دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.] نویسندگان: Sabu Thomas (editor), Soney C. George (editor), Thomasukutty Jose (editor) سری: Micro and Nano Technologies ISBN (شابک) : 0128167858, 9780128167854 ناشر: Elsevier سال نشر: 2020 تعداد صفحات: 440 [430] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 10 Mb
در صورت تبدیل فایل کتاب Polymer Nanocomposite Membranes for Pervaporation () به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب غشاهای نانوکامپوزیت پلیمری برای تبخیر () نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
غشاهای نانوکامپوزیت پلیمری برای تخلخل کاربردهای اخیر را در عملکرد تبخیر نانوکامپوزیت های پلیمری در مقیاس های طولی مختلف ارزیابی می کند. این کتاب اثرات طیف وسیعی از نانوپرکننده ها، پراکندگی آنها، اثر پلیمرهای مختلف و نانومواد آلی و معدنی در فرآیند تبخیر را مورد بحث قرار می دهد. علاوه بر این، این کتاب به بررسی این موضوع میپردازد که چگونه خواص مختلف انواع مواد نانوکامپوزیت، آنها را برای استفاده در انواع مایعات بهتر میکند، در حالی که چالشهای استفاده از نانوکامپوزیتهای مختلف برای این منظور را به طور موثر و ایمن مورد بحث قرار میدهد. به طور خاص، نانوکامپوزیتهای پلیمری برای پراکندگی در مقیاس نانو گرم، برهمکنشهای پرکننده/پلیمر، و مورفولوژی مورد بررسی قرار میگیرند.
این یک منبع مرجع مهم برای دانشمندان مواد، مهندسین شیمی و مهندسان محیطزیست است که میخواهند درباره چگونگی پلیمر بیشتر بدانند. نانوکامپوزیت ها برای موثرتر کردن فرآیند جداسازی تبخیر استفاده می شوند.
Polymer Nanocomposite Membranes for Pervaporation assesses recent applications in the pervaporation performance of polymer nanocomposites of different length scales. The book discusses the effects of a range of nanofillers, their dispersion, the effect of different polymers, and organic and inorganic nanomaterials in the pervaporation process. In addition, the book explores how the different properties of a variety of nanocomposite materials make them better for use in different types of liquids, while also discussing the challenges of using different nanocomposites for this purpose effectively and safely. In particular, polymer nanocomposites for g nanoscale dispersion, filler/polymer interactions, and morphology are addressed.
This is an important reference source for materials scientists, chemical engineers and environmental engineers who want to learn more about how polymer nanocomposites are being used to make the pervaporation separation process more effective.
Cover Polymer Nanocomposite Membranes for Pervaporation Copyright Contents List of contributors Preface 1 Polymer nanocomposite membranes for pervaporation: an introduction 1.1 Introduction 1.2 Basic principles of pervaporation 1.2.1 Solution-diffusion model 1.2.2 Pore flow model 1.2.3 Permeability: a normalized flux 1.2.4 Selectivity: an intrinsic membrane properties 1.3 Membranes for pervaporation 1.3.1 Inorganic membranes 1.3.2 Mixed matrix membranes 1.3.3 Polymer membranes 1.4 Factors affecting the pervaporation 1.4.1 Pressure 1.4.2 Concentration polarization and partition coefficient 1.4.3 Temperature 1.4.4 Membrane thickness 1.5 Advantages of separation using pervaporation process 1.6 Conclusions References 2 Nanocellulose/polymer nanocomposite membranes for pervaporation application 2.1 Introduction 2.1.1 Design and choice of membrane materials for pervaporation 2.2 Nanocellulose isolation methods 2.3 Nanocellulose/polymer nanocomposite membranes for pervaporation application 2.3.1 Cellulose-polydimethylsiloxane blends for pervaporation 2.3.2 Cellulose/poly(vinyl alcohol) membranes for pervaporation 2.3.3 Cellulose acetate/polyacrylonitrile membranes for pervaporation 2.3.4 C60-filled ethyl cellulose hybrid membranes for pervaporation 2.3.5 Cellulose acetate membrane filled with metal oxide particles for pervaporation 2.3.6 Ethyl cellulose reinforced with natural zeolite membranes for evaporation 2.3.7 Ethyl cellulose membranes for pervaporation of water, hydrazine, and monomethyl