دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Abdel-Mohsen O. Mohamed, Evan K. Paleologos, Fares Howari سری: ISBN (شابک) : 0128095822, 9780128095829 ناشر: Butterworth-Heinemann سال نشر: 2020 تعداد صفحات: 1170 [1137] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 89 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Pollution Assessment for Sustainable Practices in Applied Sciences and Engineering: Concepts, Techniques, and Practice به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ارزیابی آلودگی برای شیوههای پایدار در علوم و مهندسی کاربردی: مفاهیم، تکنیکها و عمل نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
ارزیابی آلودگی برای شیوههای پایدار در علوم و مهندسی کاربردی، مرجعی یکپارچه برای دانشگاهیان و متخصصان فعال در زمینه آلودگی زمین، هوا و آب فراهم میکند. پروتکل های مورد بحث و تعداد گسترده مطالعات موردی به مهندسان محیط زیست کمک می کند تا به سرعت فرآیند صحیح پروژه های تحت مطالعه را شناسایی کنند. این کتاب به چهار بخش تقسیم شده است؛ هر یک از سه مورد اول یک محیط جداگانه را پوشش می دهد: ژئوسفر، اتمسفر، و هیدروکره. بخش اول شامل ارزیابی زمینی، آلودگی، آمار زمین، سنجش از دور، GIS، ارزیابی و مدیریت ریسک و ارزیابی اثرات زیست محیطی است. بخش دوم موضوعات ارزیابی اتمسفر، از جمله پویایی حمل و نقل آلاینده، اثرات گرمایش جهانی، تکنیک ها و تمرین های داخلی و خارجی را پوشش می دهد. بخش سوم به هیدروسفر شامل محیط های دریایی و آب شیرین اختصاص دارد. در نهایت، بخش چهارم به بررسی مسائل نوظهور در ارزیابی آلودگی، از نانومواد تا هوش مصنوعی میپردازد. طیف گسترده ای از مطالعات موردی در این کتاب برای کمک به پر کردن شکاف بین مفهوم و عمل وجود دارد. مهندسان محیط زیست از رویکرد یکپارچه برای ارزیابی آلودگی در حوزه های مختلف سود خواهند برد. مهندسان و دانشجویان شاغل نیز از مطالعات موردی بهره مند خواهند شد که این تمرین را در کنار مفاهیم اساسی قرار می دهد. یک نمای کلی جامع از ارزیابی آلودگی ارائه می دهد. آلودگی زمین، زیرزمین، آب و هوا را پوشش می دهد، شامل ارزیابی آلودگی در فضای باز و داخلی است.
Pollution Assessment for Sustainable Practices in Applied Sciences and Engineering provides an integrated reference for academics and professionals working on land, air, and water pollution. The protocols discussed and the extensive number of case studies help environmental engineers to quickly identify the correct process for projects under study. The book is divided into four parts; each of the first three covers a separate environment: Geosphere, Atmosphere, and Hydrosphere. The first part covers ground assessment, contamination, geo-statistics, remote sensing, GIS, risk assessment and management, and environmental impact assessment. The second part covers atmospheric assessment topics, including the dynamics of contaminant transport, impacts of global warming, indoor and outdoor techniques and practice. The third part is dedicated to the hydrosphere including both the marine and fresh water environments. Finally, part four examines emerging issues in pollution assessment, from nanomaterials to artificial intelligence. There are a wide variety of case studies in the book to help bridge the gap between concept and practice. Environmental Engineers will benefit from the integrated approach to pollution assessment across multiple spheres. Practicing engineers and students will also benefit from the case studies, which bring the practice side by side with fundamental concepts. Provides a comprehensive overview of pollution assessment Covers land, underground, water and air pollution Includes outdoor and indoor pollution assessment Presents case studies that help bridge the gap between concepts and practice
Front-Mat_2021_Pollution-Assessment-for-Sustainable-Practices-in-Applied-Sci Pollution Assessment for Sustainable Practices in Applied Sciences and Engineering Copyrig_2021_Pollution-Assessment-for-Sustainable-Practices-in-Applied-Scien Copyright Dedicati_2021_Pollution-Assessment-for-Sustainable-Practices-in-Applied-Scie Dedication Contribut_2021_Pollution-Assessment-for-Sustainable-Practices-in-Applied-Sci Contributors About-the-edi_2021_Pollution-Assessment-for-Sustainable-Practices-in-Applied About the editors Prefac_2021_Pollution-Assessment-for-Sustainable-Practices-in-Applied-Scienc Preface Chapter-1---Sustainable-poll_2021_Pollution-Assessment-for-Sustainable-Pract 1 . Sustainable pollution assessment practices 1.1 Introduction 1.2 Sustainable development concept 1.2.1 Social sustainability 1.2.2 Environmental sustainability 1.2.3 Economic sustainability 1.2.4 Land sustainability 1.3 Sustainable development and the ambient environment 1.4 Land environment 1.5 Global environmental problems and