دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Krishnasamy S., Muthukumar C., Thiagamani S.M.K., Siengchin S. (ed.) سری: Handbook of Thermoset-Based Biocomposites, Three-Volume Set. ISBN (شابک) : 9781032220468 ناشر: CRC Press سال نشر: 2024 تعداد صفحات: 334 [335] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 19 Mb
در صورت تبدیل فایل کتاب Polyester-Based Biocomposites به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب بیوکامپوزیت های مبتنی بر پلی استر نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half Title Polyester-Based Biocomposites Copyright Dedication Contents Preface Editors Contributors 1. Polyester Resins and their Use as Matrix Material in Polymer Composites: An Overview Contents 1.1 Introduction 1.2 Polymer Matrix Composites 1.3 Polyester Matrix 1.3.1 Classification of Unsaturated Polyester Resin (UPR) 1.3.2 Preparation of Unsaturated Polyester Resins 1.4 Manufacturing of Polyester Composites 1.4.1 Open Moulding 1.4.1.1 Spray-Up Method 1.4.1.2 Hand Lay-Up 1.4.2 Closed Moulding 1.4.2.1 Pultrusion 1.4.2.2 Resin Transfer Moulding 1.4.2.3 Compression Moulding 1.4.2.4 Vacuum Bag Moulding 1.5 Reinforcement Used in Unsaturated Polyester Resin 1.5.1 Natural Fibre Reinforcement 1.5.2 Banana Fibre 1.5.3 Coir Fibre 1.5.4 Jute Fibre 1.6 Synthetic Fibre Reinforcement 1.6.1 Glass Fibre 1.6.2 Aramid Fibres 1.6.3 Carbon Fibres 1.7 Properties of Polyester Composites 1.7.1 Thermal Properties of Polyester Composites 1.7.2 Rheological Properties of Polyester Composites 1.7.3 Mechanical Properties of Polyester Composites 1.7.4 Curing Properties of Polyester Composites 1.8 Conclusions and Future Trends References 2. Pineapple Fibre-Reinforced Polyester Composites Contents 2.1 Introduction 2.2 Pineapple Species and Plant Morphology 2.3 Life Cycle Assessment (LCA) of PALF 2.4 Physical and Chemical Features of Pineapple Leaf Fibre 2.5 Methods of Extraction of PALF 2.5.1 Manual Extraction Methods 2.5.1.1 Hand Stripping/Scraping 2.5.1.2 Retting Process 2.5.2 Mechanical Extraction 2.5.3 Degumming of PALF 2.6 Applications of PALF Fibres 2.6.1 PALF-Reinforced PE Composites 2.7 Conclusion Bibliography 3. Jute Fibre-Reinforced Polyester Composites Contents 3.1 Introduction 3.2 Influence of Diverse Layers on Physico-Mechanical Characteristics 3.2.1 Fibre Handling and Processing 3.2.2 Composite Fabrication 3.3 Properties 3.3.1 Mechanical Properties 3.3.2 Water Absorption Test 3.3.3 Rule of Mixture (ROM) Along with Inverse ROM 3.3.4 Micromechanical Model for Unit Fibre-Based Composite Material 3.3.5 Influence of Alkali Treatment as well as Poly (Lactic Acid) Coating 3.3.6 Covering of PLA-Based Fibres 3.3.7 Scanning Electron Microscopy Analysis 3.3.8 Flexural Characteristics 3.3.9 Impact Characteristics 3.3.10 Dynamic Mechanical Characteristics 3.3.10.1 Storage Modulus 3.3.10.2 Damping 3.3.10.3 Loss Modulus 3.3.11 Chemical Resistance 3.3.12 Flame Retardancy 3.4 Conclusion References 4. Bamboo Fiber-Reinforced Polyester Composites Contents 4.1 Introduction 4.2 Interpretations of the Social and Economic Environment Relating to Bamboo and Composite Materials Containing Bamboo Fiber 4.3 Bamboo Fibers 4.3.1 The Availability of Bamboo Around the World 4.3.2 The Process of Extracting Bamboo Fibers 4.3.3 The Structure and Function of Bamboo 4.3.4 Rhizome 4.3.5 Culm 4.3.6 Root 4.3.7 Branches 4.3.8 Leaves 4.4 The Constituent Substances That Incorporate Bamboo Fiber 4.4.1 Cellulose 4.4.2 Hemicellulose 4.4.3 