ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Pollution Assessment for Sustainable Practices in Applied Sciences and Engineering: Concepts, Techniques, and Practice

دانلود کتاب ارزیابی آلودگی برای شیوه‌های پایدار در علوم و مهندسی کاربردی: مفاهیم، ​​تکنیک‌ها و عمل

Pollution Assessment for Sustainable Practices in Applied Sciences and Engineering: Concepts, Techniques, and Practice

مشخصات کتاب

Pollution Assessment for Sustainable Practices in Applied Sciences and Engineering: Concepts, Techniques, and Practice

ویرایش:  
نویسندگان: , ,   
سری:  
ISBN (شابک) : 0128095822, 9780128095829 
ناشر: Butterworth-Heinemann 
سال نشر: 2020 
تعداد صفحات: 1170
[1137] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 89 Mb 

قیمت کتاب (تومان) : 35,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 4


در صورت تبدیل فایل کتاب Pollution Assessment for Sustainable Practices in Applied Sciences and Engineering: Concepts, Techniques, and Practice به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب ارزیابی آلودگی برای شیوه‌های پایدار در علوم و مهندسی کاربردی: مفاهیم، ​​تکنیک‌ها و عمل نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب ارزیابی آلودگی برای شیوه‌های پایدار در علوم و مهندسی کاربردی: مفاهیم، ​​تکنیک‌ها و عمل

ارزیابی آلودگی برای شیوه‌های پایدار در علوم و مهندسی کاربردی، مرجعی یکپارچه برای دانشگاهیان و متخصصان فعال در زمینه آلودگی زمین، هوا و آب فراهم می‌کند. پروتکل های مورد بحث و تعداد گسترده مطالعات موردی به مهندسان محیط زیست کمک می کند تا به سرعت فرآیند صحیح پروژه های تحت مطالعه را شناسایی کنند. این کتاب به چهار بخش تقسیم شده است؛ هر یک از سه مورد اول یک محیط جداگانه را پوشش می دهد: ژئوسفر، اتمسفر، و هیدروکره. بخش اول شامل ارزیابی زمینی، آلودگی، آمار زمین، سنجش از دور، GIS، ارزیابی و مدیریت ریسک و ارزیابی اثرات زیست محیطی است. بخش دوم موضوعات ارزیابی اتمسفر، از جمله پویایی حمل و نقل آلاینده، اثرات گرمایش جهانی، تکنیک ها و تمرین های داخلی و خارجی را پوشش می دهد. بخش سوم به هیدروسفر شامل محیط های دریایی و آب شیرین اختصاص دارد. در نهایت، بخش چهارم به بررسی مسائل نوظهور در ارزیابی آلودگی، از نانومواد تا هوش مصنوعی می‌پردازد. طیف گسترده ای از مطالعات موردی در این کتاب برای کمک به پر کردن شکاف بین مفهوم و عمل وجود دارد. مهندسان محیط زیست از رویکرد یکپارچه برای ارزیابی آلودگی در حوزه های مختلف سود خواهند برد. مهندسان و دانشجویان شاغل نیز از مطالعات موردی بهره مند خواهند شد که این تمرین را در کنار مفاهیم اساسی قرار می دهد. یک نمای کلی جامع از ارزیابی آلودگی ارائه می دهد. آلودگی زمین، زیرزمین، آب و هوا را پوشش می دهد، شامل ارزیابی آلودگی در فضای باز و داخلی است.