restoration initiatives 1.5.1 Global warming and climate change 1.5.2 Chemicals in the environment 1.5.2.1 Persistent organic pollutants 1.5.2.2 Metals 1.5.2.3 Health care waste 1.5.2.4 Electronic waste 1.5.2.5 Mitigation measures 1.5.3 Pollution of marines and rivers 1.5.3.1 Oil spill 1.5.3.2 Plastic debris in marine environment 1.5.3.3 Freshwater bodies 1.5.3.4 Conservation and sustainable use of oceans, seas, and marine resources 1.5.4 Extinction of species and biodiversity 1.5.4.1 Marine ecosystem 1.5.4.2 Animals 1.5.4.3 Forests 1.5.4.4 Mitigation measures 1.5.5 Environmental pollution in developing countries 1.5.5.1 Industries and population 1.5.5.2 Air pollution 1.5.5.3 Water pollution and management 1.6 Interconnection of environmental problems 1.7 Geoenvironmental engineering aspects 1.8 General pollution assessment framework 1.9 Summary and concluding remarks References Further reading Chapter-2---Risk-analys_2021_Pollution-Assessment-for-Sustainable-Practices- 2 . Risk analysis and management 2.1 Introduction 2.2 Decision trees 2.3 Optimum decision criteria 2.3.1 Maximum expected monetary value criterion 2.3.2 Minimax criterion 2.4 Expected value of perfect information 2.5 Statistical measures in decision-making analyses 2.5.1 Decision analysis of limited spill 2.5.2 Decision analysis of catastrophic spill 2.5.3 Worth of additional statistical measures to the MEMV 2.6 Extended environmental cost 2.6.1 Limited leakage (remediation cost less than US$2 million) 2.6.2 Catastrophic leakage (remediation cost exceeds US$2 million) 2.6.3 The lost value of groundwater and modified decision analysis 2.7 Utility theory 2.7.1 Utility concept 2.7.2 Exponential utility model 2.7.3 Partial involvement in projects 2.7.4 The use of the exponential utility in spillage and leakage problems 2.7.5 Application 2.7.6 Bayesian decision theory 2.8 Risk assessment 2.9 Basic elements of human health risk assessment 2.9.1 Hazard identification 2.9.2 Exposure assessment 2.9.3 Toxicity assessment 2.9.3.1 Introduction 2.9.3.2 Sources of toxicity information 2.9.3.2.1 Epidemiological studies 2.9.3.2.2 Animal studies 2.9.3.2.3 Supporting studies 2.9.3.3 Toxicological parameters 2.9.3.3.1 Noncarcinogenic effects 2.9.3.3.2 Carcinogenic effects 2.9.3.3.3 Weight-of-evidence classification 2.9.3.3.4 Slope factor calculation 2.9.4 Exposure route considerations 2.10 Risk characterization 2.10.1 Calculation of carcinogenic risks 2.10.2 Calculation of noncarcinogenic hazards 2.11 Risk management 2.11.1 Elements of a risk management program 2.11.1.1 Hazards identification program 2.11.1.2 Consequence analysis 2.11.1.3 Risk mitigation 2.11.2 Quantified risk assessment 2.12 Role of regulatory agencies 2.13 Regulatory approaches 2.13.1 Risk-based mitigation criteria 2.13.2 Numerically based mitigation criteria 2.14 Mitigation technologies for polluted soils 2.14.1 Natural attenuation 2.14.2 Containment 2.14.3 Removal and treatment 2.14.4 In situ treatment 2.14.5 Selection of mitigation options 2.15 Summary and concluding remarks References Further reading Chapter-3---Environmental-app_2021_Pollution-Assessment-for-Sustainable-Prac 3 . Environmental applications of remote sensing 3.1 Environmental problems and remote sensing 3.2 Concepts and foundations of remote sensing 3.2.1 Spectral bands for imaging 3.2.2 Spectral signature and atmospheric windows 3.2.3 Imaging quality and information content 3.3 Remote sensing instruments and platforms 3.3.1 Imaging systems 3.3.1.1 Optical imaging systems 3.3.1.2 Thermal imaging systems 3.3.1.3 Radar imaging systems 3.3.2 Nonimaging systems 3.3.2.1 Satellite altimeters 3.4 Ocean surface circulation and marine debris application 3.4.1 Ocean surface circulation 3.4.2 Remote sensing of marine debris 3.5 Unmanned aerial systems 3.5.1 Why now? Why is adaptation so slow? 3.5.2 UAV components 3.5.3 Environmental applications of UAS 3.5.4 State of the art for UASs 3.6 Future directions and Earth observation in Europe 3.6.1 Copernicus 3.6.2 Earth Explorers 3.6.3 Meteorology 3.7 Summary and remarks Acknowledgments References Chapter-4---Geographic-information-sys_2021_Pollution-Assessment-for-Sustain 4 . Geographic information system: spatial data structures, models, and case studies 4.1 Introduction 4.2 General information organization and data structure 4.2.1 Data and information 4.3 Geographic data and geographic information 4.3.1 Information organization 4.3.2 Data perspective 4.4 Information organization of graphical data 4.4.1 Levels of data abstraction 4.4.2 Relationship perspective of information organization 4.4.3 Spatial relationships 4.5 The operating system perspective of information organization 4.5.1 The application architecture perspective of information organization 4.6 Fundamental concepts of data 4.6.1 Spatial versus nonspatial data 4.6.2 Databases for spatial data 4.6.3 Data models and modeling 4.7 Case studies 4.7.1 Case 1: application of geographic information system–based spatial analyses in soil chemistry, Colorado, United States 4.7.2 Case 2: land use classification in Al-Qassim region, Saudi Arabia 4.7.3 Case study 3: delineation of copper mineralization ones at Wadi Ham, northern Oman Mountains, using multispectral Landsat 8 ... 