دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [Third Edition]
نویسندگان: Timothy P. Lodge and Paul C. Hiemenz
سری:
ISBN (شابک) : 9781466581647, 9780429190810
ناشر: CRC Press
سال نشر: 2020
تعداد صفحات: [676]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 31 Mb
در صورت تبدیل فایل کتاب Polymer Chemistry به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب شیمی پلیمر نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half Title Title Page Copyright Page Contents Preface to the Third Edition Chapter 1: Introduction to Chain Molecules 1.1. Introduction 1.2. How Big is Big? 1.2.1. Molecular Weight 1.2.2. Spatial Extent 1.3. Linear and Branched Polymers, Homopolymers, and Copolymers 1.3.1. Branched Structures 1.3.2. Copolymers 1.4. Addition, Condensation, and Naturally Occurring Polymers 1.4.1. Addition and Condensation Polymers 1.4.2. Natural Polymers 1.5. Polymer Nomenclature 1.6. Structural Isomerism 1.6.1. Positional Isomerism 1.6.2. Stereo Isomerism 1.6.3. Geometrical Isomerism 1.7. Molecular Weights and Molecular Weight Averages 1.7.1. Number-, Weight-, and z-Average Molecular Weights 1.7.2. Dispersity and Standard Deviation 1.7.3. Examples of Distributions 1.8. Measurement of Molecular Weight 1.8.1. General Considerations 1.8.2. End Group Analysis 1.8.3. MALDI Mass Spectrometry 1.9. Preview of Things to Come 1.10. Chapter Summary Problems References Further Readings Chapter 2: Step-Growth Polymerization 2.1. Introduction 2.2. Condensation Polymers: One Step at a Time 2.2.1. Classes of Step-Growth Polymers 2.2.2. A First Look at the Distribution of Products 2.2.3. A First Look at Reactivity and Reaction Rates 2.3. Kinetics of Step-Growth Polymerization 2.3.1. Catalyzed Step-Growth Reactions 2.3.2. How Should Experimental Data Be Compared with Theoretical Rate Laws? 2.3.3. Uncatalyzed Step-Growth Reactions 2.4. Distribution of Molecular Sizes 2.4.1. Mole Fractions of Species 2.4.2. Weight Fractions of Species 2.5. Polyesters 2.6. Polyamides 2.7. Other Examples of Important Step-growth Polymers 2.7.1. Polycarbonates 2.7.2. Polyimides 2.7.3. Polyurethanes 2.7.4. Polysiloxanes 2.7.5. Polythiophenes 2.8. Stoichiometric Imbalance 2.9. Chapter Summary Problems References Further Readings Chapter 3: Chain-Growth Polymerization 3.1. Introduction 3.2. Chain-Growth and Step-Growth Polymerizations: Some Comparisons 3.3. Initiation 3.3.1. Initiation Reactions 3.3.2. Fate of Free Radicals 3.3.3. Kinetics of Initiation 3.3.4. Temperature Dependence of Initiation Rates 3.4. Termination 3.4.1. Combination and Disproportionation 3.4.2. Effect of Termination on Conversion to Polymer 3.4.3. Steady-State Radical Concentration 3.5. Propagation 3.5.1. Rate Laws for Propagation 3.5.2. Temperature Dependence of Propagation Rates 3.5.3. Kinetic Chain Length 3.6. Radical Lifetime 3.7. Distribution of Molecular Weights 3.7.1. Distribution of i-mers: Termination by Disproportionation 3.7.2. Distribution of i-mers: Termination by Combination 3.8. Chain Transfer 3.8.1. Chain Transfer Reactions 3.8.2. Evaluation of Chain Transfer Constants 3.8.3. Chain Transfer to Polymer 3.8.4. Suppressing Polymerization 3.9. Chapter Summary Problems References Further Readings Chapter 4: Controlled Polymerization 4.1. Introduction 4.2. Poisson Distribution for an Ideal Living Polymerization 4.2.1. Kinetic