ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Polymer Nanocomposite Membranes for Pervaporation ()

دانلود کتاب غشاهای نانوکامپوزیت پلیمری برای تبخیر ()

Polymer Nanocomposite Membranes for Pervaporation ()

مشخصات کتاب

Polymer Nanocomposite Membranes for Pervaporation ()

ویرایش: [1 ed.] 
نویسندگان: , ,   
سری: Micro and Nano Technologies 
ISBN (شابک) : 0128167858, 9780128167854 
ناشر: Elsevier 
سال نشر: 2020 
تعداد صفحات: 440
[430] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 10 Mb 

قیمت کتاب (تومان) : 46,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 2


در صورت تبدیل فایل کتاب Polymer Nanocomposite Membranes for Pervaporation () به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب غشاهای نانوکامپوزیت پلیمری برای تبخیر () نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب غشاهای نانوکامپوزیت پلیمری برای تبخیر ()



غشاهای نانوکامپوزیت پلیمری برای تخلخل کاربردهای اخیر را در عملکرد تبخیر نانوکامپوزیت های پلیمری در مقیاس های طولی مختلف ارزیابی می کند. این کتاب اثرات طیف وسیعی از نانوپرکننده ها، پراکندگی آنها، اثر پلیمرهای مختلف و نانومواد آلی و معدنی در فرآیند تبخیر را مورد بحث قرار می دهد. علاوه بر این، این کتاب به بررسی این موضوع می‌پردازد که چگونه خواص مختلف انواع مواد نانوکامپوزیت، آنها را برای استفاده در انواع مایعات بهتر می‌کند، در حالی که چالش‌های استفاده از نانوکامپوزیت‌های مختلف برای این منظور را به طور موثر و ایمن مورد بحث قرار می‌دهد. به طور خاص، نانوکامپوزیت‌های پلیمری برای پراکندگی در مقیاس نانو گرم، برهم‌کنش‌های پرکننده/پلیمر، و مورفولوژی مورد بررسی قرار می‌گیرند.

این یک منبع مرجع مهم برای دانشمندان مواد، مهندسین شیمی و مهندسان محیط‌زیست است که می‌خواهند درباره چگونگی پلیمر بیشتر بدانند. نانوکامپوزیت ها برای موثرتر کردن فرآیند جداسازی تبخیر استفاده می شوند.


توضیحاتی درمورد کتاب به خارجی

Polymer Nanocomposite Membranes for Pervaporation assesses recent applications in the pervaporation performance of polymer nanocomposites of different length scales. The book discusses the effects of a range of nanofillers, their dispersion, the effect of different polymers, and organic and inorganic nanomaterials in the pervaporation process. In addition, the book explores how the different properties of a variety of nanocomposite materials make them better for use in different types of liquids, while also discussing the challenges of using different nanocomposites for this purpose effectively and safely. In particular, polymer nanocomposites for g nanoscale dispersion, filler/polymer interactions, and morphology are addressed.

This is an important reference source for materials scientists, chemical engineers and environmental engineers who want to learn more about how polymer nanocomposites are being used to make the pervaporation separation process more effective.