4.7.3.1 Site characteristics 4.7.3.2 Image processing of Landsat 8 data 4.7.3.3 Spectral characteristics analysis 4.7.3.4 Mineralization: delineation and mapping 4.8 Summary and concluding remarks References Further reading Chapter-5---Geophysi_2021_Pollution-Assessment-for-Sustainable-Practices-in- 5 . Geophysical methods 5.1 Introduction 5.2 Electrical resistivity methods 5.2.1 Electrical resistivity theory 5.2.2 Electrical properties 5.2.3 Field procedures 5.2.4 Electrode configurations 5.2.5 Interpretation methods 5.3 Electromagnetic methods 5.3.1 Basic theory 5.4 Electromagnetic techniques 5.4.1 Frequency domain methods 5.4.2 Time domain methods 5.4.3 Natural source methods 5.4.4 Interpretation methods 5.5 Seismic methods 5.5.1 Basic theory 5.5.2 Seismic energy amplitude loss 5.5.3 Seismic sources and receivers 5.5.4 Seismic surveys 5.5.5 Seismic refraction 5.5.6 Seismic reflection 5.5.7 Surface waves 5.6 Ground-penetrating radar 5.6.1 Basic theory 5.6.2 Field procedures and data processing 5.6.3 Interpretation 5.7 Gravity and magnetic methods 5.7.1 Gravity theory 5.7.2 Gravity field procedures 5.7.3 Gravity data processing 5.7.4 Magnetic theory 5.7.5 Earth's magnetic field 5.7.6 Magnetic field procedures 5.7.7 Magnetic data processing 5.7.8 Material properties 5.7.9 Gravity and magnetic interpretation techniques 5.7.10 Data presentation 5.7.11 Magnetic anomaly shapes 5.7.12 Regional and residual gravity anomalies 5.7.13 Data enhancement 5.7.14 Modeling 5.8 Summary and concluding remarks References Further reading Chapter-6---Site-in_2021_Pollution-Assessment-for-Sustainable-Practices-in-A 6 . Site investigation 6.1 Introduction 6.2 Site investigation approach 6.3 Phase I investigations 6.3.1 Collecting information 6.3.1.1 Sources of information on site history 6.3.1.2 Geologic and hydrogeologic information 6.3.1.3 Hydrologic information 6.3.2 Field reconnaissance 6.3.3 Development of a conceptual model 6.3.4 Establishing the work plan 6.4 Phase II investigations 6.5 Geophysical techniques 6.6 Hydrogeological investigations 6.6.1 Drilling methods 6.6.1.1 Hollow-stem auger 6.6.1.2 Solid-stem auger 6.6.1.3 Cable-tool drilling 6.6.1.4 Air-rotary drilling 6.6.1.5 Air-percussion rotary or down-hole hammer 6.6.1.6 Reverse circulation drilling 6.6.1.7 Hydraulic rotary 6.6.2 Sampling methods 6.6.2.1 Drill cutting samples 6.6.2.2 Core samples 6.6.3 Well installation techniques 6.6.3.1 Drive point wells 6.6.3.2 Individual wells 6.6.4 Monitoring well design components 6.6.4.1 Diameter 6.6.4.2 Casing and screen material 6.6.4.3 Sealing materials 6.6.4.4 Screen length and depth of placement 6.6.4.5 Location and number 6.6.5 Well decontamination procedures 6.7 Hydrogeochemical investigation 6.7.1 Subsurface environment 6.7.1.1 pH and alkalinity 6.7.1.2 Redox potential 6.7.1.3 Salinity and dissolved constituents 6.7.1.4 Soil matrix 6.7.1.5 Temperature and pressure 6.7.1.6 Microbial activity 6.7.2 Sampling considerations 6.7.2.1 Sampling location 6.7.2.2 Sampling frequency 6.7.2.3 Sample type and size 6.7.2.4 Vadose zone sampling 6.7.2.5 Groundwater sampling 6.8 Geochemical data collection 6.8.1 Sources of errors 6.8.1.1 Field errors 6.8.1.2 Analytical errors 6.8.1.3 Indirect measurement 6.8.1.4 Data handling 6.8.2 Sampling methods and types 6.9 Geochemical data analysis 6.10 Case study I: landfill site investigation: Phase 1: assessment of the geoengineering conditions 6.10.1 Introduction 6.10.2 Geotechnical investigation 6.10.3 Geomechanical analysis 6.10.3.1 Settlement analysis based on relative density measurements 6.10.3.2 Settlement analysis based on plate bearing test results 6.11 Conclusion 6.12 Case study I: landfill site investigation: Phase 2: assessment of the geoenvironmental conditions 6.12.1 Introduction 6.12.2 Monitored boreholes 6.12.3 Results and discussion 6.12.3.1 Gas analysis 6.12.3.2 Water analysis 6.12.3.2.1 