Lignin 4.5 Bamboo Treatments 4.5.1 Alkaline Therapy 4.5.2 The Treatment with Silane 4.5.3 Acrylation of Naturally Occurring Fibers 4.5.4 Treatment Through Benzoylation 4.6 Permanganate Diagnosis 4.6.1 The Process of Isocyanate and Peroxide Treatments 4.7 Application 4.7.1 Capabilities for Construction Work 4.7.2 Applications Related to Interior Design 4.7.3 Applications Related to Furniture 4.7.4 Applications in the Automotive Industry 4.7.5 Bamboo Fiber Composites: Potential Benefits and Potential Pitfalls 4.8 Future Innovations in Bamboo-Reinforced Composites 4.9 Conclusion References 5. Banana Fibre-Reinforced Polyester Composites Contents 5.1 Introduction 5.1.1 Properties of Banana Fibre 5.2 Research on Banana Fibre-Reinforced Polyester Composites 5.3 Conclusion References 6. A Review on Palm Fibre-Reinforced Polyester Composites Contents 6.1 Introduction 6.2 Palm Fibre 6.3 Pretreatment of Palm Fibre 6.3.1 The Important of Pretreatment of Fibre for Composites Production 6.3.2 Several Types of Pretreatment that Have Been Applied to the Palm Fibre 6.3.1.1 Physical Pretreatment 6.3.1.2 Chemical Pretreatment 6.3.1.3 Biological Pretreatment 6.4 Palm Fibre-Reinforced Polyester Composite Properties 6.4.1 Mechanical Properties 6.4.2 Thermal Properties 6.4.3 Wettability Properties 6.5 Factors Affecting the Properties of Palm Fibre-Reinforced Polyester 6.6 Challenges and Future Recommendation Acknowledgement Conflict of Interest References 7. Coir Fiber–Polyester Composites Contents 7.1 Introduction 7.2 Characteristics of Coir Fibers 7.3 Coir Fiber–Polyester Composites 7.3.1 General Considerations 7.3.2 Effect of Fiber Treatments 7.3.3 Production of Hybrid Composites 7.3.4 Mechanical Characterization 7.3.5 Thermal Characterization 7.4 Conclusions References 8. Wood Fiber-Reinforced Polyester Composite Contents 8.1 Introduction 8.2 Wood Fiber 8.3 Chemical Treatment of Wood Fibers 8.3.1 Polyester 8.3.1.1 Unsaturated Polyester Resin 8.3.1.2 Saturated Polyester 8.4 Method of Preparation of Wood Fiber-Reinforced Polyester Composites 8.5 Properties of Wood–Polyester Composites 8.5.1 Mechanical Properties 8.5.2 Water Properties 8.5.3 Thermal Properties 8.5.4 Physico-Chemical Properties 8.5.5 Morphological Properties 8.6 Applications of Wood–Polyester Composites 8.7 Conclusion References 9. Polyester-Based Composites Reinforced with Rice Husk Fillers Contents 9.1 Introduction 9.2 Natural Filler as Polyester Composites 9.3 Pre-treatment of Rice Husk 9.3.1 Physical Pre-Treatment 9.3.2 Chemical Treatment 9.4 RH-Reinforced Polymer Composites 9.5 RH-Reinforced Polyester Matrices 9.5.1 Polyester 9.5.2 Unsaturated Polyesters Resins 9.5.3 Polyethylene Terephthalate 9.5.4 Poly-3-hydroxybutyrate 9.5.5 Polylactic Acid 9.5.6 Poly(Butylene Adipate-Co-Terephthalate) and Polybutylene Succinate 9.5.7 Polycaprolactone 9.6 Conclusion Acknowledgement References 10. Polyester-Based Bio-Nanocomposites Contents 10.1 Introduction 10.2 Overview of Biodegradable Polyesters 10.2.1 Polyvinyl Alcohol (PVA) 10.2.2 Polylactide (PLA) 10.2.3 Polycaprolactone (PCL) 10.2.4 Polyhydroxybutyrate (PHB) 10.3 Polyester-Based Hybrid Biocomposites 10.3.1 Polyester and Nanocellulose-Based Hybrids 10.3.2 Carbon-Based Polyester Bio-Nanocomposites 10.3.2.1 Graphene 10.3.2.2 Carbon Nanotubes (CNTs) 10.3.3 Polyester-Based Active Biocomposite Films 10.4 Conclusion Acknowledgement References 11. Hybrid Polyester and Bio-Polyester Composites Contents 11.1 Introduction 