دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [35]
نویسندگان: Nandi A.K.
سری: Polymer Chemistry Series
ISBN (شابک) : 9781788018791
ناشر: The Royal Society of Chemistry
سال نشر: 2021
تعداد صفحات: 450
[451]
زبان: english
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 29 Mb
در صورت تبدیل فایل کتاب Polymer Functionalized Graphene به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب گرافن عامل دار پلیمری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
تحقیقات بسیار متنوعی در مورد گرافن عامل دار پلیمری (PFG) وجود دارد. عملکرد گرافن برای بهبود سازگاری با پلیمرها ضروری است. کاربردهای این هیبریدهای پلیمری گرافن شامل سنجش شیمیایی و بیولوژیکی، دستگاه های فتوولتائیک، ابرخازن ها و باتری ها، مواد دی الکتریک و وسایل نقلیه انتقال دارو/ژن است. این کتاب با پوشش دو روش (کووالانسی و غیرکووالانسی) برای تولید گرافن عامل دار پلیمری، سنتز، خواص و کاربردهای این مواد جدید را روشن می کند. فصلها ویژگیهای فیزیکی، نوری، مکانیکی و الکترونیکی، کاربردهای گرافن عاملدار پلیمری در برداشت و ذخیرهسازی انرژی، و کاربردها در پزشکی و مهندسی زیستی را پوشش میدهند. نوشته شده توسط یک متخصص در این زمینه، گرافن عاملدار پلیمری مورد توجه دانشجویان فارغ التحصیل و محققان در شیمی پلیمر و علوم نانو خواهد بود.
There is an immense variety of research on polymer functionalized graphene (PFG). Functionalization of graphene is necessary for improvement of the compatibility with polymers. Applications of these graphene polymer hybrids include in chemical and biological sensing, photovoltaic devices, supercapacitors and batteries, dielectric materials and drug/gene delivery vehicles. This book will shed light on the synthesis, properties and applications of these new materials, covering two methods (covalent and noncovalent) for producing polymer functionalized graphene. Chapters cover physical, optical, mechanical and electronic properties, applications of polymer functionalized graphene in energy harvesting and storage, and uses in biomedicine and bioengineering. Written by an expert in the field, Polymer Functionalized Graphene will be of interest to graduate students and researchers in polymer chemistry and nanoscience
Cover Half Title Polymer Chemistry Series Polymer Functionalized Graphene Copyright Preface Acknowledgement Dedicated Contents 1. Introduction 1.1 Introduction 1.2 Short History of Graphene 1.3 Synthesis of Graphene 1.4 Graphene Oxide 1.4.1 Synthesis of GO 1.5 Reduced Graphene Oxide (rGO) 1.5.1 Synthesis of rGO 1.6 Characterization of Graphene/Graphene Oxide 1.6.1 Microscopy 1.6.2 Spectroscopy 1.6.2.1 FTIR Spectra 1.6.2.2 Raman Spectra 1.6.2.3 UV-Vis Spectra 1.6.2.4 Fluorescence Spectra 1.7 Necessity for the Functionalization of Graphene 1.7.1 Necessity of Polymer Functionalization 1.8 Applications 1.8.1 Applications of Polymer Functionalized Graphene 1.9 Scope References 2. Covalent Functionalization of Polymers 2.1 Covalent Functionalization 2.2 ‘Grafting to’ Method 2.2.1 Esterification Reaction 2.2.2 Amidation Reaction 2.2.3 Click Chemistry 2.2.4 Nitrene Chemistry 2.2.5 Radical Addition 2.2.6 Other Methods 2.3 ‘Grafting from’ Method 2.3.1 Atom Transfer Radical Polymerization (ATRP) 2.3.2 Reversible