توضیحاتی درمورد کتاب به خارجی

Pollution Assessment for Sustainable Practices in Applied Sciences and Engineering provides an integrated reference for academics and professionals working on land, air, and water pollution. The protocols discussed and the extensive number of case studies help environmental engineers to quickly identify the correct process for projects under study. The book is divided into four parts; each of the first three covers a separate environment: Geosphere, Atmosphere, and Hydrosphere. The first part covers ground assessment, contamination, geo-statistics, remote sensing, GIS, risk assessment and management, and environmental impact assessment. The second part covers atmospheric assessment topics, including the dynamics of contaminant transport, impacts of global warming, indoor and outdoor techniques and practice. The third part is dedicated to the hydrosphere including both the marine and fresh water environments. Finally, part four examines emerging issues in pollution assessment, from nanomaterials to artificial intelligence. There are a wide variety of case studies in the book to help bridge the gap between concept and practice. Environmental Engineers will benefit from the integrated approach to pollution assessment across multiple spheres. Practicing engineers and students will also benefit from the case studies, which bring the practice side by side with fundamental concepts. Provides a comprehensive overview of pollution assessment Covers land, underground, water and air pollution Includes outdoor and indoor pollution assessment Presents case studies that help bridge the gap between concepts and practice



فهرست مطالب

Front-Mat_2021_Pollution-Assessment-for-Sustainable-Practices-in-Applied-Sci
	Pollution Assessment for Sustainable Practices in Applied Sciences and Engineering