فهرست مطالب

Cover
Polymer Nanocomposite Membranes for Pervaporation
Copyright
Contents
List of contributors
Preface
1 Polymer nanocomposite membranes for pervaporation: an introduction
	1.1 Introduction
	1.2 Basic principles of pervaporation
		1.2.1 Solution-diffusion model
		1.2.2 Pore flow model
		1.2.3 Permeability: a normalized flux
		1.2.4 Selectivity: an intrinsic membrane properties
	1.3 Membranes for pervaporation
		1.3.1 Inorganic membranes
		1.3.2 Mixed matrix membranes
		1.3.3 Polymer membranes
	1.4 Factors affecting the pervaporation
		1.4.1 Pressure
		1.4.2 Concentration polarization and partition coefficient
		1.4.3 Temperature
		1.4.4 Membrane thickness
	1.5 Advantages of separation using pervaporation process
	1.6 Conclusions
	References
2 Nanocellulose/polymer nanocomposite membranes for pervaporation application
	2.1 Introduction
		2.1.1 Design and choice of membrane materials for pervaporation
	2.2 Nanocellulose isolation methods
	2.3 Nanocellulose/polymer nanocomposite membranes for pervaporation application
		2.3.1 Cellulose-polydimethylsiloxane blends for pervaporation
		2.3.2 Cellulose/poly(vinyl alcohol) membranes for pervaporation
		2.3.3 Cellulose acetate/polyacrylonitrile membranes for pervaporation
		2.3.4 C60-filled ethyl cellulose hybrid membranes for pervaporation
		2.3.5 Cellulose acetate membrane filled with metal oxide particles for pervaporation
		2.3.6 Ethyl cellulose reinforced with natural zeolite membranes for evaporation
		2.3.7 Ethyl cellulose membranes for pervaporation of water, hydrazine, and monomethyl hydrazine
		2.3.8 Blend membranes of sodium alginate and (hydroxyethyl) cellulose for pervaporation
		2.3.9 Ethyl cellulose reinforced with TiO2 membranes for pervaporation
		2.3.10 Bacterial cellulose/alginate blend membranes for pervaporation
	2.4 Conclusions
	References
3 Biobased (nanochitin, nanochitosan) polymer nanocomposite membranes and their pervaporation applications
	3.1 Introduction
	3.2 Pervaporation of chitin and chitosan membranes
	3.3 Chitin membranes
	3.4 Chitosan membranes
		3.4.1 Modified chitosan membranes for pervaporation
		3.4.2 Chitosan/organic membranes
			3.4.2.1 Chitosan/polybenzoimidazole membrane
			3.4.2.2 Chitosan/poly(n-vinyl-2-pyrrolidone) membrane
			3.4.2.3 Chitosan/polyvinyl alcohol membrane
			3.4.2.4 Chitosan/poly(acrylic acid) membrane
			3.4.2.5 Chitosan/polyvinyl sulfate membrane
			3.4.2.6 Chitosan/sodium alginate membrane
			3.4.2.7 Chitosan/cellulose membrane
			3.4.2.8 Chitosan/carrageenan membrane
			3.4.2.9 Chitosan/gelatin membrane
			3.4.2.10 Chitosan/glutaraldehyde membrane
			3.4.2.11 Chitosan/polyaniline membrane
		3.4.3 Chitosan/inorganic membranes
			3.4.3.1 Chitosan/clay membrane
			3.4.3.2 Chitosan/titanium dioxide membrane
			3.4.3.3 Chitosan/ferric oxide membrane
			3.4.3.4 Chitosan/functionalized graphene sheets membrane
			3.4.3.5 Chitosan/NaY membrane
			3.4.3.6 Chitosan/silica membrane
			3.4.3.7 Chitosan/sulfosuccinic acid membrane
			3.4.3.8 Chitosan/toluene-2,4-diisocyanate membrane
			3.4.3.9 Chitosan/reduced graphene oxide membrane
			3.4.3.10 Chitosan/phosphotungstic acid membrane
			3.4.3.11 Phosphorylated chitosan membrane
			3.4.3.12 Sulfonized chitosan membrane
			3.4.3.13 Chitosan/multiwall carbon nanotube/silver membrane
			3.4.3.14 Chitosan/Mxene membrane
			3.4.3.15 Chitosan/boehmite membrane
		3.4.4 Chitosan hybrid membranes
			3.4.4.1 Sodium alginate/chitosan/multiwall carbon nanotube membrane