Scheme 4.2.2. Breadth of the Poisson Distribution 4.3. Anionic Polymerization 4.4. Block Copolymers, End-Functional Polymers, and Branched Polymers by Anionic Polymerization 4.4.1. Block Copolymers 4.4.2. End-Functional Polymers 4.4.3. Regular Branched Architectures 4.5. Cationic Polymerization 4.5.1. Aspects of Cationic Polymerization 4.5.2. Living Cationic Polymerization 4.6. Controlled Radical Polymerization 4.6.1. General Principles of Controlled Radical Polymerization 4.6.2. Particular Realizations of Controlled Radical Polymerization 4.6.2.1. Atom Transfer Radical Polymerization (ATRP) 4.6.2.2. Stable Free-Radical Polymerization (SFRP) 4.6.2.3. Reversible Addition-Fragmentation Chain-Transfer (RAFT) Polymerization 4.7. Polymerization Equilibrium 4.8. Ring-Opening Polymerization (ROP) 4.8.1. General Aspects 4.8.2. Specific Examples of Living Ring-Opening Polymerizations 4.8.2.1. Poly(ethylene oxide) 4.8.2.2. Polylactide 4.8.2.3. Poly(dimethylsiloxane) 4.8.2.4. Ring-Opening Metathesis Polymerization (ROMP) 4.9. Dendrimers 4.10. Chapter Summary Problems References Further Readings Chapter 5: Copolymers, Microstructure, and Stereoregularity 5.1. Introduction 5.2. Copolymer Composition 5.2.1. Rate Laws 5.2.2. Composition versus Feedstock 5.3. Reactivity Ratios 5.3.1. Effects of r Values 5.3.2. Relation of Reactivity Ratios to Chemical Structure 5.4. Resonance and Reactivity 5.5. A Closer Look at Microstructure 5.5.1. Sequence Distributions 5.5.2. Terminal and Penultimate Models 5.6. Copolymer Composition and Microstructure: Experimental Aspects 5.6.1. Evaluating Reactivity Ratios from Composition Data 5.6.2. Spectroscopic Techniques 5.6.3. Sequence Distribution: Experimental Determination 5.7. Characterizing Stereoregularity 5.8. A Statistical Description of Stereoregularity 5.9. Assessing Stereoregularity by Nuclear Magnetic Resonance 5.10. Ziegler–Natta Catalysts 5.11. Single-Site Catalysts 5.12. Chapter Summary Problems References Further Readings Chapter 6: Polymer Conformations 6.1. Conformations, Bond Rotation, and Polymer Size 6.2. Average End-to-End Distance for Model Chains Case 6.2.1. The Freely Jointed Chain Case 6.2.2. The Freely Rotating Chain Case 6.2.3. Hindered Rotation Chain 6.3. Characteristic Ratio and Statistical Segment Length 6.4. Semiflexible Chains and the Persistence Length 6.4.1. Persistence Length of Flexible Chains 6.4.2. Worm-Like Chains 6.5. Radius of Gyration 6.6. Distributions for End-to-End Distance and Segment Density 6.6.1. Distribution of the End-to-End Vector 6.6.2. Distribution of the End-to-End Distance 6.6.3. Distribution about the Center of Mass 6.7. Spheres, Rods, Coils, and Chain Overlap 6.8. Self-Avoiding Chains: A First Look 6.9. Chapter Summary Problems References Further Readings Chapter 7: Thermodynamics of Polymer Mixtures 7.1. Review of Thermodynamic and Statistical Thermodynamic Concepts 7.2. Regular Solution Theory 7.2.1. Regular Solution Theory: Entropy of Mixing 7.2.2. Regular Solution Theory: Enthalpy of Mixing 7.3. Flory–Huggins Theory 7.3.1. Flory–Huggins Theory: Entropy of Mixing by a Quick Route 7.3.2. Flory–Huggins Theory: Entropy of Mixing by a Longer Route 7.3.3. Flory–Huggins Theory: Enthalpy of Mixing 7.3.4. Flory–Huggins Theory: Summary of Assumptions 7.4. Osmotic Pressure 7.4.1. Osmotic Pressure: General Case 