Addition Fragmentation Chain Transfer (RAFT) Polymerization 2.4 ‘Grafting to’ Versus ‘Grafting from’ Technique 2.5 Scope References 3. Noncovalent Polymer Functionalization of Graphene 3.1 Introduction 3.2 π-stacking Interaction 3.3 H-bonding Interactions 3.4 Surfactant Induced Functionalization 3.5 Miscellaneous Nonbonding Interactions 3.6 Mixed Noncovalent and Covalent Functionalization 3.7 Scope References 4. Physical Properties of Polymer Functionalized Graphene 4.1 Morphology 4.1.1 Transmission and Scanning Electron Microscopy 4.1.2 Atomic Force Microscopy (AFM) 4.2 Structural Study 4.2.1 Fourier Transformed Infrared Spectroscopy (FTIR) 4.2.2 Raman Spectroscopy 4.2.3 X-ray Photoelectron Spectroscopy (XPS) 4.2.4 Wide Angle X-ray Scattering (WAXS) 4.3 Thermal Properties 4.3.1 Thermogravimetric Analysis (TGA) 4.3.2 Differential Scanning Calorimetry (DSC) 4.4 Conclusion References 5. Optical Properties of Polymer Functionalized Graphene: Application as Optical Sensor 5.1 Introduction 5.2 UV–Vis Spectra 5.3 Photoluminescence (PL) Spectra 5.3.1 Fluorescence in Polymer Functionalized Graphene 5.3.1.1 Methyl Cellulose Functionalized GO in Enhancing Fluorescence 5.3.1.1.1. Sensing of Picric Acid by GO–MC 5.3.1.2 GO-Poly(Vinyl Alcohol) Hybrid in Enhancing Fluorescence 5.3.1.2.1 GO–PVA Hybrid for Sensing of Au3+ 5.3.1.3 Covalently Functionalized Block Copolymer Enhancing Fluorescence and Sensing of 2,4,6-Trinitrophenol 5.3.2 Fluorescence Quenching 5.3.3 Fluorescence Properties of PDMAEMA Grafted rGO (RGP): pH Dependent Doping 5.3.3.1 Proof of pH Dependent p- and n-type Doping from Raman Spectra 5.3.4 Fluorescence Properties of GO-g-poly(ϵ-caprolactone) (PCL)-b-poly(dimethyl Aminoethyl Methacrylate) (GPCLD): LCST, Sensing and pH Dependent Doping 5.3.4.1 Temperature Dependent Fluorescence Properties of GPCLD: LCST 5.3.4.2 pH Dependent Fluorescence Properties of GPCLD: Sensing of CO2 5.3.4.3 pH Dependent Fluorescence Properties of GPCLD: Localized Doping of Graphene 5.3.4.4 Temperature Dependent Fluorescence of GPCLD at Different pH 5.3.4.5 Temperature Dependent Fluorescence of GPCLD Film Cast at Basic pH 5.3.5 Fluorescent Amylose-functionalized Graphene: Chiral Detection 5.3.6 β-Cyclodextrin Functionalized Graphene: Fluorescent Detection of Cholesterol 5.3.7 Fluorescent Block Copolymer-functionalized Graphene Oxide: Efficient Temperature Sensing 5.4 Scope References 6. Mechanical Properties of Polymer Functionalized Graphene 6.1 Introduction 6.2 Dynamic Mechanical Properties 6.2.1 Covalently Functionalized Graphene Nanocomposites 6.2.1.1 GO-g PMMA/PVDF Nanocomposite 6.2.1.2 GO-g-polybenzimidazole/Epoxy 6.2.1.3 GO-g-polybenzimidazole/PVDF Nanocomposite 6.2.1.4 Ionic Liquid Integrated Graphene/PVDF Composite 6.2.2 Noncovalently Functionalized Graphene Nanocomposites 6.2.2.1 Polythiophene-graft-poly(Methyl Methacrylate) RGO/PVDF Composites 6.2.2.2 Functionalized GO/Epoxy Nanocomposite 6.2.3 Functionalized Graphene/Polystyrene Composites 6.3 Mechanical Properties 6.3.1 Covalently Functionalized Graphene Nanocomposites 6.3.1.1 GO-g-PMMA/PVDF Nanocomposite 6.3.1.2 f-(PVA)GO/PVA Composite 6.3.1.3 Hyperbranched Polyamide Functionalized GO–Epoxy Nanocomposites 6.3.1.4 Ionic Liquid Integrated Graphene/PVDF Composite 6.3.1.5 Poly (2-Hydroxyethyl Methacrylate) Functionalized Graphene (PHEMA-G)/Poly(p-phenylene Benzobisoxazole) (PBO) Composite... 