Groundwater from installed wells 6.12.3.2.2 House water tanks 6.12.3.2.3 House wells 6.12.3.2.4 Possible migration pathway 6.12.4 Conclusion 6.13 Case study II: assessment of land salinization spread in arid lands 6.13.1 Spectral response of salt-affected soils 6.13.2 The reflectance spectra of gypsum and halite 6.13.3 Remote sensing data and techniques 6.13.4 Temporal variations of land-cover and landscape features 6.13.5 Remote detection of secondary salinity 6.13.6 Hyperspectroscopy 6.14 Summary and concluding remarks References Further reading Chapter-7---Subsurface-p_2021_Pollution-Assessment-for-Sustainable-Practices 7 . Subsurface pollutant transport 7.1 Introduction 7.2 Modeling process 7.3 Transport mechanisms in soil 7.3.1 Advection 7.3.2 Diffusion 7.3.2.1 Effects of soil properties on Ds 7.3.3 Dispersion 7.3.4 Sorption 7.4 Transport equation 7.5 Solute transport models 7.5.1 Conservative tracer 7.5.2 Reactive chemical species 7.5.3 Spill of pollutants 7.5.4 Pollutant plume 7.6 Mass transfer limitations during pollutant transport 7.6.1 Single-rate mass transfer approach 7.6.2 Multirate mass transfer approach 7.7 Experimental determination of adsorption characteristics 7.7.1 Batch method 7.7.2 Circulation-through-column method 7.7.3 Column method 7.7.3.1 Moment analysis 7.7.3.2 Curve fitting 7.8 Modeling of pollutant transport using second postulate of irreversible thermodynamics 7.8.1 Aqueous phase liquid (APL) transport 7.8.2 Nonaqueous phase liquid transport 7.8.2.1 Saturated condition 7.8.2.2 Unsaturated conditions 7.9 Advanced modeling: the stochastic approach 7.10 Summary and concluding remarks References Further reading Chapter-8---Indoor-air-quality--po_2021_Pollution-Assessment-for-Sustainable 8 . Indoor air quality: pollutants, health effects, and regulations 8.1 Introduction 8.2 Indoor air quality 8.3 Sources and characteristics of major IAPS 8.3.1 Volatile organic compounds 8.3.2 Formaldehyde 8.3.3 Particulate matter 8.3.4 Nitrogen dioxide 8.3.5 Carbon dioxide 8.3.6 Carbon monoxide 8.3.7 Ozone 8.3.8 Radon 8.3.9 Airborne biological pollutants 8.3.9.1 Bacteria and fungi 8.3.9.2 House dust mites 8.4 Other related studies on the health effects of IAPs 8.5 Sampling and measurements of IAPs 8.5.1 Data collection and regulations 8.5.2 Criteria for sampling locations and duration 8.5.2.1 Spatially average measurements 8.5.2.2 Sampling for spatial average indoor concentration 8.5.3 Methods of sampling 8.5.3.1 Active and passive air sampling 8.5.3.2 Whole-air sampling 8.6 Influence of outdoor air pollution on IAQ 8.7 Measures to minimize entry of outdoor polluted air indoors 8.8 IAQ guidelines and building regulations 8.9 Sick building syndrome, green buildings, and wellbeing 8.9.1 Sick building syndrome 8.9.2 Green buildings and wellbeing 8.10 Summary and conclusions References Further reading Chapter-9---Outdoor-air-pollutants--sour_2021_Pollution-Assessment-for-Susta 9 . Outdoor air pollutants: sources, characteristics, and impact on human health and the environment 9.1 Introduction 9.2 Sources of outdoor air pollutants 9.2.1 Natural sources 9.2.2 Man-made sources 9.2.3 Concentration of air pollutants in the outdoor 9.3 Categories of air pollutants 9.3.1 Criteria pollutants 9.3.2 Air toxics and other air pollutants 9.3.3 Stratospheric ozone 9.4 Anthropogenic emissions inventory by sector 9.5 Air pollutant main indicators 9.5.1 Particulate matter 9.5.1.1 Composition and emission 9.5.1.2 Human health effects 9.5.1.3 Environmental effects 9.5.2 Ozone 9.5.2.1 Formation 9.5.2.2 Human health effects 9.5.2.3 Environmental effects 9.5.3 Nitrogen dioxide 9.5.3.1 Sources 9.5.3.2 Human health effects 9.5.3.3 Environmental effects 9.5.4 Carbon monoxide 9.5.4.1 Sources 9.5.4.2 Human health effects 9.5.4.3 Environmental effects 9.5.5 Sulfur dioxide (SO2) 9.5.5.1 Sources 9.5.5.2 Human health effects 9.5.5.3 Environmental effects 9.6 Air toxics 9.6.1 Nonvolatile metals 9.6.1.1 Sources 9.6.1.2 Human health effects 9.6.1.3 Environmental effects 9.6.2 Acid aerosols 9.6.3 Volatile metals 9.6.4 Fluoride 9.6.5 Polycyclic aromatic hydrocarbons 9.6.6 Biological pollutants 9.6.7 Bushfire smoke 9.6.8 Dust storm 9.6.9 Blast fumes 9.6.10 Mine dust 9.6.11 Coal burning 9.7 Monitoring and measurement 9.8 Monitoring of air pollutants in the United Arab Emirates 9.9 Global environmental impact of climate change 9.9.1 Causes of climate change 9.9.2 Economic impact of climate change 9.9.3 Environmental impacts of climate change 9.9.4 Control of global temperature rise 9.10 Summary and concluding remarks