Copyrig_2021_Pollution-Assessment-for-Sustainable-Practices-in-Applied-Scien
	Copyright
Dedicati_2021_Pollution-Assessment-for-Sustainable-Practices-in-Applied-Scie
	Dedication
Contribut_2021_Pollution-Assessment-for-Sustainable-Practices-in-Applied-Sci
	Contributors
About-the-edi_2021_Pollution-Assessment-for-Sustainable-Practices-in-Applied
	About the editors
Prefac_2021_Pollution-Assessment-for-Sustainable-Practices-in-Applied-Scienc
	Preface
Chapter-1---Sustainable-poll_2021_Pollution-Assessment-for-Sustainable-Pract
	1 . Sustainable pollution assessment practices
		1.1 Introduction
		1.2 Sustainable development concept
			1.2.1 Social sustainability
			1.2.2 Environmental sustainability
			1.2.3 Economic sustainability
			1.2.4 Land sustainability
		1.3 Sustainable development and the ambient environment
		1.4 Land environment
		1.5 Global environmental problems and restoration initiatives
			1.5.1 Global warming and climate change
			1.5.2 Chemicals in the environment
				1.5.2.1 Persistent organic pollutants
				1.5.2.2 Metals
				1.5.2.3 Health care waste
				1.5.2.4 Electronic waste
				1.5.2.5 Mitigation measures
			1.5.3 Pollution of marines and rivers
				1.5.3.1 Oil spill
				1.5.3.2 Plastic debris in marine environment
				1.5.3.3 Freshwater bodies
				1.5.3.4 Conservation and sustainable use of oceans, seas, and marine resources
			1.5.4 Extinction of species and biodiversity
				1.5.4.1 Marine ecosystem
				1.5.4.2 Animals
				1.5.4.3 Forests
				1.5.4.4 Mitigation measures
			1.5.5 Environmental pollution in developing countries
				1.5.5.1 Industries and population
				1.5.5.2 Air pollution
				1.5.5.3 Water pollution and management
		1.6 Interconnection of environmental problems
		1.7 Geoenvironmental engineering aspects
		1.8 General pollution assessment framework
		1.9 Summary and concluding remarks
		References
		Further reading
Chapter-2---Risk-analys_2021_Pollution-Assessment-for-Sustainable-Practices-
	2 . Risk analysis and management
		2.1 Introduction
		2.2 Decision trees
		2.3 Optimum decision criteria
			2.3.1 Maximum expected monetary value criterion
			2.3.2 Minimax criterion
		2.4 Expected value of perfect information
		2.5 Statistical measures in decision-making analyses
			2.5.1 Decision analysis of limited spill
			2.5.2 Decision analysis of catastrophic spill
			2.5.3 Worth of additional statistical measures to the MEMV
		2.6 Extended environmental cost
			2.6.1 Limited leakage (remediation cost less than US$2 million)
			2.6.2 Catastrophic leakage (remediation cost exceeds US$2 million)
			2.6.3 The lost value of groundwater and modified decision analysis
		2.7 Utility theory
			2.7.1 Utility concept
			2.7.2 Exponential utility model
			2.7.3 Partial involvement in projects
			2.7.4 The use of the exponential utility in spillage and leakage problems
			2.7.5 Application
			2.7.6 Bayesian decision theory
		2.8 Risk assessment
		2.9 Basic elements of human health risk assessment
			2.9.1 Hazard identification
			2.9.2 Exposure assessment
			2.9.3 Toxicity assessment
				2.9.3.1 Introduction
				2.9.3.2 Sources of toxicity information
					2.9.3.2.1 Epidemiological studies
					2.9.3.2.2 Animal studies
					2.9.3.2.3 Supporting studies
				2.9.3.3 Toxicological parameters
					2.9.3.3.1 Noncarcinogenic effects
					2.9.3.3.2 Carcinogenic effects
					2.9.3.3.3 Weight-of-evidence classification
					2.9.3.3.4 Slope factor calculation
			2.9.4 Exposure route considerations
		2.10 Risk characterization
			2.10.1 Calculation of carcinogenic risks
			2.10.2 Calculation of noncarcinogenic hazards
		2.11 Risk management
			2.11.1 Elements of a risk management program
				2.11.1.1 Hazards identification program
				2.11.1.2 Consequence analysis
				2.11.1.3 Risk mitigation
			2.11.2 Quantified risk assessment
		2.12 Role of regulatory agencies
		2.13 Regulatory approaches
			2.13.1 Risk-based mitigation criteria
			2.13.2 Numerically based mitigation criteria
		2.14 Mitigation technologies for polluted soils
			2.14.1 Natural attenuation
			2.14.2 Containment
			2.14.3 Removal and treatment
			2.14.4 In situ treatment
			2.14.5 Selection of mitigation options
		2.15 Summary and concluding remarks
		References
		Further reading
Chapter-3---Environmental-app_2021_Pollution-Assessment-for-Sustainable-Prac
	3 . Environmental applications of remote sensing