6.3.2 Noncovalently Functionalized Graphene Nanocomposites 6.3.2.1 Polythiophene-graft-poly(Methyl Methacrylate) RGO/PVDF Composites 6.3.2.2 Homo-telechelic Polymer Functionalized rGO 6.3.2.3 Styrene Functionalized Graphene/Polystyrene Composites 6.3.2.4 PSS-g-rGO/Epoxy Composite 6.4 Conclusion References 7. Electronic Properties of Polymer Functionalized Graphene 7.1 Introduction 7.2 Conductivity 7.2.1 Dc Conductivity 7.2.1.1 Covalently Functionalized Graphene 7.2.1.1.1 rGO-g-PMMA (MG)/PVDF Composite 7.2.1.1.2 GO-imidazolium Ionic Liquid (GO-IL)/PVDF Composites 7.2.1.1.3 Polyaniline Grafted GO (G-graft-PANI)/PVDF Composites 7.2.1.1.4 Poly(Hydroxyethyl Thiophene) Grafted rGO (PHET-g-rGO) 7.2.1.1.5 PANI-g-a-RGO Hybrid 7.2.1.1.6 pH Dependent Conductivity of rGO-PDMAEMA and GO-g-PCL13-b-PDMAEMA117 7.2.1.2 Noncovalently Functionalized Graphene 7.2.1.2.1 Sulphonated Graphene (SG)/Poly(Vinyl Alcohol) Composite 7.2.1.2.2 rGO Functionalized PT-g-PMMA/PVDF Composite 7.2.1.2.3 Ionic Liquid Functionalized Graphene (ILFG)/PEDOT Composite 7.2.1.2.4 Polypropylene/CSA Doped PANI (r-PANI) and rGO Ternery Nanocomposite 7.2.1.2.5 PANI/GQD Nanocomposites 7.2.1.3 Conclusion 7.2.2 Ac Conductivity 7.2.2.1 Covalently Polymer Functionalized Systems 7.2.2.1.1 Polybenzimidazole Functionalized GO/PVDF Composite 7.2.2.1.2 Poly(Vinyl Alcohol)-functionalized GO/PVDF Composites 7.2.2.2 Noncovalently Polymer Functionalized Systems 7.2.2.2.1 Perylenetetracarboxylic Acid (Py) Functionalized Exfloiated Graphene/PVDF Composite 7.2.3 Conclusion 7.3 Ionic Conductivity 7.3.1 Proton Conductivity 7.3.1.1 Sulfonated Polystyrene/Graphene Nanocomposite 7.3.1.2 Sulfonated Poly(Ether Ether Ketone) Grafted Graphene Oxide Based Composites 7.3.2 Hydroxide Ion Conductivity 7.3.3 Conclusion 7.4 Current–Voltage (I–V) Properties 7.4.1 Covalently Functionalized Systems 7.4.1.1 rGO-grafted PDMAEMA (RGP): Rectification and NDR Properties 7.4.1.2 GO-grafted Triphenylamine Based Polyazomethine (TPAPAM): Electronic Memory 7.4.1.3 GO-g-PCL13-b-PDMAEMA117:Effect of pH and Temperature, Localized Doping, Dedoping, and Redoping 7.4.2 Noncovalent Functionalized Systems 7.4.2.1 Sulfonated Graphene/Poly(Vinyl Alcohol) Composites: Variation with Composition 7.4.2.2 PEDOT-ILFG and PEDOT-RGO Nanocomposites: Effect of Functionalization 7.4.2.3 Dihybrid and Trihybrid GO Hydrogels and Xerogels: Strong Rectification in the Gel State 7.5 Conclusion and Future Perspectives References 8. Polymer Functionalized Graphene as Dielectric Material 8.1 Introduction 8.2 Covalent Functionalized Graphene/Polymer Systems 8.2.1 Systems with Increased Dielectric Properties 8.2.1.1 Ionic Liquid Integrated Graphene/PVDF Matrix 8.2.1.2 Polyaniline Functionalized Graphene/PVDF Composites 8.2.1.3 Diglycidyl Ether of Bisphenol-A Grafted RGO (DGEBA-RGO)/Epoxy Composite 8.2.1.4 rGO-LC/Polydimethylsiloxane Nanocomposites 