References Further reading Chapter-10---Modeling-air-pol_2021_Pollution-Assessment-for-Sustainable-Prac 10 . Modeling air pollution by atmospheric desert 10.1 Introduction 10.2 Atmospheric chemistry–climate model 10.3 Atmospheric dust chemistry 10.4 Sensitivity of dust removal to chemical aging 10.5 Climate forcing of aeolian dust 10.6 Public health impacts of aeolian dust 10.7 Summary and concluding remarks References Chapter-11---Tropospheric-air-p_2021_Pollution-Assessment-for-Sustainable-Pr 11 . Tropospheric air pollution—aviation industry's case 11.1 Introduction 11.2 Aviation and greenhouse gas emissions 11.2.1 Aviation and carbon dioxide 11.2.2 Aviation emission inventories 11.2.3 Aviation and environmental impact 11.3 European Union Emissions Trading System 11.4 Aviation CO2 management 11.4.1 Aviation CO2 emissions calculation 11.4.2 Data planning and reporting 11.4.3 Annual greenhouse gas index 11.4.4 Aviation's climate impact 11.5 Carbon cycle and climate system 11.5.1 The slow carbon cycle 11.5.1.1 Chemical weathering 11.5.1.2 Heat and pressure 11.5.1.3 Animal and plant organic matter 11.5.1.4 Natural processes 11.5.1.5 Marine environment 11.5.2 The fast carbon cycle 11.5.3 Effects of changing the carbon cycle 11.6 Monitoring techniques 11.6.1 Monitoring types 11.6.2 Infrared absorption characteristics of gases 11.6.3 Commercial gas sensors 11.7 Greenhouse gas remote sensing instruments 11.7.1 Satellite instruments 11.7.1.1 Atmospheric Infrared Sounder 11.7.1.2 Orbiting Carbon Observatory 11.7.1.3 CO2 sounder lidar 11.7.2 Airborne instruments 11.7.2.1 Airborne laser isotope spectrometer 11.7.2.2 Aircraft laser infrared absorption spectrometer 11.7.2.3 Atmospheric vertical observations of CO2 in earth's troposphere 11.7.2.4 CO2 laser absorption spectrometer 11.7.2.5 Differential absorption carbon monoxide measurement 11.7.2.6 Nondispersed infrared airborne CO2 detector 11.7.2.7 Tropospheric ozone and tracers sensor 11.7.2.8 Atmospheric remote sensing instrument 11.8 Summary and concluding remarks References Further reading Chapter-12---Health-econom_2021_Pollution-Assessment-for-Sustainable-Practic 12 . Health economics of air pollution 12.1 Introduction 12.2 Definition of air pollutants 12.3 Causes of air pollution 12.3.1 Effects of air pollution on health: epidemiological indication 12.3.2 Monitoring of air pollution: air-quality index 12.3.3 Policy in preventing air pollution 12.4 Effects of air pollution on health: the economic evidence 12.4.1 Health and life: the valuation 12.4.2 Value of a statistical life: the ordinary method for calculating mortality cost 12.4.3 VSL for each country and intracommunity and international equity 12.4.4 Severity and persistence of air pollution 12.5 Impacts of policy: an empirical approach 12.5.1 Practice and contemplation: economic evaluation 12.5.2 Sectoral technical evidence and its limits 12.5.3 Costs and effects of air quality: the assessment 12.5.4 “Price+expenditure+environment”: the rational structure 12.5.5 “Pricing, expenditure, and environment”: the proof of productivity 12.5.6 “Pricing, expenditure, and environment”: the chronological framework 12.6 Summary and concluding remarks References Further reading Chapter-13---A-decision-support-system-for-rankin_2021_Pollution-Assessment- 13 . A decision support system for ranking desalination processes in the Arabian Gulf Countries based on hydrodynamic modeling e ... 13.1 Introduction 13.2 Impact of climate change and coastal effluents on seawater salinity and temperature 13.2.1 Seawater salinity and temperature 13.2.2 Seawater quality impacts on desalination 13.2.3 Climate variability 13.2.4 Long-term response simulation to climate change and coastal effluents 13.2.4.1 Mathematical modeling 13.2.4.2 Long-term observations 13.2.4.3 Statistical analysis 13.2.4.4 Far-field hydrodynamics modeling 13.2.4.5 Far-field and particle tracking 13.2.4.6 Coupling near- and far-field hydrodynamics 13.3 Data use 13.3.1 Area description 13.3.2 Baseline hydrology 13.3.3 Water resources 13.4 Hydrodynamic modeling 13.4.1 Model description 13.4.2 Model setup and calibration 13.4.2.1 Domain and grid resolution 13.4.2.2 Initial and boundary conditions 13.4.2.3 Model simulation design 13.4.2.4 Heat flux and evaporation 13.4.2.5 River input 13.4.2.6 Physical parameters 13.4.2.7 Numerical parameters 13.4.3 Model validation 13.4.3.1 Tide 13.4.3.2 Currents 13.4.3.3 Salinity and temperature 13.4.3.4 Evaporation 13.5 Environmental impacts due to climate change and costal effluents 13.5.1 Input data preparation