		3.1 Environmental problems and remote sensing
		3.2 Concepts and foundations of remote sensing
			3.2.1 Spectral bands for imaging
			3.2.2 Spectral signature and atmospheric windows
			3.2.3 Imaging quality and information content
		3.3 Remote sensing instruments and platforms
			3.3.1 Imaging systems
				3.3.1.1 Optical imaging systems
				3.3.1.2 Thermal imaging systems
				3.3.1.3 Radar imaging systems
			3.3.2 Nonimaging systems
				3.3.2.1 Satellite altimeters
		3.4 Ocean surface circulation and marine debris application
			3.4.1 Ocean surface circulation
			3.4.2 Remote sensing of marine debris
		3.5 Unmanned aerial systems
			3.5.1 Why now? Why is adaptation so slow?
			3.5.2 UAV components
			3.5.3 Environmental applications of UAS
			3.5.4 State of the art for UASs
		3.6 Future directions and Earth observation in Europe
			3.6.1 Copernicus
			3.6.2 Earth Explorers
			3.6.3 Meteorology
		3.7 Summary and remarks
		Acknowledgments
		References
Chapter-4---Geographic-information-sys_2021_Pollution-Assessment-for-Sustain
	4 . Geographic information system: spatial data structures, models, and case studies
		4.1 Introduction
		4.2 General information organization and data structure
			4.2.1 Data and information
		4.3 Geographic data and geographic information
			4.3.1 Information organization
			4.3.2 Data perspective
		4.4 Information organization of graphical data
			4.4.1 Levels of data abstraction
			4.4.2 Relationship perspective of information organization
			4.4.3 Spatial relationships
		4.5 The operating system perspective of information organization
			4.5.1 The application architecture perspective of information organization
		4.6 Fundamental concepts of data
			4.6.1 Spatial versus nonspatial data
			4.6.2 Databases for spatial data
			4.6.3 Data models and modeling
		4.7 Case studies
			4.7.1 Case 1: application of geographic information system–based spatial analyses in soil chemistry, Colorado, United States
			4.7.2 Case 2: land use classification in Al-Qassim region, Saudi Arabia
			4.7.3 Case study 3: delineation of copper mineralization ones at Wadi Ham, northern Oman Mountains, using multispectral Landsat 8 ...
				4.7.3.1 Site characteristics
				4.7.3.2 Image processing of Landsat 8 data
				4.7.3.3 Spectral characteristics analysis
				4.7.3.4 Mineralization: delineation and mapping
		4.8 Summary and concluding remarks
		References
		Further reading
Chapter-5---Geophysi_2021_Pollution-Assessment-for-Sustainable-Practices-in-
	5 . Geophysical methods
		5.1 Introduction
		5.2 Electrical resistivity methods
			5.2.1 Electrical resistivity theory
			5.2.2 Electrical properties
			5.2.3 Field procedures
			5.2.4 Electrode configurations
			5.2.5 Interpretation methods
		5.3 Electromagnetic methods
			5.3.1 Basic theory
		5.4 Electromagnetic techniques
			5.4.1 Frequency domain methods
			5.4.2 Time domain methods
			5.4.3 Natural source methods
			5.4.4 Interpretation methods
		5.5 Seismic methods
			5.5.1 Basic theory
			5.5.2 Seismic energy amplitude loss
			5.5.3 Seismic sources and receivers
			5.5.4 Seismic surveys
			5.5.5 Seismic refraction
			5.5.6 Seismic reflection
			5.5.7 Surface waves
		5.6 Ground-penetrating radar
			5.6.1 Basic theory
			5.6.2 Field procedures and data processing
			5.6.3 Interpretation
		5.7 Gravity and magnetic methods
			5.7.1 Gravity theory
			5.7.2 Gravity field procedures
			5.7.3 Gravity data processing
			5.7.4 Magnetic theory
			5.7.5 Earth's magnetic field
			5.7.6 Magnetic field procedures
			5.7.7 Magnetic data processing
			5.7.8 Material properties
			5.7.9 Gravity and magnetic interpretation techniques
			5.7.10 Data presentation
			5.7.11 Magnetic anomaly shapes
			5.7.12 Regional and residual gravity anomalies
			5.7.13 Data enhancement
			5.7.14 Modeling
		5.8 Summary and concluding remarks
		References
		Further reading
Chapter-6---Site-in_2021_Pollution-Assessment-for-Sustainable-Practices-in-A
	6 . Site investigation
		6.1 Introduction
		6.2 Site investigation approach
		6.3 Phase I investigations
			6.3.1 Collecting information
				6.3.1.1 Sources of information on site history
				6.3.1.2 Geologic and hydrogeologic information
				6.3.1.3 Hydrologic information
			6.3.2 Field reconnaissance
			6.3.3 Development of a conceptual model
			6.3.4 Establishing the work plan
