applications brings together the latest advances in polymer science and nanoscience. Sections explain the fundamentals of polymer science, including key aspects and methods in terms of molecular structure, synthesis, characterization, microstructure, phase structure and processing and properties before discussing the materials of particular interest and utility for novel applications, such as hydrogels, natural polymers, smart polymers and polymeric biomaterials. The second part of the book examines essential techniques in nanotechnology, with an emphasis on the utilization of advanced polymeric materials in the context of nanoscience.
Throughout the book, chapters are prepared so that materials and products can be geared towards specific applications. Two chapters cover, in detail, major application areas, including fuel and solar cells, tissue engineering, drug and gene delivery, membranes, water treatment and oil recovery.
Cover POLYMER SCIENCE AND NANOTECHNOLOGY Fundamentals and Applications Copyright Contributors Preface Part I: Polymer science 1 Brief overview of polymer science 2 Nature and molecular structure of polymers Natural vs synthetic polymers Structure of polymers Amorphous vs crystalline polymers Primary structure Monomer polarity Secondary structure Polymer chain configuration Tertiary structure Molecular weight References 3 Polymer synthesis Step-growth polymerization General characteristics Polymerization of tri- and higher-order functional monomers Polymer types and structure Chain-growth polymerization General characteristics Polymerizability (thermodynamics) Equilibrium Stereochemistry of chain-growth polymerization ``Living´´ versus ``controlled´´ polymerization Free-radical polymerization Conventional free-radical polymerization Initiators Initiation Propagation Termination Inhibitors Chain transfer Chain transfer agents Kinetics of chain-growth polymerization Initiation Propagation Termination Chain transfer Rate of polymerization Trommsdorff-Norrish effect or auto-acceleration or gel effect Controlled/living radical polymerization Nitroxide-mediated polymerization Atom transfer radical polymerization Monomer Initiator Catalysts complex Solvent Temperature Reversible addition-fragmentation chain transfer (RAFT) polymerization RAFT procedure RAFT mechanism Ionic polymerization Anionic polymerization Overview Solvent Initiation Electron transfer Nucleophilic addition to the monomer double bond Propagation Termination Cationic polymerization Initiation Bronsted acid Lewis acid Propagation Termination Group transfer polymerization Ring-opening polymerization Thermodynamics Kinetics Coordination polymerization Ziegler-Natta catalysts Termination Metallocenes Ring-opening metathesis polymerization Catalysts Solution polymerization Suspension polymerization Process description Size control Quality and morphology Emulsion polymerization Conventional emulsion polymerization Miniemulsion Microemulsion Process description Size control Soapless emulsion polymerization Dispersion polymerization Further reading 4 Copolymerization Unspecified copolymers Statistical copolymers Random copolymers Alternating copolymers Periodic copolymers Block copolymers Graft copolymers Kinetics of copolymerization References 5 Modification of polymers Physical methods Self-assembled monolayers Radiation-induced surface modification UV-irradiation γ-Irradiation Laser-induced surface modifications Chemical modification of polymer Common chemical reactions PEGylation Conjugation Method to make various polymeric architecture via chemical modification References Further reading 6 Polymer characterization Measurements of molecular weight Gel-permeation chromatography Osmometry Viscosity Static light scattering Principle of nuclear magnetic resonance NMR equipment Proton (1H) NMR Carbon (13C) NMR Relaxation time Proton-proton correlation spectroscopy and total correlation spectroscopy Heteronuclear multiple quantum coherence spectroscopy and heteronuclear multiple bond correlation spectroscopy Nuclear Overhauser effect spectroscopy Diffusion ordered spectroscopy References 7 Polymer degradation and stability Introduction Aging and degradation Influencing factors Inherent factors External factors Evaluation and characterization Evaluation Characterization Thermal and thermo-oxidative degradation Thermal degradation Thermo-oxidative degradation Thermo-oxidation mechanism Factors influencing thermo-oxidative degradation Stabilization of thermal and thermo-oxidative degradation Radical scavenger Pro-antioxidant Photolysis and photo-oxidative degradation Photolysis Photo-oxidative degradation Stabilization of photolysis and photo-oxidative degradation Hydrolysis and biodegradation Hydrolysis Biodegradation Biodegradable polymers Degradation and stabilization of polymer nanocomposites References 8 Polymer processing and rheology Polymer processing Mixing Polymer additives Mixing mechanics Mixing devices Extrusion Extrusion process Single-screw extruder Twin-screw extruder Extrusion dies Molding Injection molding Compression molding Blow molding Rotational molding Calendering Process Arrangements of rolls Coating Fluid coating process Methods Polymer rheology Relationship between polymer rheology and polymer processing Non-Newtonian flow Viscosity of polymer melts and solutions Fitting functions for the flow and viscosity curves Model function for ideal viscous flow behavior Model function for shear-thinning and shear-thickening flow behavior Model function for flow curves with a yield point