ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Polymer Functionalized Graphene

دانلود کتاب گرافن عامل دار پلیمری

Polymer Functionalized Graphene

مشخصات کتاب

Polymer Functionalized Graphene

ویرایش: [35] 
نویسندگان:   
سری: Polymer Chemistry Series 
ISBN (شابک) : 9781788018791 
ناشر: The Royal Society of Chemistry 
سال نشر: 2021 
تعداد صفحات: 450
[451] 
زبان: english 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 29 Mb 

قیمت کتاب (تومان) : 39,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 10


در صورت تبدیل فایل کتاب Polymer Functionalized Graphene به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب گرافن عامل دار پلیمری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب گرافن عامل دار پلیمری

تحقیقات بسیار متنوعی در مورد گرافن عامل دار پلیمری (PFG) وجود دارد. عملکرد گرافن برای بهبود سازگاری با پلیمرها ضروری است. کاربردهای این هیبریدهای پلیمری گرافن شامل سنجش شیمیایی و بیولوژیکی، دستگاه های فتوولتائیک، ابرخازن ها و باتری ها، مواد دی الکتریک و وسایل نقلیه انتقال دارو/ژن است. این کتاب با پوشش دو روش (کووالانسی و غیرکووالانسی) برای تولید گرافن عامل دار پلیمری، سنتز، خواص و کاربردهای این مواد جدید را روشن می کند. فصل‌ها ویژگی‌های فیزیکی، نوری، مکانیکی و الکترونیکی، کاربردهای گرافن عامل‌دار پلیمری در برداشت و ذخیره‌سازی انرژی، و کاربردها در پزشکی و مهندسی زیستی را پوشش می‌دهند. نوشته شده توسط یک متخصص در این زمینه، گرافن عاملدار پلیمری مورد توجه دانشجویان فارغ التحصیل و محققان در شیمی پلیمر و علوم نانو خواهد بود.


توضیحاتی درمورد کتاب به خارجی

There is an immense variety of research on polymer functionalized graphene (PFG). Functionalization of graphene is necessary for improvement of the compatibility with polymers. Applications of these graphene polymer hybrids include in chemical and biological sensing, photovoltaic devices, supercapacitors and batteries, dielectric materials and drug/gene delivery vehicles. This book will shed light on the synthesis, properties and applications of these new materials, covering two methods (covalent and noncovalent) for producing polymer functionalized graphene. Chapters cover physical, optical, mechanical and electronic properties, applications of polymer functionalized graphene in energy harvesting and storage, and uses in biomedicine and bioengineering. Written by an expert in the field, Polymer Functionalized Graphene will be of interest to graduate students and researchers in polymer chemistry and nanoscience