		6.4 Phase II investigations
		6.5 Geophysical techniques
		6.6 Hydrogeological investigations
			6.6.1 Drilling methods
				6.6.1.1 Hollow-stem auger
				6.6.1.2 Solid-stem auger
				6.6.1.3 Cable-tool drilling
				6.6.1.4 Air-rotary drilling
				6.6.1.5 Air-percussion rotary or down-hole hammer
				6.6.1.6 Reverse circulation drilling
				6.6.1.7 Hydraulic rotary
			6.6.2 Sampling methods
				6.6.2.1 Drill cutting samples
				6.6.2.2 Core samples
			6.6.3 Well installation techniques
				6.6.3.1 Drive point wells
				6.6.3.2 Individual wells
			6.6.4 Monitoring well design components
				6.6.4.1 Diameter
				6.6.4.2 Casing and screen material
				6.6.4.3 Sealing materials
				6.6.4.4 Screen length and depth of placement
				6.6.4.5 Location and number
			6.6.5 Well decontamination procedures
		6.7 Hydrogeochemical investigation
			6.7.1 Subsurface environment
				6.7.1.1 pH and alkalinity
				6.7.1.2 Redox potential
				6.7.1.3 Salinity and dissolved constituents
				6.7.1.4 Soil matrix
				6.7.1.5 Temperature and pressure
				6.7.1.6 Microbial activity
			6.7.2 Sampling considerations
				6.7.2.1 Sampling location
				6.7.2.2 Sampling frequency
				6.7.2.3 Sample type and size
				6.7.2.4 Vadose zone sampling
				6.7.2.5 Groundwater sampling
		6.8 Geochemical data collection
			6.8.1 Sources of errors
				6.8.1.1 Field errors
				6.8.1.2 Analytical errors
				6.8.1.3 Indirect measurement
				6.8.1.4 Data handling
			6.8.2 Sampling methods and types
		6.9 Geochemical data analysis
		6.10 Case study I: landfill site investigation: Phase 1: assessment of the geoengineering conditions
			6.10.1 Introduction
			6.10.2 Geotechnical investigation
			6.10.3 Geomechanical analysis
				6.10.3.1 Settlement analysis based on relative density measurements
				6.10.3.2 Settlement analysis based on plate bearing test results
		6.11 Conclusion
		6.12 Case study I: landfill site investigation: Phase 2: assessment of the geoenvironmental conditions
			6.12.1 Introduction
			6.12.2 Monitored boreholes
			6.12.3 Results and discussion
				6.12.3.1 Gas analysis
				6.12.3.2 Water analysis
					6.12.3.2.1 Groundwater from installed wells
					6.12.3.2.2 House water tanks
					6.12.3.2.3 House wells
					6.12.3.2.4 Possible migration pathway
			6.12.4 Conclusion
		6.13 Case study II: assessment of land salinization spread in arid lands
			6.13.1 Spectral response of salt-affected soils
			6.13.2 The reflectance spectra of gypsum and halite
			6.13.3 Remote sensing data and techniques
			6.13.4 Temporal variations of land-cover and landscape features
			6.13.5 Remote detection of secondary salinity
			6.13.6 Hyperspectroscopy
		6.14 Summary and concluding remarks
		References
		Further reading
Chapter-7---Subsurface-p_2021_Pollution-Assessment-for-Sustainable-Practices
	7 . Subsurface pollutant transport
		7.1 Introduction
		7.2 Modeling process
		7.3 Transport mechanisms in soil
			7.3.1 Advection
			7.3.2 Diffusion
				7.3.2.1 Effects of soil properties on Ds
			7.3.3 Dispersion
			7.3.4 Sorption
		7.4 Transport equation
		7.5 Solute transport models
			7.5.1 Conservative tracer
			7.5.2 Reactive chemical species
			7.5.3 Spill of pollutants
			7.5.4 Pollutant plume
		7.6 Mass transfer limitations during pollutant transport
			7.6.1 Single-rate mass transfer approach
			7.6.2 Multirate mass transfer approach
		7.7 Experimental determination of adsorption characteristics
			7.7.1 Batch method
			7.7.2 Circulation-through-column method
			7.7.3 Column method
				7.7.3.1 Moment analysis
				7.7.3.2 Curve fitting
		7.8 Modeling of pollutant transport using second postulate of irreversible thermodynamics
			7.8.1 Aqueous phase liquid (APL) transport
			7.8.2 Nonaqueous phase liquid transport
				7.8.2.1 Saturated condition
				7.8.2.2 Unsaturated conditions
		7.9 Advanced modeling: the stochastic approach
		7.10 Summary and concluding remarks
		References
		Further reading
Chapter-8---Indoor-air-quality--po_2021_Pollution-Assessment-for-Sustainable
	8 . Indoor air quality: pollutants, health effects, and regulations
		8.1 Introduction
		8.2 Indoor air quality
		8.3 Sources and characteristics of major IAPS
			8.3.1 Volatile organic compounds
			8.3.2 Formaldehyde
			8.3.3 Particulate matter
			8.3.4 Nitrogen dioxide
			8.3.5 Carbon dioxide
			8.3.6 Carbon monoxide
			8.3.7 Ozone