hydrazine 2.3.8 Blend membranes of sodium alginate and (hydroxyethyl) cellulose for pervaporation 2.3.9 Ethyl cellulose reinforced with TiO2 membranes for pervaporation 2.3.10 Bacterial cellulose/alginate blend membranes for pervaporation 2.4 Conclusions References 3 Biobased (nanochitin, nanochitosan) polymer nanocomposite membranes and their pervaporation applications 3.1 Introduction 3.2 Pervaporation of chitin and chitosan membranes 3.3 Chitin membranes 3.4 Chitosan membranes 3.4.1 Modified chitosan membranes for pervaporation 3.4.2 Chitosan/organic membranes 3.4.2.1 Chitosan/polybenzoimidazole membrane 3.4.2.2 Chitosan/poly(n-vinyl-2-pyrrolidone) membrane 3.4.2.3 Chitosan/polyvinyl alcohol membrane 3.4.2.4 Chitosan/poly(acrylic acid) membrane 3.4.2.5 Chitosan/polyvinyl sulfate membrane 3.4.2.6 Chitosan/sodium alginate membrane 3.4.2.7 Chitosan/cellulose membrane 3.4.2.8 Chitosan/carrageenan membrane 3.4.2.9 Chitosan/gelatin membrane 3.4.2.10 Chitosan/glutaraldehyde membrane 3.4.2.11 Chitosan/polyaniline membrane 3.4.3 Chitosan/inorganic membranes 3.4.3.1 Chitosan/clay membrane 3.4.3.2 Chitosan/titanium dioxide membrane 3.4.3.3 Chitosan/ferric oxide membrane 3.4.3.4 Chitosan/functionalized graphene sheets membrane 3.4.3.5 Chitosan/NaY membrane 3.4.3.6 Chitosan/silica membrane 3.4.3.7 Chitosan/sulfosuccinic acid membrane 3.4.3.8 Chitosan/toluene-2,4-diisocyanate membrane 3.4.3.9 Chitosan/reduced graphene oxide membrane 3.4.3.10 Chitosan/phosphotungstic acid membrane 3.4.3.11 Phosphorylated chitosan membrane 3.4.3.12 Sulfonized chitosan membrane 3.4.3.13 Chitosan/multiwall carbon nanotube/silver membrane 3.4.3.14 Chitosan/Mxene membrane 3.4.3.15 Chitosan/boehmite membrane 3.4.4 Chitosan hybrid membranes 3.4.4.1 Sodium alginate/chitosan/multiwall carbon nanotube membrane 3.4.4.2 Chitosan/PVA/multiwall carbon nanotube membrane 3.4.4.3 Chitosan/PVA/Ag membrane 3.4.4.4 Chitosan/silica/polytetrafluoroethylene membrane 3.4.4.5 Chitosan/iron oxide/PAN membrane 3.4.4.6 Chitosan/silica/PAN/PEG membrane 3.4.4.7 Chitosan/aluminum-based metal organic framework membrane 3.5 Conclusion References Further reading 4 Pervaporation performance of polymer/clay nanocomposites 4.1 Introduction 4.1.1 Polymer nanocomposites 4.1.2 Structure of nanoclay 4.1.3 Organic modification of nanoclay 4.1.4 Polymer nanoclay composites 4.2 Pervaporation characteristics 4.2.1 Transport mechanism 4.2.2 Solution diffusion mechanism 4.2.3 Pore flow mechanism 4.3 Factors affecting membrane performance 4.3.1 Effect of nanoclay content in pervaporation process 4.3.2 Feed composition 4.3.3 Temperature 4.3.4 Concentration polarization 4.4 Conclusions References 5 Carbon nanotubes-polymer nanocomposite membranes for pervaporation Nomenclature Abbreviations Symbols 5.1 Introduction 5.2 Pervaporation 5.2.1 Solution-diffusion model 5.2.2 Separation characteristics of pervaporation membranes 5.3 Polymer nanocomposites 5.4 Carbon nanotubes 5.4.1 Carbon nanotubes functionalization 5.4.1.1 Purification and oxidation of carbon nanotubes 5.4.1.2 Noncovalent functionalization of carbon nanotubes 5.4.1.3 Covalent functionalization of carbon nanotubes 5.5 PV application of carbon nanotubes-polymer nanocomposite membranes 5.5.1 Dehydration of solvents and alcohols 5.5.2 Separation of organic–organic mixtures 5.5.3 Recovery of organics from aqueous solutions 5.6 Conclusions References 6 Graphene-based polymer nanocomposite membranes for pervaporation 6.1 Introduction 6.2 Graphene 6.2.1 Structure and properties of graphene and its derivatives 6.2.2 Graphene membranes—synthesis and characterization 6.3 Graphene-based membranes for pervaporation 6.3.1 Graphene oxide-based membranes 6.3.2 Reduced graphene oxide membranes 6.3.3 Hybrid graphene oxide membranes 6.3.4 Functionalized graphene oxide membranes 6.3.5 Quantum dot membranes 6.4 Conclusions and future aspects References 7 Fullerene and nanodiamond-based