11.2 Concept of Hybrid Polymer Composites 11.3 Hybrid Natural Fibers-Reinforced Polyester Composites 11.4 Hybrid Natural-Synthetic Fibers-Reinforced Polyester Composites 11.5 Bio-Based Polyester Resin 11.6 Natural Fiber-Reinforced Polyester/Vegetable Oil Hybrid Composite 11.7 Hybrid Natural Fiber-Reinforced Polyester/Vegetable Oil Composite 11.8 Nanofiller-Filled Natural Fiber-Reinforced Polyester Hybrid Composite 11.9 Future Outlook 11.10 Conclusion Acknowledgment References 12. Natural Fiber/Polyester-Based Hybrid Composites Contents 12.1 Introduction 12.2 Physical Properties of Natural Fiber/Polyester Hybrid Composites 12.3 Factors Influencing the Mechanical Features of Composites 12.3.1 Effect of Environmental Conditions 12.3.2 Fiber Layers Stacking Sequence 12.3.3 Fiber Treatment 12.3.4 Fiber Volume 12.4 Conclusion Acknowledgments References 13. Polyester-Based Bio-Composites for Marine Applications Contents 13.1 Introduction 13.2 Degradation and Marine Fouling 13.3 Rusting and Cavitation 13.4 Synthetic Composites 13.4.1 Plasticizing Effect 13.4.2 Swelling 13.4.3 Hydrolysis 13.5 Bio-Composites 13.6 The Diffusion Properties of Natural Fibers 13.6.1 Thermal Degradation 13.6.2 Mechanical Behavior 13.6.3 Coupling Effect 13.6.4 Marine Usage 13.6.5 Ferro-Cement 13.7 Glass-Reinforced Plastic (Fiber Glass) 13.8 Adhesive Composites 13.9 Aramid Fiber Composites 13.10 Carbon Fibers 13.11 Fiber-Reinforced Polymer (FRP) Composites 13.12 Glass-Reinforced Polymer-Based Composites (GRP) 13.13 Conclusion References Notes 14. Polyester-Based Biocomposites for Building and Construction Applications Contents 14.1 Introduction 14.2 Polyester-Based Biocomposites as a Construction Material 14.3 Blends of Polyester Resin 14.4 UPR-Epoxy Blend 14.5 UPR-Phenolic Resin Blend 14.6 UPR-Natural Rubber Blend 14.7 UPR-Vinyl Ester (VE) Blend 14.8 Fibres Used in Construction and Building Composites 14.9 Coir Fibre 14.10 Hemp Fibre 14.11 Jute Fibre 14.12 Natural Fibre Characteristics 14.13 Conclusions and Future Trends References 15. Polyester-Based Biocomposites for Food Packaging Applications Contents 15.1 Introduction 15.2 Main Polyesters Applied in Food Packaging 15.3 Mechanical and Barrier Properties of Polyester-Based Biocomposites 15.4 Polyester-Based Biocomposites in Active Food Packaging 15.5 Polyester-Based Biocomposites for Monitoring Food Quality 15.6 Biosafety of Bionanocomposites in Foods 15.7 Conclusions and Future Prospects Acknowledgments References 16. An Experimental and Numerical Investigation of Bio-Based Polyurethane Foam for Acoustical Applications Contents List of Symbols and Abbreviations 16.1 Background and Motivation 16.2 State of the Art in Acoustics Absorption 16.2.1 Development of Acoustic Absorbing Material 16.2.2 Finite Element-Based Numerical Model 16.3 Problem Definition 16.4 Objectives 16.5 Methodology 16.6 Literature Survey 16.7 Fabrication of Hybrid Polyurethane Foams 16.7.1 Materials and Methodology 16.7.2 Sample Preparation 16.8 Experimental Investigation 16.8.1 Impedance Tube Theory 16.8.2 Impedance Experimental Procedure 16.8.3 Experimental Procedure 16.8.4 Working Frequency Range 16.8.4.1 High-Frequency Limit [F[sub(u)]] 16.8.4.2 Low-Frequency Limit [F[sub(1)]] 16.9 Dynamic Signal Analysis 16.10 MATLAB 16.10.1 Experimental Results 16.10.2 Open-Cell Polyurethane Foam 16.10.3 Closed-Cell Polyurethane Foam 16.11 Summary 16.11.1 Experimental Observations 16.12 Conclusion References Index