فهرست مطالب

Cover
Half Title
Polymer Chemistry Series
Polymer Functionalized Graphene
Copyright
Preface
Acknowledgement
Dedicated
Contents
1. Introduction
	1.1 Introduction
	1.2 Short History of Graphene
	1.3 Synthesis of Graphene
	1.4 Graphene Oxide
		1.4.1 Synthesis of GO
	1.5 Reduced Graphene Oxide (rGO)
		1.5.1 Synthesis of rGO
	1.6 Characterization of Graphene/Graphene Oxide
		1.6.1 Microscopy
		1.6.2 Spectroscopy
			1.6.2.1 FTIR Spectra
			1.6.2.2 Raman Spectra
			1.6.2.3 UV-­Vis Spectra
			1.6.2.4 Fluorescence Spectra
	1.7 Necessity for the Functionalization of Graphene
		1.7.1 Necessity of Polymer Functionalization
	1.8 Applications
		1.8.1 Applications of Polymer Functionalized Graphene
	1.9 Scope
	References
2. Covalent Functionalization of Polymers
	2.1 Covalent Functionalization
	2.2 ‘Grafting to’ Method
		2.2.1 Esterification Reaction
		2.2.2 Amidation Reaction
		2.2.3 Click Chemistry
		2.2.4 Nitrene Chemistry
		2.2.5 Radical Addition
		2.2.6 Other Methods
	2.3 ‘Grafting from’ Method
		2.3.1 Atom Transfer Radical Polymerization (ATRP)
		2.3.2 Reversible Addition Fragmentation Chain Transfer (RAFT) Polymerization
	2.4 ‘Grafting to’ Versus ‘Grafting from’ Technique
	2.5 Scope
	References
3. Noncovalent Polymer Functionalization of Graphene
	3.1 Introduction
	3.2 π-stacking Interaction
	3.3 H-bonding Interactions
	3.4 Surfactant Induced Functionalization
	3.5 Miscellaneous Nonbonding Interactions
	3.6 Mixed Noncovalent and Covalent Functionalization
	3.7 Scope
	References
4. Physical Properties of Polymer Functionalized Graphene
	4.1 Morphology
		4.1.1 Transmission and Scanning Electron Microscopy
		4.1.2 Atomic Force Microscopy (AFM)
	4.2 Structural Study
		4.2.1 Fourier Transformed Infrared Spectroscopy (FTIR)
		4.2.2 Raman Spectroscopy
		4.2.3 X-­ray Photoelectron Spectroscopy (XPS)
		4.2.4 Wide Angle X-­ray Scattering (WAXS)
	4.3 Thermal Properties
		4.3.1 Thermogravimetric Analysis (TGA)
		4.3.2 Differential Scanning Calorimetry (DSC)
	4.4 Conclusion
	References
5. Optical Properties of Polymer Functionalized Graphene: Application as Optical Sensor
	5.1 Introduction
	5.2 UV–Vis Spectra
	5.3 Photoluminescence (PL) Spectra
		5.3.1 Fluorescence in Polymer Functionalized Graphene
			5.3.1.1 Methyl Cellulose Functionalized GO in Enhancing Fluorescence
				5.3.1.1.1. Sensing of Picric Acid by GO–MC
			5.3.1.2 GO-­Poly(Vinyl Alcohol) Hybrid in Enhancing Fluorescence
				5.3.1.2.1 GO–PVA Hybrid for Sensing of Au3+
			5.3.1.3 Covalently Functionalized Block Copolymer Enhancing Fluorescence and Sensing of 2,4,6-­Trinitrophenol
		5.3.2 Fluorescence Quenching
		5.3.3 Fluorescence Properties of PDMAEMA Grafted rGO (RGP): pH Dependent Doping
			5.3.3.1 Proof of pH Dependent p-­ and n-­type Doping from Raman Spectra
		5.3.4 Fluorescence Properties of GO-­g-­poly(ϵ-­caprolactone) (PCL)-­b-­poly(dimethyl Aminoethyl Methacrylate) (GPCLD): LCST, Sensing and pH Dependent Doping
			5.3.4.1 Temperature Dependent Fluorescence Properties of GPCLD: LCST
			5.3.4.2 pH Dependent Fluorescence Properties of GPCLD: Sensing of CO2
			5.3.4.3 pH Dependent Fluorescence Properties of GPCLD: Localized Doping of Graphene
			5.3.4.4 Temperature Dependent Fluorescence of GPCLD at Different pH
			5.3.4.5 Temperature Dependent Fluorescence of GPCLD Film Cast at Basic pH
		5.3.5 Fluorescent Amylose-­functionalized Graphene: Chiral Detection
		5.3.6 β-­Cyclodextrin Functionalized Graphene: Fluorescent Detection of Cholesterol