			8.3.8 Radon
			8.3.9 Airborne biological pollutants
				8.3.9.1 Bacteria and fungi
				8.3.9.2 House dust mites
		8.4 Other related studies on the health effects of IAPs
		8.5 Sampling and measurements of IAPs
			8.5.1 Data collection and regulations
			8.5.2 Criteria for sampling locations and duration
				8.5.2.1 Spatially average measurements
				8.5.2.2 Sampling for spatial average indoor concentration
			8.5.3 Methods of sampling
				8.5.3.1 Active and passive air sampling
				8.5.3.2 Whole-air sampling
		8.6 Influence of outdoor air pollution on IAQ
		8.7 Measures to minimize entry of outdoor polluted air indoors
		8.8 IAQ guidelines and building regulations
		8.9 Sick building syndrome, green buildings, and wellbeing
			8.9.1 Sick building syndrome
			8.9.2 Green buildings and wellbeing
		8.10 Summary and conclusions
		References
		Further reading
Chapter-9---Outdoor-air-pollutants--sour_2021_Pollution-Assessment-for-Susta
	9 . Outdoor air pollutants: sources, characteristics, and impact on human health and the environment
		9.1 Introduction
		9.2 Sources of outdoor air pollutants
			9.2.1 Natural sources
			9.2.2 Man-made sources
			9.2.3 Concentration of air pollutants in the outdoor
		9.3 Categories of air pollutants
			9.3.1 Criteria pollutants
			9.3.2 Air toxics and other air pollutants
			9.3.3 Stratospheric ozone
		9.4 Anthropogenic emissions inventory by sector
		9.5 Air pollutant main indicators
			9.5.1 Particulate matter
				9.5.1.1 Composition and emission
				9.5.1.2 Human health effects
				9.5.1.3 Environmental effects
			9.5.2 Ozone
				9.5.2.1 Formation
				9.5.2.2 Human health effects
				9.5.2.3 Environmental effects
			9.5.3 Nitrogen dioxide
				9.5.3.1 Sources
				9.5.3.2 Human health effects
				9.5.3.3 Environmental effects
			9.5.4 Carbon monoxide
				9.5.4.1 Sources
				9.5.4.2 Human health effects
				9.5.4.3 Environmental effects
			9.5.5 Sulfur dioxide (SO2)
				9.5.5.1 Sources
				9.5.5.2 Human health effects
				9.5.5.3 Environmental effects
		9.6 Air toxics
			9.6.1 Nonvolatile metals
				9.6.1.1 Sources
				9.6.1.2 Human health effects
				9.6.1.3 Environmental effects
			9.6.2 Acid aerosols
			9.6.3 Volatile metals
			9.6.4 Fluoride
			9.6.5 Polycyclic aromatic hydrocarbons
			9.6.6 Biological pollutants
			9.6.7 Bushfire smoke
			9.6.8 Dust storm
			9.6.9 Blast fumes
			9.6.10 Mine dust
			9.6.11 Coal burning
		9.7 Monitoring and measurement
		9.8 Monitoring of air pollutants in the United Arab Emirates
		9.9 Global environmental impact of climate change
			9.9.1 Causes of climate change
			9.9.2 Economic impact of climate change
			9.9.3 Environmental impacts of climate change
			9.9.4 Control of global temperature rise
		9.10 Summary and concluding remarks
		References
		Further reading
Chapter-10---Modeling-air-pol_2021_Pollution-Assessment-for-Sustainable-Prac
	10 . Modeling air pollution by atmospheric desert
		10.1 Introduction
		10.2 Atmospheric chemistry–climate model
		10.3 Atmospheric dust chemistry
		10.4 Sensitivity of dust removal to chemical aging
		10.5 Climate forcing of aeolian dust
		10.6 Public health impacts of aeolian dust
		10.7 Summary and concluding remarks
		References
Chapter-11---Tropospheric-air-p_2021_Pollution-Assessment-for-Sustainable-Pr
	11 . Tropospheric air pollution—aviation industry's case
		11.1 Introduction
		11.2 Aviation and greenhouse gas emissions
			11.2.1 Aviation and carbon dioxide
			11.2.2 Aviation emission inventories
			11.2.3 Aviation and environmental impact
		11.3 European Union Emissions Trading System
		11.4 Aviation CO2 management
			11.4.1 Aviation CO2 emissions calculation
			11.4.2 Data planning and reporting
			11.4.3 Annual greenhouse gas index
			11.4.4 Aviation's climate impact
		11.5 Carbon cycle and climate system
			11.5.1 The slow carbon cycle
				11.5.1.1 Chemical weathering
				11.5.1.2 Heat and pressure
				11.5.1.3 Animal and plant organic matter
				11.5.1.4 Natural processes
				11.5.1.5 Marine environment
			11.5.2 The fast carbon cycle
			11.5.3 Effects of changing the carbon cycle
		11.6 Monitoring techniques
			11.6.1 Monitoring types
			11.6.2 Infrared absorption characteristics of gases
			11.6.3 Commercial gas sensors
		11.7 Greenhouse gas remote sensing instruments
			11.7.1 Satellite instruments
				11.7.1.1 Atmospheric Infrared Sounder