7.4.2. Osmotic Pressure: Flory–Huggins Theory 7.5. Phase Behavior of Polymer Solutions 7.5.1. Overview of the Phase Diagram 7.5.2. Finding the Binodal 7.5.3. Finding the Spinodal 7.5.4. Finding the Critical Point 7.5.5. Phase Diagram from Flory–Huggins Theory 7.6. Flory–Huggins Theory for Binary Polymer Blends 7.7. What’s in χ? 7.7.1. χ from Regular Solution Theory 7.7.2. χ from Experiment 7.7.3. Further Approaches to χ 7.8. Excluded Volume and Chains in a Good Solvent 7.9. Chapter Summary Problems References Further Readings Chapter 8: Light Scattering by Polymer Solutions 8.1. Introduction: Light Waves Basic Concepts of Scattering 8.2. Basic Concepts of Scattering 8.2.1. Scattering from Randomly Placed Objects 8.2.2. Scattering from a Perfect Crystal 8.2.3. Origins of Incoherent and Coherent Scattering 8.2.4. Bragg’s Law and the Scattering Vector 8.3. Scattering by an Isolated Small Molecule 8.4. Scattering from a Dilute Polymer Solution 8.5. The Form Factor and the Zimm Equation 8.5.1. Mathematical Expression for the Form Factor 8.5.2. Form Factor for Isotropic Solutions 8.5.3. Form Factor as qRg→0 8.5.4. Zimm Equation 8.5.5. Zimm Plot 8.6. Scattering Regimes and Particular Form Factors 8.7. Experimental Aspects of Light Scattering 8.7.1. Instrumentation 8.7.2. Calibration 8.7.3. Samples and Solutions 8.7.4. Refractive Index Increment 8.8. Introduction to Small-Angle Neutron Scattering 8.8.1. Basics of the SANS Process and SANS Instrumentation 8.8.2. SANS from Polymer Blends Case 8.8.1. An Isotope Blend Case 8.8.2. A Non-interacting Binary Blend Case 8.8.3. A Binary Blend with Interactions 8.9. Chapter Summary Problems References Further Readings Chapter 9: Dynamics of Dilute Polymer Solutions 9.1. Introduction: Friction and Viscosity 9.2. Stokes’ Law and Einstein’s Law 9.2.1. Viscous Forces on Rigid Spheres 9.2.2. Suspension of Spheres 9.3. Intrinsic Viscosity 9.3.1. General Considerations 9.3.2. Mark–Houwink Equation 9.3.3. Relation between Coil Overlap Concentration, c*, and Intrinsic Viscosity 9.4. Measurement of Viscosity 9.4.1. Poiseuille Equation and Capillary Viscometers 9.4.2. Concentric Cylinder Viscometers 9.5. Diffusion Coefficient and Friction Factor 9.5.1. Tracer Diffusion and Hydrodynamic Radius 9.5.2. Mutual Diffusion and Fick’s Laws 9.6. Dynamic Light Scattering (DLS) 9.7. Hydrodynamic Interactions and Draining 9.8. Size Exclusion Chromatography (SEC) 9.8.1. Basic Separation Process 9.8.2. Separation Mechanism 9.8.3. Two Calibration Strategies 9.8.4. Size Exclusion Chromatography Detectors 9.9. Chapter Summary Problems References Further Readings Chapter 10: Networks, Gels, and Rubber Elasticity 10.1. Formation of Networks by Random Cross-Linking 10.1.1. Definitions 10.1.2. Gel Point 10.2. Polymerization with Multifunctional Monomers 10.2.1. Calculation of the Branching Coefficient 10.2.2. Gel Point 10.2.3. Molecular-Weight Averages 10.3. Elastic Deformation 10.4. Thermodynamics of Elasticity 10.4.1. Equation of State 10.4.2. Ideal Elastomers 10.4.3. Some Experiments on Real Rubbers 10.5. Statistical Mechanical Theory of Rubber Elasticity: Ideal Case 10.5.1. Force to Extend a Gaussian Chain 10.5.2. Network of Gaussian Strands 10.5.3. Modulus of the Affine Gaussian Network 10.6. Further Developments in Rubber Elasticity 10.6.1. Non-Gaussian Force Law 