		5.3.7 Fluorescent Block Copolymer-­functionalized Graphene Oxide: Efficient Temperature Sensing
	5.4 Scope
	References
6. Mechanical Properties of Polymer Functionalized Graphene
	6.1 Introduction
	6.2 Dynamic Mechanical Properties
		6.2.1 Covalently Functionalized Graphene Nanocomposites
			6.2.1.1 GO-­g PMMA/PVDF Nanocomposite
			6.2.1.2 GO-­g-­polybenzimidazole/Epoxy
			6.2.1.3 GO-­g-­polybenzimidazole/PVDF Nanocomposite
			6.2.1.4 Ionic Liquid Integrated Graphene/PVDF Composite
		6.2.2 Noncovalently Functionalized Graphene Nanocomposites
			6.2.2.1 Polythiophene-­graft-­poly(Methyl Methacrylate) RGO/PVDF Composites
			6.2.2.2 Functionalized GO/Epoxy Nanocomposite
		6.2.3 Functionalized Graphene/Polystyrene Composites
	6.3 Mechanical Properties
		6.3.1 Covalently Functionalized Graphene Nanocomposites
			6.3.1.1 GO-­g-­PMMA/PVDF Nanocomposite
			6.3.1.2 f-­(PVA)GO/PVA Composite
			6.3.1.3 Hyperbranched Polyamide Functionalized GO–Epoxy Nanocomposites
			6.3.1.4 Ionic Liquid Integrated Graphene/PVDF Composite
			6.3.1.5 Poly (2-­Hydroxyethyl Methacrylate) Functionalized Graphene (PHEMA-­G)/Poly(p-­phenylene Benzobisoxazole) (PBO) Composite...
		6.3.2 Noncovalently Functionalized Graphene Nanocomposites
			6.3.2.1 Polythiophene-­graft-­poly(Methyl Methacrylate) RGO/PVDF Composites
			6.3.2.2 Homo-­telechelic Polymer Functionalized rGO
			6.3.2.3 Styrene Functionalized Graphene/Polystyrene Composites
			6.3.2.4 PSS-­g-­rGO/Epoxy Composite
	6.4 Conclusion
	References
7. Electronic Properties of Polymer Functionalized Graphene
	7.1 Introduction
	7.2 Conductivity
		7.2.1 Dc Conductivity
			7.2.1.1 Covalently Functionalized Graphene
				7.2.1.1.1 rGO-­g-­PMMA (MG)/PVDF Composite
				7.2.1.1.2 GO-­imidazolium Ionic Liquid (GO-­IL)/PVDF Composites
				7.2.1.1.3 Polyaniline Grafted GO (G-­graft-­PANI)/PVDF Composites
				7.2.1.1.4 Poly(Hydroxyethyl Thiophene) Grafted rGO (PHET-­g-­rGO)
				7.2.1.1.5 PANI-­g-­a-­RGO Hybrid
				7.2.1.1.6 pH Dependent Conductivity of rGO-­PDMAEMA and GO-­g-­PCL13-­b-­PDMAEMA117
			7.2.1.2 Noncovalently Functionalized Graphene
				7.2.1.2.1 Sulphonated Graphene (SG)/Poly(Vinyl Alcohol) Composite
				7.2.1.2.2 rGO Functionalized PT-­g-­PMMA/PVDF Composite
				7.2.1.2.3 Ionic Liquid Functionalized Graphene (ILFG)/PEDOT Composite
				7.2.1.2.4 Polypropylene/CSA Doped PANI (r-­PANI) and rGO Ternery Nanocomposite
				7.2.1.2.5 PANI/GQD Nanocomposites
			7.2.1.3 Conclusion
		7.2.2 Ac Conductivity
			7.2.2.1 Covalently Polymer Functionalized Systems
				7.2.2.1.1 Polybenzimidazole Functionalized GO/PVDF Composite
				7.2.2.1.2 Poly(Vinyl Alcohol)-­functionalized GO/PVDF Composites
			7.2.2.2 Noncovalently Polymer Functionalized Systems
				7.2.2.2.1 Perylenetetracarboxylic Acid (Py) Functionalized Exfloiated Graphene/PVDF Composite
		7.2.3 Conclusion
	7.3 Ionic Conductivity
		7.3.1 Proton Conductivity
			7.3.1.1 Sulfonated Polystyrene/Graphene Nanocomposite
			7.3.1.2 Sulfonated Poly(Ether Ether Ketone) Grafted Graphene Oxide Based Composites
		7.3.2 Hydroxide Ion Conductivity
		7.3.3 Conclusion
	7.4 Current–Voltage (I–V) Properties
		7.4.1 Covalently Functionalized Systems
			7.4.1.1 rGO-­grafted PDMAEMA (RGP): Rectification and NDR Properties
			7.4.1.2 GO-­grafted Triphenylamine Based Polyazomethine (TPAPAM): Electronic Memory
			7.4.1.3 GO-­g-­PCL13-­b-­PDMAEMA117:Effect of pH and Temperature, Localized Doping, Dedoping, and Redoping
		7.4.2 Noncovalent Functionalized Systems