				11.7.1.2 Orbiting Carbon Observatory
				11.7.1.3 CO2 sounder lidar
			11.7.2 Airborne instruments
				11.7.2.1 Airborne laser isotope spectrometer
				11.7.2.2 Aircraft laser infrared absorption spectrometer
				11.7.2.3 Atmospheric vertical observations of CO2 in earth's troposphere
				11.7.2.4 CO2 laser absorption spectrometer
				11.7.2.5 Differential absorption carbon monoxide measurement
				11.7.2.6 Nondispersed infrared airborne CO2 detector
				11.7.2.7 Tropospheric ozone and tracers sensor
				11.7.2.8 Atmospheric remote sensing instrument
		11.8 Summary and concluding remarks
		References
		Further reading
Chapter-12---Health-econom_2021_Pollution-Assessment-for-Sustainable-Practic
	12 . Health economics of air pollution
		12.1 Introduction
		12.2 Definition of air pollutants
		12.3 Causes of air pollution
			12.3.1 Effects of air pollution on health: epidemiological indication
			12.3.2 Monitoring of air pollution: air-quality index
			12.3.3 Policy in preventing air pollution
		12.4 Effects of air pollution on health: the economic evidence
			12.4.1 Health and life: the valuation
			12.4.2 Value of a statistical life: the ordinary method for calculating mortality cost
			12.4.3 VSL for each country and intracommunity and international equity
			12.4.4 Severity and persistence of air pollution
		12.5 Impacts of policy: an empirical approach
			12.5.1 Practice and contemplation: economic evaluation
			12.5.2 Sectoral technical evidence and its limits
			12.5.3 Costs and effects of air quality: the assessment
			12.5.4 “Price+expenditure+environment”: the rational structure
			12.5.5 “Pricing, expenditure, and environment”: the proof of productivity
			12.5.6 “Pricing, expenditure, and environment”: the chronological framework
		12.6 Summary and concluding remarks
		References
		Further reading
Chapter-13---A-decision-support-system-for-rankin_2021_Pollution-Assessment-
	13 . A decision support system for ranking desalination processes in the Arabian Gulf Countries based on hydrodynamic modeling e ...
		13.1 Introduction
		13.2 Impact of climate change and coastal effluents on seawater salinity and temperature
			13.2.1 Seawater salinity and temperature
			13.2.2 Seawater quality impacts on desalination
			13.2.3 Climate variability
			13.2.4 Long-term response simulation to climate change and coastal effluents
				13.2.4.1 Mathematical modeling
				13.2.4.2 Long-term observations
				13.2.4.3 Statistical analysis
				13.2.4.4 Far-field hydrodynamics modeling
				13.2.4.5 Far-field and particle tracking
				13.2.4.6 Coupling near- and far-field hydrodynamics
		13.3 Data use
			13.3.1 Area description
			13.3.2 Baseline hydrology
			13.3.3 Water resources
		13.4 Hydrodynamic modeling
			13.4.1 Model description
			13.4.2 Model setup and calibration
				13.4.2.1 Domain and grid resolution
				13.4.2.2 Initial and boundary conditions
				13.4.2.3 Model simulation design
				13.4.2.4 Heat flux and evaporation
				13.4.2.5 River input
				13.4.2.6 Physical parameters
				13.4.2.7 Numerical parameters
			13.4.3 Model validation
				13.4.3.1 Tide
				13.4.3.2 Currents
				13.4.3.3 Salinity and temperature
				13.4.3.4 Evaporation
		13.5 Environmental impacts due to climate change and costal effluents
			13.5.1 Input data preparation for model simulation
			13.5.2 Future scenarios
				13.5.2.1 Salinity
				13.5.2.2 Temperature
		13.6 Impact of seawater salinity and temperature on performance of desalination processes
			13.6.1 Decision support matrix
				13.6.1.1 Thermal response to seawater salinity and temperature changes
				13.6.1.2 Reverse osmosis response to seawater salinity and temperature changes
			13.6.2 Decision support matrix approach
				13.6.2.1 Salinity–decision support matrix
				13.6.2.2 Temperature–decision support matrix
			13.6.3 Evaluating long-term impact of salinity and seawater temperature changes on desalination performance
				13.6.3.1 Least negatively impacted ranking
				13.6.3.2 Projected results for Al Quwain, United Arab Emirates
			13.6.4 Projected results in other gulf desalination plants
		13.7 Summary and concluding remarks
		References
		Further reading
Chapter-14---Recent-analytical-methods_2021_Pollution-Assessment-for-Sustain
	14 . Recent analytical methods for risk assessment of emerging contaminants in ecosystems