for model simulation 13.5.2 Future scenarios 13.5.2.1 Salinity 13.5.2.2 Temperature 13.6 Impact of seawater salinity and temperature on performance of desalination processes 13.6.1 Decision support matrix 13.6.1.1 Thermal response to seawater salinity and temperature changes 13.6.1.2 Reverse osmosis response to seawater salinity and temperature changes 13.6.2 Decision support matrix approach 13.6.2.1 Salinity–decision support matrix 13.6.2.2 Temperature–decision support matrix 13.6.3 Evaluating long-term impact of salinity and seawater temperature changes on desalination performance 13.6.3.1 Least negatively impacted ranking 13.6.3.2 Projected results for Al Quwain, United Arab Emirates 13.6.4 Projected results in other gulf desalination plants 13.7 Summary and concluding remarks References Further reading Chapter-14---Recent-analytical-methods_2021_Pollution-Assessment-for-Sustain 14 . Recent analytical methods for risk assessment of emerging contaminants in ecosystems 14.1 Introduction 14.1.1 What are emerging contaminants? 14.1.2 Human impact on the environment 14.1.3 Major sources of emerging contaminants 14.2 Emerging contaminants in the environment 14.2.1 Classes of emerging contaminants 14.2.2 Concentrations of emerging contaminants in the ecosystem 14.2.2.1 Pharmaceuticals and personal care products 14.2.2.2 Disinfection by-products 14.2.2.3 Perfluorinated compounds 14.2.2.4 Polybrominated diphenyl ethers 14.2.2.5 Benzotriazoles and dioxane 14.3 Emerging contaminants and regulatory considerations 14.4 Sample collection techniques for emerging contaminants 14.4.1 Considerations in selecting sampling matrices 14.4.2 Sampling techniques 14.4.2.1 Water sampling 14.4.2.2 Sediment sampling 14.4.2.3 Biota sampling 14.4.2.4 Air sampling 14.5 Sample preparation, extraction, and cleanup 14.5.1 Advances in sample preparation 14.5.2 Extraction methods for environmental matrices 14.5.2.1 Extraction from water samples 14.5.2.2 Extraction from sediment/soil samples 14.5.2.3 Extraction from biota samples 14.5.2.4 Extraction from air samples 14.5.3 Cleanup methods 14.6 Instrumental analytical methods 14.6.1 Analytical considerations 14.6.2 Overview of common analytical methods 14.6.2.1 Liquid chromatography methods 14.6.2.2 Gas chromatography methods 14.6.2.3 Nuclear magnetic resonance spectroscopy methods 14.6.3 Latest analytical methods 14.6.3.1 Disinfection by-products 14.6.3.2 Pharmaceuticals and personal care products 14.6.3.3 Benzotriazoles and dioxane 14.6.3.4 Polybrominated diphenyl ethers 14.6.3.5 Polyfluorinated compounds 14.7 Summary and concluding remarks Acknowledgments References Further reading Chapter-15---Water-quality-at-Jebe_2021_Pollution-Assessment-for-Sustainable 15 . Water quality at Jebel Ali Harbor, Dubai, United Arab Emirates 15.1 Introduction 15.2 Site description 15.3 Review of previous studies of harbor water 15.4 Study approach 15.5 Previous records 15.6 Sample collection and analysis 15.6.1 Sampling locations 15.6.2 Selection of test parameters 15.7 Discharged treated wastewater 15.7.1 Treatment processes employed before discharge 15.7.1.1 Wastewater treatment at EPCL 15.7.1.2 Wastewater treatment at Gulf Food Industries 15.7.1.3 Wastewater treatment at Gulf Denim 15.7.1.4 Wastewater treatment at Emirates Can 15.7.1.5 Sewage treatment plants 15.7.2 Characteristics of discharged treated wastewater 15.7.2.1 General characteristics 15.7.2.2 Fluoride and cyanide 15.7.2.3 Organic matter 15.7.2.4 Nutrients 15.7.2.5 Metallic impurities 15.7.2.6 Trace organic compounds (organic pollutants) 15.7.2.7 Coliform bacteria 15.7.3 Discharges from other sources 15.7.3.1 Discharged cooling water 15.7.3.2 Stormwater 15.7.3.3 Other possible discharges 15.7.4 Impact of discharge sources on harbor water 15.8 Harbor water quality 15.8.1 General characteristics of harbor water 15.8.1.1 Temperature 15.8.1.2 pH 15.8.1.3 Dissolved and suspended solids 15.8.1.4 Anions 15.8.1.5 Dissolved oxygen 15.8.1.6 Organic matter 15.8.1.7 Nutrients 15.8.1.8 Metallic impurities 15.8.1.9 Trace organic compounds 15.8.1.10 Biological characteristics 15.8.2 Variations in parameters with depth 15.8.3 Harbor water quality status 15.9 Summary and concluding remarks 15.10 Recommendations Acknowledgment References Chapter-16---Sediment-quality-at-Je_2021_Pollution-Assessment-for-Sustainabl 16 . Sediment quality at Jebel Ali Harbor, Dubai, United Arab Emirates 16.1 Introduction 16.2 Previous records 16.3 Methodologies 16.3.1 Sampling locations 16.3.1.1 Selection of test parameters 16.4 Results and discussion 