			7.4.2.1 Sulfonated Graphene/Poly(Vinyl Alcohol) Composites: Variation with Composition
			7.4.2.2 PEDOT-­ILFG and PEDOT-­RGO Nanocomposites: Effect of Functionalization
			7.4.2.3 Dihybrid and Trihybrid GO Hydrogels and Xerogels: Strong Rectification in the Gel State
	7.5 Conclusion and Future Perspectives
	References
8. Polymer Functionalized Graphene as Dielectric Material
	8.1 Introduction
	8.2 Covalent Functionalized Graphene/Polymer Systems
		8.2.1 Systems with Increased Dielectric Properties
			8.2.1.1 Ionic Liquid Integrated Graphene/PVDF Matrix
			8.2.1.2 Polyaniline Functionalized Graphene/PVDF Composites
			8.2.1.3 Diglycidyl Ether of Bisphenol-­A Grafted RGO (DGEBA-­RGO)/Epoxy Composite
			8.2.1.4 rGO-­LC/Polydimethylsiloxane Nanocomposites
			8.2.1.5 Hyperbranched Aromatic Polyamide Functionalized Graphene Sheets (GS–HBA)/Thermoplastic Polyurethane (TPU) Composite
		8.2.2 Systems with Decreased Dielectric Properties
			8.2.2.1 Octa(Aminophenyl) Silsesquioxane (OAPS) Grafted GO/Polyimide (PI) Composites
	8.3 Noncovalent Functionalized Graphene/Polymer Systems
		8.3.1 Systems with Increased Dielectric Properties
			8.3.1.1 Polythiophene-­g-­poly(Methyl Methacrylate) (PT-­g-­PMMA)-­rGO/PVDF Composite
			8.3.1.2 Perylene Tetracarboxylic Acid (Py)/Exfoliated Graphene (EG)/PVDF Composite
			8.3.1.3 Poly(Sodium 4-­styrenesulfonate) Functionalized Graphene/Epoxy Nanocomposites
		8.3.2 Systems with Low Dielectric Properties
			8.3.2.1 Reduced Polyaniline Decorated rGO/Polyimide Nanocomposite
	8.4 Conclusion and Perspective
	References
9. Applications of Polymer Functionalized Graphene in Energy Harvesting: Photovoltaics
	9.1 Introduction
	9.2 Bulk Heterojunction (BHJ) Solar Cells
		9.2.1 Graphene/PEDOT:PSS/(P3HT-­PCBM)/ZnO Based BHJ Solar Cell
		9.2.2 Graphene/PEDOT/CuPc/C60/BCP Based BHJ Solar Cell
		9.2.3 Graphene Oxide/PEDOT:PSS Based BHJ Solar Cell
		9.2.4 Graphene Nanoflakes/(PCDTBT/PC 71 BM) Based BHJ Solar Cell
		9.2.5 rGO-­PEDOT:PSS/PANI-­Ru Based BHJ Solar Cell
	9.3 Dye Sensitized Solar Cells
		9.3.1 Replacement of TiO2 Active Layer in the Photoelectrode with an rGO Grafted PANI System
		9.3.2 Replacement of the TiO2 Active Layer with Poly(Hydroxyethyl Thiophene) Grafted rGO
		9.3.3 Replacement of the TiO2 Active Layer with a GQD/PT-­g-­P(MeO2MA-­co-­DMAEMA) Hybrid
		9.3.4 Replacement of the TiO2 Active Layer with a Graphene Quantum Dot/PANI Hybrid
		9.3.5 Replacement of TiO2 Active Layer with Graphene/Polymer Hybrid Xerogels
	9.4 Replacement of the Pt Counter Electrode with PFG
	9.5 Improving Electrolyte Performance with PFG
	9.6 Perovskite Solar Cell
		9.6.1 Poly[(5,6-­difluoro-­2,1,3-­benzothiadiazol-­4,7-­diyl)-­alt-­(3,3‴-­di(2-­octyldo decyl)-­2,2;5,2;5,2″-­quaterthiophen-­5,5‴-diyl)] as Hole Transporting Layer (HTL)
		9.6.2 Graphene–AgNWs–Polycarbonate (MG-­A-­P) Film as Electron Transporting Layer
		9.6.3 TFSA-­doped Graphene PDMS as Hole Transporting Flexible Electrode
	9.7 Controlling Grain and Crystal Size of Perovskites Using Polymer Additive and Enhancing PCE and Stability of the Cell
	9.8 Conclusion
	References
10. Applications of Polymer Functionalized Graphene in Energy Harvesting: Fuel Cells
	10.1 Introduction
	10.2 Polymer Functionalized Graphene in Fuel Cells
		10.2.1 Hydrogen Fuel Cell
			10.2.1.1 Poly(Diallyl Dimethylammonium Chloride) Functionalized Graphene as Electrode Material
			10.2.1.2 GO, Silicotungstic Acid and Poly(Vinyl Alcohol) (PVA) Hybrid for PEM
			10.2.1.3 SGO/Glutaraldehyde/Poly(Vinyl Alcohol) Hybrid as PEM