polymer nanocomposite membranes and their pervaporation performances 7.1 Introduction 7.2 Pervaporation 7.3 Membranes for pervaporation 7.4 Nanodiamond 7.5 Pervaporation performance of fullerenes-based nanocomposite membranes 7.6 Membranes modified with fullerenes and derivatives 7.6.1 Fullerene-based nanocomposites and its pervaporation 7.7 Conclusions References 8 Polymer nanocomposite membranes for pervaporation desalination process 8.1 Introduction 8.2 Synthesis methods of polymer nanocomposite pervaporation membranes 8.2.1 Physical blending 8.2.2 Sol–gel synthesis 8.2.3 In situ polymerization 8.2.4 Self-assembly 8.3 Factors affecting the performance of pervaporation desalination membranes 8.3.1 Selectivity and nature of membrane material 8.3.2 Diffusivity and nature of the filler 8.3.3 Salt transport suppression 8.3.4 Operating temperature 8.4 Polymer membranes for pervaporation desalination 8.4.1 Cellulose acetate membranes 8.4.2 Polyacrylonitrile and polyvinyl alcohol-based membranes 8.4.3 Poly(vinyl alcohol)/polyvinylidene fluoride pervaporation membrane 8.4.4 PEBAX membrane 8.4.5 Tubular pervaporation membrane 8.4.6 Sulfonated poly(styrene-ethylene/ butylenes- styrene) block copolymer membrane 8.5 Polymer nanocomposite membranes for pervaporation desalination 8.5.1 Mixed matrix membranes for pervaporation desalination 8.5.2 Self-assembled membranes 8.5.3 Sol–gel synthesized membranes 8.6 Conclusion and future aspects References 9 Polymer/polyhedral oligomeric silsesquioxane nanocomposite membranes for pervaporation 9.1 Introduction 9.2 Polyhedral oligomeric silsesquioxane 9.2.1 Different types of POSS 9.2.2 Synthesis of POSS 9.2.3 Properties of POSS 9.2.4 Applications of POSS 9.3 Pervaporation performance of polymer/POSS membranes 9.3.1 Separation of azeotropic mixtures and organic solvents 9.4 Factors affecting the pervaporation through polymer membrane 9.4.1 Effect of free volume 9.4.2 Nature of polymers 9.4.3 Nature of filler particles 9.4.4 Effect of temperature 9.4.5 Nature of penetrants 9.4.6 Degree of cross-linking 9.5 Applications of polyhedral oligomeric silsesquioxane-embedded polymeric systems 9.5.1 Dehydration of ethanol 9.5.2 Ethanol recovery 9.5.3 Separation of organic mixtures 9.5.4 Water treatment 9.5.5 Desulfurization of fuels 9.6 Challenges and future aspects References 10 Nanometal and metal oxide-based polymer nanocomposite membranes for pervaporation 10.1 Introduction 10.2 Synthesis of polymer–nanometal nanocomposite 10.2.1 Synthesis of metal/metal oxide nanoparticles 10.2.1.1 Physical method 10.2.1.1.1 Mechanical grinding 10.2.1.1.2 Melt mixing 10.2.1.1.3 Evaporation 10.2.1.1.4 Laser ablation 10.2.1.1.5 Sputtering 10.2.1.2 Chemical methods 10.2.1.2.1 Chemical reduction 10.2.1.2.2 Chemical precipitation 10.2.1.2.3 Sol–gel technique 10.2.1.2.4 Hydrothermal method 10.2.1.2.5 Microemulsion technique 10.2.1.3 Biological method 10.3 Direct use of nanometal and metal oxides as membrane 10.4 Nanometal and metal oxide-based polymer–metal nanocomposites membranes 10.4.1 Grafting of nanoparticles to polymer 10.4.2 Incorporation of nanoparticles in polymer 10.4.3 Intermatrix synthesis technique 10.4.4 Silver nanoparticle-based polymer–metal nanocomposites membranes 10.4.5 Pervaporation using Ag polymer–metal nanocomposites membranes 10.4.6 Iron nanoparticle -based polymer–metal nanocomposite membranes 10.4.6.1 Pervaporation with iron polymer–metal nanocomposites membranes 10.4.6.1.1 Polyvinyl alcohol-based iron polymer–metal nanocomposite membranes 10.4.6.1.2 Alginate–iron nanoparticle nanocomposite 10.4.6.1.3 Chitosan–iron nanoparticle nanocomposite 10.4.6.2 Characterization of iron polymer–metal nanocomposites membranes 10.4.6.2.1 Characterization of polyvinyl alcohol–iron nanoparticle composite membrane 10.4.6.2.2 Characterization of alginate–iron nanoparticle composite membrane 10.4.7 Pervaporation performance of