Rheometry Capillary rheometer Couette (concentric cylinder) rheometer Cone-and-plate rheometer References 9 Thermal, mechanical, and electrical properties Thermal analysis of polymers The melting temperature of polymers Glass transition temperature of polymers Thermal conductivity of polymers Thermal diffusivity Techniques Differential scanning calorimeter Differential thermal analysis Thermomechanical analysis Thermogravimetry Density measurements Mechanical properties of polymers Basic concepts of stress and strain Stress-strain curve Dynamic mechanical analysis Viscoelastic behavior of polymers Effects of structure and composition on mechanical properties Molecular weight Cross-linking Molecular configuration Composition Electrical properties of polymers Conductive polymers References 10 Hydrogels Introduction Synthesis of hydrogels Physically cross-linked hydrogels Hydrogen bonds Electrostatic interactions Hydrophobic interactions Crystallization Chemically cross-linked hydrogels Cross-linking by chemical reactions of complementary groups Cross-linking by free radical polymerization Characterization of hydrogels Physical properties Chemical properties Mechanical properties Rheological properties Biological properties Self-healing hydrogels Physically self-healing hydrogels Hydrogen bonds Hydrophobic interactions Metal-ligand coordination Host-guest interactions Combination of multiple intermolecular interactions Chemically self-healing hydrogels Phenylboronic ester complexation Schiff base Acylhydrazone bonds Disulfide bonds Other dynamic chemical bonds and reactions Tough hydrogels Homogeneous hydrogels Tetra-PEG hydrogels Slide-ring (SR) hydrogels Radiation cross-linked hydrogels Mechanical energy dissipating hydrogels Double network (DN) hydrogels Hydrogels based on a combination of both toughening mechanisms Nanocomposite (NC) hydrogels Macromolecular microspheres composite (MMC) hydrogels References 11 Biopolymers and natural polymers Introduction Production of biopolymers Polysaccharides Microbial biopolymers: A bioengineering approach Enzymatic reactor for the production of biopolymers Biopolymer applications Drug delivery Polynucleotides and protein-based therapy 3D printing in tissue engineering applications Sustainable biopolymer for environmental remedy Current challenges faced by bio or natural polymers Conclusion References 12 Smart polymers Types of smart polymers Temperature responsive pH responsive Light responsive Magnetically responsive Enzyme responsive Other stimuli-responsive polymers Shape memory polymers References 13 Polymers in medicine Introduction Antimicrobial polymers Polymeric biocides Biocidal polymers Biocide-releasing polymers Polymers in gastroenterology Polymers in cardiology Polymers in hemodialysis Polymers in neurology Neural implants Neural drug delivery Polymers in ophthalmology Intraocular lenses (IOLs) Intraocular drug delivery Polymers in dermatology Skin grafts and skin substitutes Dermal and transdermal drug delivery Polymers in orthopedic surgery Polymers in dentistry Polymers in cancer therapy Chemotherapeutic drug delivery Biosensors for cancer detection Polymers in gene therapy Conclusions and future outlook References 14 Polymers for advanced applications Introduction Polymeric membranes for gas separation Applications of self-healing polymers Polymers for additive manufacturing Applications of polymers in electrical and electronics Supercapacitors Lithium-ion batteries Light-emitting and sensing devices Polymers for water purification Polymer applications in food packaging Conclusion and future perspectives References Part II: Nanotechnology 15 Nanomaterials properties Introduction Physical properties Size and shape of nanomaterials Zero dimensional One dimensional Two dimensional Three dimensional Surface effects Quantum confinement effects Surface charge and stability Chemical properties Chemical structure and composition of nanomaterials Catalytic reactivity Optical properties Magnetic properties Electrical properties References 16 Nanomaterial synthesis Introduction Inorganic nanoparticles Solution-phase synthesis of nanoparticles Mechanism of nanoparticles synthesis Typical methods for the synthesis of nanoparticles in solution phase Mechanism of size and shape control of metal nanoparticles in solution phase Affect of reaction parameters on nanoparticles growth Template-mediated synthesis of inorganic nanostructures Synthesis of inorganic nanoparticles by lithography Organic nanoparticles Bottom-up synthesis of organic nanoparticles Controlling the shape of soft materials Polymersomes Top-down approach for the synthesis of organic nanoparticles Conclusion and future outlook References 17 Nanomaterials characterization Introduction Size, shape, length, and internal structure characterization Dynamic light scattering Microscopy Scanning electron microscopy Transmission electron microscopy Atomic force microscopy Surface charge characterization of nanoparticles (zeta potential measurements) Optical properties Ultraviolet-visible spectroscopy Fluorescence spectroscopy Magnetic properties Composition, chemical structure, and substructure Nuclear magnetic resonance spectroscopy X-ray diffraction X-ray photoelectron spectroscopy Mechanical properties References 18 Nanomaterials applications Introduction Household Cosmetics Textiles Energy storage Sports Food and drinks Automotive industry Electronics Construction and engineering materials Medicine References Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Back Cover