			10.2.1.4 SGO-­Sulfonated Poly(Ether Sulfone) Composite as PEM
			10.2.1.5 Sulphonated Graphene (SG)–Nafion Composite as PEM
			10.2.1.6 IL/GO/Nafion Hybrid Membrane as PEM
			10.2.1.7 Covalently Grafted IL-­GO/Imidazolium Functionalized Bisphenol-­A Polysulfone Composite
			10.2.1.8 Sulfonated Organosilane Functionalized GO/Sulfonated Poly(Ether Ether Ketone) Hybrid as PEM
			10.2.1.9 Phosphonic Acid-­functionalized GO(PGO)/Nafion Hybrid as PEM
			10.2.1.10 Phosphonated Graphene Oxide/Polybenzimidazole Composite as PEM
		10.2.2 Polymer Functionalized Graphene as Anion Exchange Membrane (AEM)
			10.2.2.1 IL-­GO/Imidazolium-­functionalized PPO for AEM
			10.2.2.2 Imidazolium-­GO/Imidazolium Functionalized PEEK as AEM
			10.2.2.3 Quaternary Ammonium Functionalized GO/Quaternized Poly(Arylene Ether) Random Copolymer for AEM
		10.2.3 Methanol Fuel Cell
			10.2.3.1 Catalyst Layers
			10.2.3.2 Engineered Graphene Materials for Membranes
			10.2.3.3 Sandwiched Sulfonated GO/Sulfonated Poly(Ether Ether Ketone) as PEM in DMFC
			10.2.3.4 Engineered Graphene Materials for Bipolar Plates
	10.3 Conclusion
	References
11. Polymer Functionalized Graphene in Energy Storage Devices
	11.1 Introduction
	11.2 Solid State Battery
		11.2.1 PFG as Anode in a Solid State Battery
			11.2.1.1 rGO/PANI/TiO2 Nanohybrid as Anode
			11.2.1.2 Polyacrylonitrile Grafted HOPG as Anode
			11.2.1.3 K-FGF/PANI/PDAAQ and PDAAQ/MWCNT/CTAB Hybrid as an Effective Anode
		11.2.2 PFGs as Cathode in Solid State Battery
			11.2.2.1 Graphene-graft-poly(2,2,6,6-tetramethyl Piperidin-1-oxyl-4-yl Methacrylate) as Cathode
			11.2.2.2 Nitrogen Doped Graphene Functionalized Polyacrylonitrile as Cathode for LIS Battery
		11.2.3 PFGs as Electrolyte in a Solid State Battery
			11.2.3.1 PEO/LiClO4/Polyethylene Glycol-grafted Graphene as Electrolyte
			11.2.3.2 Polymeric Ionic Liquid Lithium Bis(trifluoromethanesulfonyl)Imide-RGO Grafted Poly-(Ethylene Glycol) [IL (TFSI)-FGbrush] as Polymer Electrolyte
	11.3 Supercapacitors
		11.3.1 Graphene as a Good Supercapacitor Material
		11.3.2 Polymer Functionalized Graphene: As an Efficient Supercapacitor Material
			11.3.2.1 Symmetric Supercapacitors with PEDOT/Graphene Composites
			11.3.2.2 Symmetric Supercapacitors with Graphene/Polypyrrole/Cu2O–Cu(OH)2 Ternary Nanocomposite
			11.3.2.3 Symmetric Supercapacitors with Graphene Quantum Dot-doped Polyaniline
			11.3.2.4 Symmetric Supercapacitor from Reduced Graphene Oxide@Polyaniline/MoS2 Hybrid
			11.3.2.5 Symmetric Supercapacitor from Graphene Hydrogel(GH)/Polyaniline(PANI) Nanocomposite
			11.3.2.6 Symmetric Supercapacitor from RGO-grafted PANI Aerogel
			11.3.2.7 Asymmetric Supercapacitor from RGO-sulphonated PANI Composite
	11.4 Conclusion
	References
12. Polymer Functionalized Graphene in Biomedical and Bio-technological Applications
	12.1 Introduction
	12.2 Polymer Functionalized Graphene as Biosensors
		12.2.1 Dopamine-functionalized Polyethylene Glycol and 2,5-thiophenediylbisboronic Acid Conjugated Graphene as Fluorometric Bio...
		12.2.2 Graphene Quantum Dots and Pyrene-functionalized Molecular Beacon Probes for Fluorimetric Sensing of MicroRNA
		12.2.3 PEGMA, Oligonucleotides and GO Nanoassembly for Fluorimetric Detection of DNA, miR-­10b, Thrombin and Adenosine
		12.2.4 GO Based Molecular Imprinted Polymer (GO-MIP) for Amperometric Detection of Total Cholesterol
		12.2.5 GO-copolymer Hybrid for Amperometric Detection of Dengue Virus