8.2.1.5 Hyperbranched Aromatic Polyamide Functionalized Graphene Sheets (GS–HBA)/Thermoplastic Polyurethane (TPU) Composite 8.2.2 Systems with Decreased Dielectric Properties 8.2.2.1 Octa(Aminophenyl) Silsesquioxane (OAPS) Grafted GO/Polyimide (PI) Composites 8.3 Noncovalent Functionalized Graphene/Polymer Systems 8.3.1 Systems with Increased Dielectric Properties 8.3.1.1 Polythiophene-g-poly(Methyl Methacrylate) (PT-g-PMMA)-rGO/PVDF Composite 8.3.1.2 Perylene Tetracarboxylic Acid (Py)/Exfoliated Graphene (EG)/PVDF Composite 8.3.1.3 Poly(Sodium 4-styrenesulfonate) Functionalized Graphene/Epoxy Nanocomposites 8.3.2 Systems with Low Dielectric Properties 8.3.2.1 Reduced Polyaniline Decorated rGO/Polyimide Nanocomposite 8.4 Conclusion and Perspective References 9. Applications of Polymer Functionalized Graphene in Energy Harvesting: Photovoltaics 9.1 Introduction 9.2 Bulk Heterojunction (BHJ) Solar Cells 9.2.1 Graphene/PEDOT:PSS/(P3HT-PCBM)/ZnO Based BHJ Solar Cell 9.2.2 Graphene/PEDOT/CuPc/C60/BCP Based BHJ Solar Cell 9.2.3 Graphene Oxide/PEDOT:PSS Based BHJ Solar Cell 9.2.4 Graphene Nanoflakes/(PCDTBT/PC 71 BM) Based BHJ Solar Cell 9.2.5 rGO-PEDOT:PSS/PANI-Ru Based BHJ Solar Cell 9.3 Dye Sensitized Solar Cells 9.3.1 Replacement of TiO2 Active Layer in the Photoelectrode with an rGO Grafted PANI System 9.3.2 Replacement of the TiO2 Active Layer with Poly(Hydroxyethyl Thiophene) Grafted rGO 9.3.3 Replacement of the TiO2 Active Layer with a GQD/PT-g-P(MeO2MA-co-DMAEMA) Hybrid 9.3.4 Replacement of the TiO2 Active Layer with a Graphene Quantum Dot/PANI Hybrid 9.3.5 Replacement of TiO2 Active Layer with Graphene/Polymer Hybrid Xerogels 9.4 Replacement of the Pt Counter Electrode with PFG 9.5 Improving Electrolyte Performance with PFG 9.6 Perovskite Solar Cell 9.6.1 Poly[(5,6-difluoro-2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3‴-di(2-octyldo decyl)-2,2;5,2;5,2″-quaterthiophen-5,5‴-diyl)] as Hole Transporting Layer (HTL) 9.6.2 Graphene–AgNWs–Polycarbonate (MG-A-P) Film as Electron Transporting Layer 9.6.3 TFSA-doped Graphene PDMS as Hole Transporting Flexible Electrode 9.7 Controlling Grain and Crystal Size of Perovskites Using Polymer Additive and Enhancing PCE and Stability of the Cell 9.8 Conclusion References 10. Applications of Polymer Functionalized Graphene in Energy Harvesting: Fuel Cells 10.1 Introduction 10.2 Polymer Functionalized Graphene in Fuel Cells 10.2.1 Hydrogen Fuel Cell 10.2.1.1 Poly(Diallyl Dimethylammonium Chloride) Functionalized Graphene as Electrode Material 10.2.1.2 GO, Silicotungstic Acid and Poly(Vinyl Alcohol) (PVA) Hybrid for PEM 10.2.1.3 SGO/Glutaraldehyde/Poly(Vinyl Alcohol) Hybrid as PEM 10.2.1.4 SGO-Sulfonated Poly(Ether Sulfone) Composite as PEM 10.2.1.5 Sulphonated Graphene (SG)–Nafion Composite as PEM 10.2.1.6 IL/GO/Nafion Hybrid Membrane as PEM 10.2.1.7 Covalently Grafted IL-GO/Imidazolium Functionalized Bisphenol-A Polysulfone Composite 10.2.1.8 Sulfonated Organosilane Functionalized GO/Sulfonated Poly(Ether Ether Ketone) Hybrid as PEM 10.2.1.9 Phosphonic Acid-functionalized GO(PGO)/Nafion Hybrid as PEM 10.2.1.10 Phosphonated Graphene