			3.4.4.2 Chitosan/PVA/multiwall carbon nanotube membrane
			3.4.4.3 Chitosan/PVA/Ag membrane
			3.4.4.4 Chitosan/silica/polytetrafluoroethylene membrane
			3.4.4.5 Chitosan/iron oxide/PAN membrane
			3.4.4.6 Chitosan/silica/PAN/PEG membrane
			3.4.4.7 Chitosan/aluminum-based metal organic framework membrane
	3.5 Conclusion
	References
	Further reading
4 Pervaporation performance of polymer/clay nanocomposites
	4.1 Introduction
		4.1.1 Polymer nanocomposites
		4.1.2 Structure of nanoclay
		4.1.3 Organic modification of nanoclay
		4.1.4 Polymer nanoclay composites
	4.2 Pervaporation characteristics
		4.2.1 Transport mechanism
		4.2.2 Solution diffusion mechanism
		4.2.3 Pore flow mechanism
	4.3 Factors affecting membrane performance
		4.3.1 Effect of nanoclay content in pervaporation process
		4.3.2 Feed composition
		4.3.3 Temperature
		4.3.4 Concentration polarization
	4.4 Conclusions
	References
5 Carbon nanotubes-polymer nanocomposite membranes for pervaporation
	Nomenclature
		Abbreviations
		Symbols
	5.1 Introduction
	5.2 Pervaporation
		5.2.1 Solution-diffusion model
		5.2.2 Separation characteristics of pervaporation membranes
	5.3 Polymer nanocomposites
	5.4 Carbon nanotubes
		5.4.1 Carbon nanotubes functionalization
			5.4.1.1 Purification and oxidation of carbon nanotubes
			5.4.1.2 Noncovalent functionalization of carbon nanotubes
			5.4.1.3 Covalent functionalization of carbon nanotubes
	5.5 PV application of carbon nanotubes-polymer nanocomposite membranes
		5.5.1 Dehydration of solvents and alcohols
		5.5.2 Separation of organic–organic mixtures
		5.5.3 Recovery of organics from aqueous solutions
	5.6 Conclusions
	References
6 Graphene-based polymer nanocomposite membranes for pervaporation
	6.1 Introduction
	6.2 Graphene
		6.2.1 Structure and properties of graphene and its derivatives
		6.2.2 Graphene membranes—synthesis and characterization
	6.3 Graphene-based membranes for pervaporation
		6.3.1 Graphene oxide-based membranes
		6.3.2 Reduced graphene oxide membranes
		6.3.3 Hybrid graphene oxide membranes
		6.3.4 Functionalized graphene oxide membranes
		6.3.5 Quantum dot membranes
	6.4 Conclusions and future aspects
	References
7 Fullerene and nanodiamond-based polymer nanocomposite membranes and their pervaporation performances
	7.1 Introduction
	7.2 Pervaporation
	7.3 Membranes for pervaporation
	7.4 Nanodiamond
	7.5 Pervaporation performance of fullerenes-based nanocomposite membranes
	7.6 Membranes modified with fullerenes and derivatives
		7.6.1 Fullerene-based nanocomposites and its pervaporation
	7.7 Conclusions
	References
8 Polymer nanocomposite membranes for pervaporation desalination process
	8.1 Introduction
	8.2 Synthesis methods of polymer nanocomposite pervaporation membranes
		8.2.1 Physical blending
		8.2.2 Sol–gel synthesis
		8.2.3 In situ polymerization
		8.2.4 Self-assembly
	8.3 Factors affecting the performance of pervaporation desalination membranes
		8.3.1 Selectivity and nature of membrane material
		8.3.2 Diffusivity and nature of the filler
		8.3.3 Salt transport suppression
		8.3.4 Operating temperature
	8.4 Polymer membranes for pervaporation desalination
		8.4.1 Cellulose acetate membranes
		8.4.2 Polyacrylonitrile and polyvinyl alcohol-based membranes
		8.4.3 Poly(vinyl alcohol)/polyvinylidene fluoride pervaporation membrane
		8.4.4 PEBAX membrane
		8.4.5 Tubular pervaporation membrane
		8.4.6 Sulfonated poly(styrene-ethylene/ butylenes- styrene) block copolymer membrane