alumina nanoparticle -based PMNC membranes 10.4.7.1 Nanoalumina as membrane 10.4.7.2 Silver polymer–metal nanocomposites membranes 10.4.8 Pervaporation using titanium nanoparticle-based polymer–metal nanocomposite membrane 10.4.9 Gold nanoparticle-based polymer–metal nanocomposite membrane 10.4.9.1 Plasmon pervaporation 10.4.10 Polymer–metal nanocomposites based on nano-MgO and ZnO 10.5 Conclusions Acknowledgment References 11 Modified zeolite-based polymer nanocomposite membranes for pervaporation 11.1 Introduction 11.2 Water and alcohol-selective zeolites 11.3 Mechanism of water/alcohol separation in zeolite 11.3.1 The separation mechanism in zeolite particles 11.3.2 The separation mechanism through mixed matrix membranes and inorganic fillers incorporated composite membranes 11.4 Fabrication of zeolite-filled nanocomposite membranes 11.5 Zeolite–polymer compatibility 11.5.1 Predicting the combination of zeolite and polymer 11.5.1.1 Toward compatible zeolite–polymer mixed matrix membranes 11.5.1.2 Inorganic bridging agents 11.5.1.3 Organic bridging agents 11.5.1.4 Alternative strategies for improving compatibility 11.6 Zeolite–polymer membrane performances in pervaporation 11.7 Conclusions References 12 Pervaporation and pervaporation-assisted esterification processes using nanocomposite membranes 12.1 Introduction 12.2 Esters and esterification 12.3 Combined esterification and reaction systems 12.4 A unique separation process: pervaporation 12.4.1 General mechanism and basic characteristics of pervaporation process 12.5 Pervaporation membrane reactor 12.6 Membranes for membrane reactors 12.7 Nanocomposite membranes 12.7.1 Nanocomposite membranes for pervaporation and pervaporation-assisted esterification 12.8 Conclusions and future recommendations References 13 Polymer/metal-organic frameworks membranes and pervaporation 13.1 Introduction 13.2 Preparation methods 13.3 Hydrophobic polymer/metal-organic frameworks membranes for organics recovery 13.3.1 Polydimethylsiloxane/metal-organic frameworks membranes 13.3.2 Poly(ether-block-amide)/metal-organic frameworks membranes 13.3.3 PTMPS/metal-organic frameworks membranes 13.4 Hydrophilic polymer/metal-organic frameworks membrane for organics dehydration 13.4.1 Metal-organic frameworks/poly(vinyl alcohol) membranes 13.4.2 Metal-organic frameworks/polybenzimidazole membranes 13.4.3 Metal-organic frameworks/chitosan membranes 13.5 Challenges and perspectives 13.6 Final remarks Acknowledgment References 14 Computational modeling of pervaporation process 14.1 Definition 14.2 Pervaporation performance 14.2.1 Enrichment factor 14.2.2 Separation factor 14.3 Process conditions 14.4 Mass transfer in pervaporation 14.4.1 Pore flow model 14.4.2 Solution-diffusion model 14.4.2.1 Sorption 14.4.2.2 Diffusion 14.4.2.3 Desorption 14.4.3 Modified solution-diffusion model 14.4.4 Thermodynamics model 14.4.5 Maxwell–Stefan model 14.4.6 Computational model 14.5 Transport properties in pervaporation 14.6 Sorption of pure liquid i in an amorphous polymer 14.6.1 Time-dependence of sorption 14.6.2 Time-lag experiment 14.6.3 Inverse gas chromatography method 14.7 Pervaporation modeling 14.7.1 Determination of sorption coefficient (S) 14.7.2 Determination of diffusivity (D) 14.7.3 Determination of permeability (P) 14.7.4 Modified pervaporation process 14.8 Predictive model 14.8.1 Polarity and solubility parameter 14.8.2 Interfacial thermodynamics 14.8.3 Chromatographic property 14.8.4 Contact angle 14.8.5 Physicochemical properties-process conditions 14.9 Conclusion References 15 Hybrid pervaporation process 15.1 Introduction 15.2 Distillation process 15.3 Hybrid process parameters 15.4 Hybrid distillation–pervaporation process 15.5 Simulations of hybrid distillation–pervaporation process 15.6 Other pervaporation hybrid processes 15.7 Advantages of hybrid pervaporation process 15.8 Conclusion References Index Back Cover