		12.2.6 GO-PANI/Ag or Au NP Hybrid for Amperometric Detection of Vitamin C
	12.3 Polymer Functionalized Graphene for Application in Drug Delivery
		12.3.1 PNIPAM-grafted GO for Delivery of Both Hydrophilic and Hydrophobic Drugs
		12.3.2 Starch Functionalized Graphene for pH Sensitive and Starch-mediated Drug Delivery
		12.3.3 GO Conjugated Chitosan for the In Vitro and In Vivo Co-delivery of Anti-cancer Drugs
		12.3.4 Polyurethane Grafted Sulphonated Graphene as Drug Delivery Vehicle
		12.3.5 Poly(Vinyl Pyrrolidone)-­functionalized GO as a Nanocarrier for Dual Drug Delivery
	12.4 Polymer Functionalized Graphene for Application in Gene Delivery
		12.4.1 GO Grafted with Positively Charged PEI for Transfection of Plasmid DNA
		12.4.2 Injectable PEI-functionalized GO Hydrogel Based Angiogenic Gene Delivery System for Vasculogenesis and Cardiac Repair
		12.4.3 Polyethylenimine and Polyethylene Glycol Dual-­functionalized GO for High-­efficiency Delivery of DNA and siRNA
		12.4.4 Peptide Functionalized GO Nanocarrier for Gene Delivery Applications
		12.4.5 GO–Chitosan Nanocomposites for Intracellular Delivery of Immunostimulatory CpG Oligodeoxynucleotides
	12.5 Polymer Functionalized Graphene for Application in Cell Imaging
		12.5.1 RGO Nanoribbons Functionalized with Polyethylene Glycol (rGONR–PEG) for Cell Imaging
		12.5.2 GQDs Functionalized with Hyaluronic Acid for Cell Imaging
		12.5.3 Magnetic GO Functionalized with Cyclodextrin–Hyaluronic Acid Polymer for Cancer Cell Imaging
	12.6 Polymer Functionalized Graphene in Tissue Engineering
		12.6.1 GO Functionalized with Polypeptide of L-lysine for Cardiac Tissue Engineering
		12.6.2 Polymer Functionalized Graphene for Neural Tissue Engineering
			12.6.2.1 rGO/POSS-PCL Conductive Composite for Neural Tissue Engineering
			12.6.2.2 GO/PVDF Composite for Nerve Tissue Engineering
			12.6.2.3 GO Functionalized with RGD Peptide and Poly(Lactide-co-glycolide) for Vascular Tissue Engineering
			12.6.2.4 rGO Functionalized with Polyacrylamide for Skin Tissue Engineering
			12.6.2.5 GO Functionalized with Polyethylene Glycol/Poly(Propylene Fumarate) for Bone Tissue Engineering
				12.6.2.5.1 rGO Functionalized with Palladium Nanoparticle Anchored Polypyrrole for Bone Tissue Engineering
				12.6.2.5.2 GO/Hydroxyapatite/Polysaccharide Composite for Bone Tissue Engineering
	12.7 Polymer Functionalized Graphene in Body Implants
		12.7.1 GO/Alginic Acid (AA, a Natural Polymer)/a Bioceramic (TCP) Composite for Bone Implant
		12.7.2 GO/Polycaprolactone/Hydroxyapatite Based Bioactive Coating on Ti Alloy for Bone Implant
		12.7.3 Amino Functionalized Graphene/Poly(Methyl Methacrylate-co-styrene) Copolymer for Effective Bone Cement Implant
		12.7.4 GO-Polyetheretherketone for Orthopedic Implant
			12.7.4.1 GO/Adiponectin-functionalized Sulfonated Poly(Etheretherketone) Composite with Effective Bone Implant and Photodisinfection
	12.8 Polymer Functionalized Graphene for Wound Healing Applications
		12.8.1 Ag/Graphene-polymer Hydrogel for Antibacterial and Wound Healing Application
		12.8.2 rGO-poly(Diallyldimethylammonium Chloride)/Ag/AgCl Hybrid Material for Burn Wound Healing
		12.8.3 Polydopamine-rGO in Mussel-inspired Electroactive and Antioxidative Scaffolds for Enhancing Skin Wound Healing
		12.8.4 rGO-isabgol Nanocomposite Dressings for Enhanced Vascularization and Accelerated Wound Healing
		12.8.5 TRGO-polydopanine-­boronic Acid System for Diabetic Wound Healing
	12.9 Conclusion
	References
Subject Index




نظرات کاربران