Oxide/Polybenzimidazole Composite as PEM 10.2.2 Polymer Functionalized Graphene as Anion Exchange Membrane (AEM) 10.2.2.1 IL-GO/Imidazolium-functionalized PPO for AEM 10.2.2.2 Imidazolium-GO/Imidazolium Functionalized PEEK as AEM 10.2.2.3 Quaternary Ammonium Functionalized GO/Quaternized Poly(Arylene Ether) Random Copolymer for AEM 10.2.3 Methanol Fuel Cell 10.2.3.1 Catalyst Layers 10.2.3.2 Engineered Graphene Materials for Membranes 10.2.3.3 Sandwiched Sulfonated GO/Sulfonated Poly(Ether Ether Ketone) as PEM in DMFC 10.2.3.4 Engineered Graphene Materials for Bipolar Plates 10.3 Conclusion References 11. Polymer Functionalized Graphene in Energy Storage Devices 11.1 Introduction 11.2 Solid State Battery 11.2.1 PFG as Anode in a Solid State Battery 11.2.1.1 rGO/PANI/TiO2 Nanohybrid as Anode 11.2.1.2 Polyacrylonitrile Grafted HOPG as Anode 11.2.1.3 K-FGF/PANI/PDAAQ and PDAAQ/MWCNT/CTAB Hybrid as an Effective Anode 11.2.2 PFGs as Cathode in Solid State Battery 11.2.2.1 Graphene-graft-poly(2,2,6,6-tetramethyl Piperidin-1-oxyl-4-yl Methacrylate) as Cathode 11.2.2.2 Nitrogen Doped Graphene Functionalized Polyacrylonitrile as Cathode for LIS Battery 11.2.3 PFGs as Electrolyte in a Solid State Battery 11.2.3.1 PEO/LiClO4/Polyethylene Glycol-grafted Graphene as Electrolyte 11.2.3.2 Polymeric Ionic Liquid Lithium Bis(trifluoromethanesulfonyl)Imide-RGO Grafted Poly-(Ethylene Glycol) [IL (TFSI)-FGbrush] as Polymer Electrolyte 11.3 Supercapacitors 11.3.1 Graphene as a Good Supercapacitor Material 11.3.2 Polymer Functionalized Graphene: As an Efficient Supercapacitor Material 11.3.2.1 Symmetric Supercapacitors with PEDOT/Graphene Composites 11.3.2.2 Symmetric Supercapacitors with Graphene/Polypyrrole/Cu2O–Cu(OH)2 Ternary Nanocomposite 11.3.2.3 Symmetric Supercapacitors with Graphene Quantum Dot-doped Polyaniline 11.3.2.4 Symmetric Supercapacitor from Reduced Graphene Oxide@Polyaniline/MoS2 Hybrid 11.3.2.5 Symmetric Supercapacitor from Graphene Hydrogel(GH)/Polyaniline(PANI) Nanocomposite 11.3.2.6 Symmetric Supercapacitor from RGO-grafted PANI Aerogel 11.3.2.7 Asymmetric Supercapacitor from RGO-sulphonated PANI Composite 11.4 Conclusion References 12. Polymer Functionalized Graphene in Biomedical and Bio-technological Applications 12.1 Introduction 12.2 Polymer Functionalized Graphene as Biosensors 12.2.1 Dopamine-functionalized Polyethylene Glycol and 2,5-thiophenediylbisboronic Acid Conjugated Graphene as Fluorometric Bio... 12.2.2 Graphene Quantum Dots and Pyrene-functionalized Molecular Beacon Probes for Fluorimetric Sensing of MicroRNA 12.2.3 PEGMA, Oligonucleotides and GO Nanoassembly for Fluorimetric Detection of DNA, miR-10b, Thrombin and Adenosine 12.2.4 GO Based Molecular Imprinted Polymer (GO-MIP) for Amperometric Detection of Total Cholesterol 12.2.5 GO-copolymer Hybrid for Amperometric Detection of Dengue Virus 12.2.6 GO-PANI/Ag or Au NP Hybrid for Amperometric Detection of Vitamin C 12.3 Polymer Functionalized Graphene for Application in Drug Delivery 12.3.1 PNIPAM-grafted GO for Delivery of Both Hydrophilic and Hydrophobic Drugs 12.3.2 Starch Functionalized Graphene for pH Sensitive