16.4.1 Sediment properties 16.4.2 General characteristics of harbor sediments 16.4.3 Organic matter 16.4.4 Metallic impurities 16.4.5 Trace organic compounds 16.5 Harbor sediment quality assessment 16.6 Conclusion 16.7 Recommendations Acknowledgment References Chapter-17---Inland-desalination--tec_2021_Pollution-Assessment-for-Sustaina 17 . Inland desalination: techniques, brine management, and environmental concerns 17.1 Introduction 17.2 Desalination capacity 17.3 Conventional desalination techniques 17.3.1 RO technique 17.3.2 ED technique 17.3.3 MSF technique 17.3.4 MED technique 17.4 Emerging desalination technologies 17.4.1 Technologies based on novel membranes 17.4.2 Vapor compression distillation 17.4.3 Semibatch RO 17.4.4 Forward osmosis 17.4.5 Reverse electrodialysis 17.4.6 Membrane distillation 17.4.7 Humidification–dehumidification 17.4.8 Adsorption desalination 17.4.9 Pervaporation 17.4.10 Microbial desalination cells 17.4.11 Ion concentration polarization 17.4.12 Capacitive deionization 17.4.13 Clathrate hydrates 17.4.14 Supercritical water desalination 17.4.15 Hybrid systems 17.5 Brine characteristics 17.6 Brine management 17.6.1 Evaporation ponds and energy recovery 17.6.2 Deep well injection 17.6.3 Freeze 17.6.4 Discharge to sewage network 17.6.5 Reuse 17.6.6 Zero liquid discharge 17.6.7 Salt recovery 17.7 Environmental issues 17.7.1 Brine disposal 17.7.2 GHG emissions 17.7.3 Noise 17.8 Environmental assessment 17.8.1 Environmental impact assessment 17.8.2 Environmental lifecycle assessment 17.9 Summary and concluding remarks References Further reading Chapter-18---Pollution-asse_2021_Pollution-Assessment-for-Sustainable-Practi 18 . Pollution assessment of nanomaterials 18.1 Introduction 18.2 Nanomaterials and nanoparticles 18.2.1 Categories 18.2.2 Classes 18.2.2.1 Metal oxides 18.2.2.2 Carbon products 18.2.2.3 Metals 18.2.2.4 Zero-valent metals 18.2.2.5 Quantum dots 18.2.2.6 Nanoclays 18.2.2.7 Polymers 18.2.2.8 Emulsions 18.3 Physicochemical properties 18.3.1 Crystallinity 18.3.2 Composition 18.3.3 Particle size 18.3.4 Aspect ratio 18.3.5 Surface area 18.3.6 Reactivity 18.3.7 Surface charge 18.3.8 Zero point of charge 18.3.9 Solubility 18.3.10 Degradation/persistence 18.3.11 Biodegradation 18.4 The life cycle of ENMs 18.5 The transport of ENMs 18.5.1 Transport in the atmospheric environment 18.5.2 Transport in the hydrosphere environment 18.5.3 Transport in the biosphere (soil) environment 18.5.4 Transport in plants 18.6 The fate of ENMs in environmental ecosystems 18.6.1 The fate of ENMs in the atmosphere environment 18.6.2 The fate of ENMs in the hydrosphere environment 18.6.3 The fate of ENMs in the biosphere environment 18.6.4 The fate of ENMs in the human body 18.6.5 The fate of ENMs in animals 18.6.6 The fate of ENMs in plants 18.7 Bioavailability and toxicity 18.7.1 Bioavailability 18.7.2 Toxicity 18.8 Regulations and standards 18.8.1 The United States 18.8.2 Canada 18.8.3 Japan 18.8.4 The Netherlands 18.8.5 Switzerland 18.8.6 Denmark 18.8.7 Germany 18.9 Risk assessment methods and future directions 18.10 Summary and concluding remarks References Chapter-19---Noise-pollution-and-it_2021_Pollution-Assessment-for-Sustainabl 19 . Noise pollution and its impact on human health and the environment 19.1 Introduction 19.2 Noise fundamentals 19.2.1 Differences in sound levels and decibels 19.2.2 Equivalent continuous sound levels 19.2.3 Sound pressure 19.2.4 A-Weighting scale 19.3 Overview of noise pollution problem 19.4 Policy and standards 19.4.1 World Health Organization 19.4.2 United States 19.4.3 European Commission 19.4.4 India 19.5 Noise exposure sources 19.5.1 Aircraft noise exposure 19.5.2 Road traffic and railway noise exposure 19.5.3 In-vehicle noise exposure 19.5.4 Worksite noise exposure 19.5.5 Construction site noise exposure 19.5.6 Occupational and household noise exposure 19.6 Noise pollution impact 19.6.1 Human health impact 19.6.1.1 Hearing loss 19.6.1.2 Tinnitus 19.6.1.3 Sleeping disorders 19.6.1.4 Annoyance and stress 19.6.1.5 Cardiovascular effects 19.6.1.6 Cognitive impairment in children 19.6.2 Health impact on animals 19.6.2.1 Impact on animals’ communication 19.6.2.2 Animal vocal adjustment to noise pollution 19.6.2.3 Stressor impact on animals 19.6.2.4 Impact on acoustic diversity 19.7 Identification methods for regional noise-affected habitats 19.7.1 Modeling results in unprotected land environment 19.7.2 Modeling results in protected land environment 19.7.3 Modeling results in marine environment 19.8 Noise control measures and sustainability 