10.6.2. Front Factor 10.6.3. Network Defects 10.6.4. Mooney-Rivlin Equation 10.7. Swelling of Gels 10.7.1. Modulus of a Swollen Rubber 10.7.2. Swelling Equilibrium 10.8. Chapter Summary Problems References Further Readings Chapter 11: Linear Viscoelasticity 11.1. Basic Concepts 11.1.1. Stress and Strain 11.1.2. Viscosity, Modulus, and Compliance 11.1.3. Viscous and Elastic Responses 11.2. Response of the Maxwell and Voigt Elements 11.2.1. Transient Response: Stress Relaxation 11.2.2. Transient Response: Creep 11.2.3. Dynamic Response: Loss and Storage Moduli 11.2.4. Dynamic Response: Complex Modulus and Complex Viscosity 11.3. Boltzmann Superposition Principle 11.4. Bead–Spring Model 11.4.1. Ingredients of the Bead–Spring Model 11.4.2. Predictions of the Bead–Spring Model 11.5. Zimm Model for Dilute Solutions, Rouse Model for Unentangled Melts 11.6. Phenomenology of Entanglement 11.6.1. Rubbery Plateau 11.6.2. Dependence of Me on Molecular Structure 11.7. Reptation Model 11.7.1. Reptation Model: Longest Relaxation Time and Diffusivity 11.7.2. Reptation Model: Viscoelastic Properties 11.7.3. Reptation Model: Additional Relaxation Processes 11.8. Aspects of Experimental Rheometry 11.8.1. Shear Sandwich and Cone and Plate Rheometers 11.8.2. Further Comments about Rheometry 11.9. Chapter Summary Problems References Further Readings Chapter 12: Glass Transition 12.1. Introduction 12.1.1. Definition of a Glass 12.1.2. Glass and Melting Transitions 12.2. Thermodynamic Aspects of the Glass Transition 12.2.1. First-Order and Second-Order Phase Transitions 12.2.2. Kauzmann Temperature 12.2.3. Theory of Gibbs and DiMarzio 12.3. Locating the Glass Transition Temperature 12.3.1. Dilatometry 12.3.2. Calorimetry 12.3.3. Dynamic Mechanical Analysis 12.4. Free Volume Description of the Glass Transition 12.4.1. Temperature Dependence of the Free Volume 12.4.2. Free Volume Changes Inferred from the Viscosity 12.4.3. Williams–Landel–Ferry Equation 12.5. Time-Temperature Superposition 12.6. Factors that Affect the Glass Transition Temperature 12.6.1. Dependence on Chemical Structure 12.6.2. Dependence on Molecular Weight 12.6.3. Dependence on Composition 12.7. Mechanical Properties of Glassy Polymers 12.7.1. Basic Concepts 12.7.2. Crazing, Yielding, and the Brittle-to-Ductile Transition 12.7.3. Role of Chain Stiffness and Entanglements 12.8. Chapter Summary Problems References Further Readings Chapter 13: Crystalline Polymers 13.1. Introduction and Overview 13.2. Structure and Characterization of Unit Cells 13.2.1. Classes of Crystals 13.2.2. X-ray Diffraction 13.2.3. Examples of Unit Cells 13.3. Thermodynamics of Crystallization: Relation of Melting Temperature to Molecular Structure 13.4. Structure and Melting of Lamellae 13.4.1. Surface Contributions to Phase Transitions 13.4.2. Dependence of Tm on Lamellar Thickness 13.4.3. Dependence of Tm on Molecular Weight 13.4.4. Experimental Characterization of Lamellar Structure 13.5. Kinetics of Nucleation and Growth 13.5.1. Primary Nucleation 13.5.2. Crystal Growth 13.6. Morphology of Semicrystalline Polymers 13.6.1. Spherulites 13.6.2. Nonspherulitic Morphologies 13.7. Kinetics of Bulk Crystallization 13.7.1. Avrami Equation 13.7.2. Kinetics of Crystallization: Experimental Aspects 13.8. Chapter Summary Problems References Further Readings Appendix Index