and Starch-mediated Drug Delivery 12.3.3 GO Conjugated Chitosan for the In Vitro and In Vivo Co-delivery of Anti-cancer Drugs 12.3.4 Polyurethane Grafted Sulphonated Graphene as Drug Delivery Vehicle 12.3.5 Poly(Vinyl Pyrrolidone)-functionalized GO as a Nanocarrier for Dual Drug Delivery 12.4 Polymer Functionalized Graphene for Application in Gene Delivery 12.4.1 GO Grafted with Positively Charged PEI for Transfection of Plasmid DNA 12.4.2 Injectable PEI-functionalized GO Hydrogel Based Angiogenic Gene Delivery System for Vasculogenesis and Cardiac Repair 12.4.3 Polyethylenimine and Polyethylene Glycol Dual-functionalized GO for High-efficiency Delivery of DNA and siRNA 12.4.4 Peptide Functionalized GO Nanocarrier for Gene Delivery Applications 12.4.5 GO–Chitosan Nanocomposites for Intracellular Delivery of Immunostimulatory CpG Oligodeoxynucleotides 12.5 Polymer Functionalized Graphene for Application in Cell Imaging 12.5.1 RGO Nanoribbons Functionalized with Polyethylene Glycol (rGONR–PEG) for Cell Imaging 12.5.2 GQDs Functionalized with Hyaluronic Acid for Cell Imaging 12.5.3 Magnetic GO Functionalized with Cyclodextrin–Hyaluronic Acid Polymer for Cancer Cell Imaging 12.6 Polymer Functionalized Graphene in Tissue Engineering 12.6.1 GO Functionalized with Polypeptide of L-lysine for Cardiac Tissue Engineering 12.6.2 Polymer Functionalized Graphene for Neural Tissue Engineering 12.6.2.1 rGO/POSS-PCL Conductive Composite for Neural Tissue Engineering 12.6.2.2 GO/PVDF Composite for Nerve Tissue Engineering 12.6.2.3 GO Functionalized with RGD Peptide and Poly(Lactide-co-glycolide) for Vascular Tissue Engineering 12.6.2.4 rGO Functionalized with Polyacrylamide for Skin Tissue Engineering 12.6.2.5 GO Functionalized with Polyethylene Glycol/Poly(Propylene Fumarate) for Bone Tissue Engineering 12.6.2.5.1 rGO Functionalized with Palladium Nanoparticle Anchored Polypyrrole for Bone Tissue Engineering 12.6.2.5.2 GO/Hydroxyapatite/Polysaccharide Composite for Bone Tissue Engineering 12.7 Polymer Functionalized Graphene in Body Implants 12.7.1 GO/Alginic Acid (AA, a Natural Polymer)/a Bioceramic (TCP) Composite for Bone Implant 12.7.2 GO/Polycaprolactone/Hydroxyapatite Based Bioactive Coating on Ti Alloy for Bone Implant 12.7.3 Amino Functionalized Graphene/Poly(Methyl Methacrylate-co-styrene) Copolymer for Effective Bone Cement Implant 12.7.4 GO-Polyetheretherketone for Orthopedic Implant 12.7.4.1 GO/Adiponectin-functionalized Sulfonated Poly(Etheretherketone) Composite with Effective Bone Implant and Photodisinfection 12.8 Polymer Functionalized Graphene for Wound Healing Applications 12.8.1 Ag/Graphene-polymer Hydrogel for Antibacterial and Wound Healing Application 12.8.2 rGO-poly(Diallyldimethylammonium Chloride)/Ag/AgCl Hybrid Material for Burn Wound Healing 12.8.3 Polydopamine-rGO in Mussel-inspired Electroactive and Antioxidative Scaffolds for Enhancing Skin Wound Healing 12.8.4 rGO-isabgol Nanocomposite Dressings for Enhanced Vascularization and Accelerated Wound Healing 12.8.5 TRGO-polydopanine-boronic Acid System for Diabetic Wound Healing 12.9 Conclusion References Subject Index