19.8.1 Sustainable building design 19.8.2 Noise mapping 19.8.3 Control measures 19.8.3.1 Use of barriers and berms along roadside 19.8.3.2 Use of acoustic building materials 19.8.3.3 Roadway vehicle noise source control 19.8.3.4 Road surface and pavement material control 19.8.3.5 Public awareness and education 19.8.3.6 Legislation 19.9 Environmental noise pollution management 19.9.1 Noise management categories 19.9.2 Health-related outcomes of remedial measures 19.10 Summary and concluding remarks References Further reading Chapter-20---Assessment-of-radiat_2021_Pollution-Assessment-for-Sustainable- 20 . Assessment of radiation pollution from nuclear power plants 20.1 Introduction 20.2 Radioactive decay 20.3 Environmental radiation 20.4 Sources and types of radwaste 20.4.1 Low-level radioactive waste 20.4.2 Intermediate-level radioactive waste 20.4.3 High-level radioactive waste 20.4.4 Wastes from decommissioning nuclear plants 20.4.5 Legacy wastes 20.5 Geologic disposal of high-level radioactive waste 20.5.1 Outer space 20.5.2 Subduction zones 20.5.3 Ice caps 20.5.4 Geologic isolation on land 20.5.5 Reservoir rock types for geologic isolation 20.5.5.1 Shale 20.5.5.2 Salt vaults 20.5.5.3 Volcanic tuffs 20.5.5.4 Crystalline rock cavities 20.6 Future challenges 20.7 Environmental effects of nuclear power 20.7.1 Radioactive waste 20.7.2 Thermal discharge 20.7.3 Gaseous releases 20.7.4 Milling, mining, and enrichment issues 20.7.5 Accidents, terrorism, and cost issues 20.8 Nuclear regulations 20.8.1 International atomic energy agency 20.8.2 The nuclear energy agency 20.9 Nuclear power plant accidents and incidents 20.10 Emission of radioactive materials 20.11 How dangerous is nuclear radiation? 20.12 Effects on human health 20.13 Case study I: Chernobyl, Ukraine 20.13.1 The chernobyl plant and site 20.13.2 The 1986 chernobyl accident 20.13.3 Immediate impact 20.13.4 Environmental and health impacts 20.13.5 Progressive closure of the plant 20.13.6 Chernobyl today 20.13.7 Lessons learned 20.14 Case study II: Fukushima, Japan 20.14.1 The nuclear accident 20.14.2 Fukushima Daiichi reactors 20.14.3 Radioactive release and contamination 20.14.4 Public health and return of evacuees 20.14.5 Recovery and on-site remediation 20.14.6 Current status 20.15 Nuclear safety 20.16 Summary and concluding remarks References Chapter-21---Artificial-intelligence-and-_2021_Pollution-Assessment-for-Sust 21 . Artificial intelligence and data analytics for geosciences and remote sensing: theory and application 21.1 Introduction 21.2 Machine learning applications 21.2.1 Mineral mining 21.2.2 Environmental monitoring 21.2.3 Mineral exploration 21.3 Satellite images and Landsat hyperspectral data processing 21.3.1 Machine learning 21.3.2 Decision tree 21.3.3 Multiple-criteria decision analysis method PROAFTN 21.3.4 Hybrid classification model 21.4 Decision tree 21.4.1 Algorithm 21.4.2 Implementation in R 21.4.3 Model tree 21.5 PROAFTN method 21.5.1 Initialization 21.5.2 Fuzzy indifference relation 21.5.3 Membership evaluation 21.5.4 Categorization 21.5.5 PROAFTN learning 21.5.6 Determination of PROAFTN intervals 21.5.7 Classification model 21.5.8 Hybrid DT and PROAFTN 21.5.9 Classification model development 21.6 Case study I: hybrid DT and PROAFTN method utilization for soil classification from Landsat satellite images 21.6.1 Data description 21.6.2 Results 21.6.3 Summary 21.7 Case study II: java-based analytical method for mineral exploration at Flin Flon, Saskatchewan, Canada 21.7.1 Site description 21.7.2 Java systematic feature extraction tool and its structure 21.7.3 Data analysis 21.8 Summary and concluding remarks References Chapter-22---Lifecycle-ass_2021_Pollution-Assessment-for-Sustainable-Practic 22 . Lifecycle assessment of aquaponics 22.1 Introduction 22.2 Aquaponic systems 22.2.1 Mechanism of aquaponics cycle 22.2.2 Main components of aquaponics 22.2.3 Types of aquaponic systems 22.2.3.1 Aquaponic system inputs and outputs 22.2.4 Aquaponic system water management 22.2.5 Types of products of aquaponic systems 22.2.6 Coupled versus decoupled systems 22.3 Assessment of aquaponic systems 22.3.1 Sustainability in aquaponics 22.3.2 Types of assessment 22.3.2.1 Environmental sustainability 22.3.2.2 Economic sustainability 22.3.2.3 Social sustainability 22.3.2.4 Overall sustainability assessment 22.4 Challenges and recommendations 22.5 Concluding remarks Acknowledgments References Index_2021_Pollution-Assessment-for-Sustainable-Practices-in-Applied-Science Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z