	8.5 Polymer nanocomposite membranes for pervaporation desalination
		8.5.1 Mixed matrix membranes for pervaporation desalination
		8.5.2 Self-assembled membranes
		8.5.3 Sol–gel synthesized membranes
	8.6 Conclusion and future aspects
	References
9 Polymer/polyhedral oligomeric silsesquioxane nanocomposite membranes for pervaporation
	9.1 Introduction
	9.2 Polyhedral oligomeric silsesquioxane
		9.2.1 Different types of POSS
		9.2.2 Synthesis of POSS
		9.2.3 Properties of POSS
		9.2.4 Applications of POSS
	9.3 Pervaporation performance of polymer/POSS membranes
		9.3.1 Separation of azeotropic mixtures and organic solvents
	9.4 Factors affecting the pervaporation through polymer membrane
		9.4.1 Effect of free volume
		9.4.2 Nature of polymers
		9.4.3 Nature of filler particles
		9.4.4 Effect of temperature
		9.4.5 Nature of penetrants
		9.4.6 Degree of cross-linking
	9.5 Applications of polyhedral oligomeric silsesquioxane-embedded polymeric systems
		9.5.1 Dehydration of ethanol
		9.5.2 Ethanol recovery
		9.5.3 Separation of organic mixtures
		9.5.4 Water treatment
		9.5.5 Desulfurization of fuels
	9.6 Challenges and future aspects
	References
10 Nanometal and metal oxide-based polymer nanocomposite membranes for pervaporation
	10.1 Introduction
	10.2 Synthesis of polymer–nanometal nanocomposite
		10.2.1 Synthesis of metal/metal oxide nanoparticles
			10.2.1.1 Physical method
				10.2.1.1.1 Mechanical grinding
				10.2.1.1.2 Melt mixing
				10.2.1.1.3 Evaporation
				10.2.1.1.4 Laser ablation
				10.2.1.1.5 Sputtering
			10.2.1.2 Chemical methods
				10.2.1.2.1 Chemical reduction
				10.2.1.2.2 Chemical precipitation
				10.2.1.2.3 Sol–gel technique
				10.2.1.2.4 Hydrothermal method
				10.2.1.2.5 Microemulsion technique
			10.2.1.3 Biological method
	10.3 Direct use of nanometal and metal oxides as membrane
	10.4 Nanometal and metal oxide-based polymer–metal nanocomposites membranes
		10.4.1 Grafting of nanoparticles to polymer
		10.4.2 Incorporation of nanoparticles in polymer
		10.4.3 Intermatrix synthesis technique
		10.4.4 Silver nanoparticle-based polymer–metal nanocomposites membranes
		10.4.5 Pervaporation using Ag polymer–metal nanocomposites membranes
		10.4.6 Iron nanoparticle -based polymer–metal nanocomposite membranes
			10.4.6.1 Pervaporation with iron polymer–metal nanocomposites membranes
				10.4.6.1.1 Polyvinyl alcohol-based iron polymer–metal nanocomposite membranes
				10.4.6.1.2 Alginate–iron nanoparticle nanocomposite
				10.4.6.1.3 Chitosan–iron nanoparticle nanocomposite
			10.4.6.2 Characterization of iron polymer–metal nanocomposites membranes
				10.4.6.2.1 Characterization of polyvinyl alcohol–iron nanoparticle composite membrane
				10.4.6.2.2 Characterization of alginate–iron nanoparticle composite membrane
		10.4.7 Pervaporation performance of alumina nanoparticle -based PMNC membranes
			10.4.7.1 Nanoalumina as membrane
			10.4.7.2 Silver polymer–metal nanocomposites membranes
		10.4.8 Pervaporation using titanium nanoparticle-based polymer–metal nanocomposite membrane
		10.4.9 Gold nanoparticle-based polymer–metal nanocomposite membrane
			10.4.9.1 Plasmon pervaporation
		10.4.10 Polymer–metal nanocomposites based on nano-MgO and ZnO
	10.5 Conclusions
	Acknowledgment
	References
11 Modified zeolite-based polymer nanocomposite membranes for pervaporation
	11.1 Introduction
	11.2 Water and alcohol-selective zeolites
	11.3 Mechanism of water/alcohol separation in zeolite
		11.3.1 The separation mechanism in zeolite particles
		11.3.2 The separation mechanism through mixed matrix membranes and inorganic fillers incorporated composite membranes
	11.4 Fabrication of zeolite-filled nanocomposite membranes
	11.5 Zeolite–polymer compatibility
		11.5.1 Predicting the combination of zeolite and polymer
			11.5.1.1 Toward compatible zeolite–polymer mixed matrix membranes
			11.5.1.2 Inorganic bridging agents
			11.5.1.3 Organic bridging agents
			11.5.1.4 Alternative strategies for improving compatibility
	11.6 Zeolite–polymer membrane performances in pervaporation
	11.7 Conclusions
	References
12 Pervaporation and pervaporation-assisted esterification processes using nanocomposite membranes
	12.1 Introduction
	12.2 Esters and esterification
	12.3 Combined esterification and reaction systems
	12.4 A unique separation process: pervaporation
		12.4.1 General mechanism and basic characteristics of pervaporation process
	12.5 Pervaporation membrane reactor
	12.6 Membranes for membrane reactors
	12.7 Nanocomposite membranes
		12.7.1 Nanocomposite membranes for pervaporation and pervaporation-assisted esterification
	12.8 Conclusions and future recommendations
	References
13 Polymer/metal-organic frameworks membranes and pervaporation
	13.1 Introduction
	13.2 Preparation methods
	13.3 Hydrophobic polymer/metal-organic frameworks membranes for organics recovery
		13.3.1 Polydimethylsiloxane/metal-organic frameworks membranes
		13.3.2 Poly(ether-block-amide)/metal-organic frameworks membranes
		13.3.3 PTMPS/metal-organic frameworks membranes
	13.4 Hydrophilic polymer/metal-organic frameworks membrane for organics dehydration
		13.4.1 Metal-organic frameworks/poly(vinyl alcohol) membranes
		13.4.2 Metal-organic frameworks/polybenzimidazole membranes
		13.4.3 Metal-organic frameworks/chitosan membranes
	13.5 Challenges and perspectives
	13.6 Final remarks
	Acknowledgment
	References
14 Computational modeling of pervaporation process
	14.1 Definition
	14.2 Pervaporation performance
		14.2.1 Enrichment factor
		14.2.2 Separation factor
	14.3 Process conditions
	14.4 Mass transfer in pervaporation
		14.4.1 Pore flow model
		14.4.2 Solution-diffusion model
			14.4.2.1 Sorption
			14.4.2.2 Diffusion
			14.4.2.3 Desorption
		14.4.3 Modified solution-diffusion model
		14.4.4 Thermodynamics model
		14.4.5 Maxwell–Stefan model
		14.4.6 Computational model
	14.5 Transport properties in pervaporation
	14.6 Sorption of pure liquid i in an amorphous polymer
		14.6.1 Time-dependence of sorption
		14.6.2 Time-lag experiment
		14.6.3 Inverse gas chromatography method
	14.7 Pervaporation modeling
		14.7.1 Determination of sorption coefficient (S)
		14.7.2 Determination of diffusivity (D)
		14.7.3 Determination of permeability (P)
		14.7.4 Modified pervaporation process
	14.8 Predictive model
		14.8.1 Polarity and solubility parameter
		14.8.2 Interfacial thermodynamics
		14.8.3 Chromatographic property
		14.8.4 Contact angle
		14.8.5 Physicochemical properties-process conditions
	14.9 Conclusion
	References
15 Hybrid pervaporation process
	15.1 Introduction
	15.2 Distillation process
	15.3 Hybrid process parameters
	15.4 Hybrid distillation–pervaporation process
	15.5 Simulations of hybrid distillation–pervaporation process
	15.6 Other pervaporation hybrid processes
	15.7 Advantages of hybrid pervaporation process
	15.8 Conclusion
	References
Index
Back Cover




نظرات کاربران