		14.1 Introduction
			14.1.1 What are emerging contaminants?
			14.1.2 Human impact on the environment
			14.1.3 Major sources of emerging contaminants
		14.2 Emerging contaminants in the environment
			14.2.1 Classes of emerging contaminants
			14.2.2 Concentrations of emerging contaminants in the ecosystem
				14.2.2.1 Pharmaceuticals and personal care products
				14.2.2.2 Disinfection by-products
				14.2.2.3 Perfluorinated compounds
				14.2.2.4 Polybrominated diphenyl ethers
				14.2.2.5 Benzotriazoles and dioxane
		14.3 Emerging contaminants and regulatory considerations
		14.4 Sample collection techniques for emerging contaminants
			14.4.1 Considerations in selecting sampling matrices
			14.4.2 Sampling techniques
				14.4.2.1 Water sampling
				14.4.2.2 Sediment sampling
				14.4.2.3 Biota sampling
				14.4.2.4 Air sampling
		14.5 Sample preparation, extraction, and cleanup
			14.5.1 Advances in sample preparation
			14.5.2 Extraction methods for environmental matrices
				14.5.2.1 Extraction from water samples
				14.5.2.2 Extraction from sediment/soil samples
				14.5.2.3 Extraction from biota samples
				14.5.2.4 Extraction from air samples
			14.5.3 Cleanup methods
		14.6 Instrumental analytical methods
			14.6.1 Analytical considerations
			14.6.2 Overview of common analytical methods
				14.6.2.1 Liquid chromatography methods
				14.6.2.2 Gas chromatography methods
				14.6.2.3 Nuclear magnetic resonance spectroscopy methods
			14.6.3 Latest analytical methods
				14.6.3.1 Disinfection by-products
				14.6.3.2 Pharmaceuticals and personal care products
				14.6.3.3 Benzotriazoles and dioxane
				14.6.3.4 Polybrominated diphenyl ethers
				14.6.3.5 Polyfluorinated compounds
		14.7 Summary and concluding remarks
		Acknowledgments
		References
		Further reading
Chapter-15---Water-quality-at-Jebe_2021_Pollution-Assessment-for-Sustainable
	15 . Water quality at Jebel Ali Harbor, Dubai, United Arab Emirates
		15.1 Introduction
		15.2 Site description
		15.3 Review of previous studies of harbor water
		15.4 Study approach
		15.5 Previous records
		15.6 Sample collection and analysis
			15.6.1 Sampling locations
			15.6.2 Selection of test parameters
		15.7 Discharged treated wastewater
			15.7.1 Treatment processes employed before discharge
				15.7.1.1 Wastewater treatment at EPCL
				15.7.1.2 Wastewater treatment at Gulf Food Industries
				15.7.1.3 Wastewater treatment at Gulf Denim
				15.7.1.4 Wastewater treatment at Emirates Can
				15.7.1.5 Sewage treatment plants
			15.7.2 Characteristics of discharged treated wastewater
				15.7.2.1 General characteristics
				15.7.2.2 Fluoride and cyanide
				15.7.2.3 Organic matter
				15.7.2.4 Nutrients
				15.7.2.5 Metallic impurities
				15.7.2.6 Trace organic compounds (organic pollutants)
				15.7.2.7 Coliform bacteria
			15.7.3 Discharges from other sources
				15.7.3.1 Discharged cooling water
				15.7.3.2 Stormwater
				15.7.3.3 Other possible discharges
			15.7.4 Impact of discharge sources on harbor water
		15.8 Harbor water quality
			15.8.1 General characteristics of harbor water
				15.8.1.1 Temperature
				15.8.1.2 pH
				15.8.1.3 Dissolved and suspended solids
				15.8.1.4 Anions
				15.8.1.5 Dissolved oxygen
				15.8.1.6 Organic matter
				15.8.1.7 Nutrients
				15.8.1.8 Metallic impurities
				15.8.1.9 Trace organic compounds
				15.8.1.10 Biological characteristics
			15.8.2 Variations in parameters with depth
			15.8.3 Harbor water quality status
		15.9 Summary and concluding remarks
		15.10 Recommendations
		Acknowledgment
		References
Chapter-16---Sediment-quality-at-Je_2021_Pollution-Assessment-for-Sustainabl
	16 . Sediment quality at Jebel Ali Harbor, Dubai, United Arab Emirates
		16.1 Introduction
		16.2 Previous records
		16.3 Methodologies
			16.3.1 Sampling locations
				16.3.1.1 Selection of test parameters
		16.4 Results and discussion
			16.4.1 Sediment properties
			16.4.2 General characteristics of harbor sediments
			16.4.3 Organic matter
			16.4.4 Metallic impurities
			16.4.5 Trace organic compounds
		16.5 Harbor sediment quality assessment
		16.6 Conclusion
		16.7 Recommendations
		Acknowledgment
		References
Chapter-17---Inland-desalination--tec_2021_Pollution-Assessment-for-Sustaina
	17 . Inland desalination: techniques, brine management, and environmental concerns
		17.1 Introduction
		17.2 Desalination capacity
		17.3 Conventional desalination techniques
			17.3.1 RO technique
			17.3.2 ED technique
			17.3.3 MSF technique
			17.3.4 MED technique
		17.4 Emerging desalination technologies
			17.4.1 Technologies based on novel membranes
			17.4.2 Vapor compression distillation
			17.4.3 Semibatch RO
			17.4.4 Forward osmosis
			17.4.5 Reverse electrodialysis
			17.4.6 Membrane distillation
			17.4.7 Humidification–dehumidification
			17.4.8 Adsorption desalination
			17.4.9 Pervaporation
			17.4.10 Microbial desalination cells
			17.4.11 Ion concentration polarization
			17.4.12 Capacitive deionization
			17.4.13 Clathrate hydrates
			17.4.14 Supercritical water desalination
			17.4.15 Hybrid systems
		17.5 Brine characteristics
		17.6 Brine management
			17.6.1 Evaporation ponds and energy recovery
			17.6.2 Deep well injection
			17.6.3 Freeze
			17.6.4 Discharge to sewage network
			17.6.5 Reuse
			17.6.6 Zero liquid discharge
			17.6.7 Salt recovery
		17.7 Environmental issues
			17.7.1 Brine disposal
			17.7.2 GHG emissions
			17.7.3 Noise
		17.8 Environmental assessment
			17.8.1 Environmental impact assessment
			17.8.2 Environmental lifecycle assessment
		17.9 Summary and concluding remarks
		References
		Further reading
Chapter-18---Pollution-asse_2021_Pollution-Assessment-for-Sustainable-Practi
	18 . Pollution assessment of nanomaterials
		18.1 Introduction
		18.2 Nanomaterials and nanoparticles
			18.2.1 Categories
			18.2.2 Classes
				18.2.2.1 Metal oxides
				18.2.2.2 Carbon products
				18.2.2.3 Metals
				18.2.2.4 Zero-valent metals
				18.2.2.5 Quantum dots
				18.2.2.6 Nanoclays
				18.2.2.7 Polymers
				18.2.2.8 Emulsions
		18.3 Physicochemical properties
			18.3.1 Crystallinity
			18.3.2 Composition
			18.3.3 Particle size
			18.3.4 Aspect ratio
			18.3.5 Surface area
			18.3.6 Reactivity
			18.3.7 Surface charge
			18.3.8 Zero point of charge
			18.3.9 Solubility
			18.3.10 Degradation/persistence
			18.3.11 Biodegradation
		18.4 The life cycle of ENMs
		18.5 The transport of ENMs
			18.5.1 Transport in the atmospheric environment
			18.5.2 Transport in the hydrosphere environment
			18.5.3 Transport in the biosphere (soil) environment
			18.5.4 Transport in plants
		18.6 The fate of ENMs in environmental ecosystems
			18.6.1 The fate of ENMs in the atmosphere environment
			18.6.2 The fate of ENMs in the hydrosphere environment
			18.6.3 The fate of ENMs in the biosphere environment
			18.6.4 The fate of ENMs in the human body
			18.6.5 The fate of ENMs in animals
			18.6.6 The fate of ENMs in plants
		18.7 Bioavailability and toxicity
			18.7.1 Bioavailability
			18.7.2 Toxicity
		18.8 Regulations and standards
			18.8.1 The United States
			18.8.2 Canada
			18.8.3 Japan
			18.8.4 The Netherlands
			18.8.5 Switzerland
			18.8.6 Denmark
			18.8.7 Germany
		18.9 Risk assessment methods and future directions
		18.10 Summary and concluding remarks
		References
Chapter-19---Noise-pollution-and-it_2021_Pollution-Assessment-for-Sustainabl
	19 . Noise pollution and its impact on human health and the environment
		19.1 Introduction
		19.2 Noise fundamentals
			19.2.1 Differences in sound levels and decibels
			19.2.2 Equivalent continuous sound levels
			19.2.3 Sound pressure
			19.2.4 A-Weighting scale
		19.3 Overview of noise pollution problem
		19.4 Policy and standards
			19.4.1 World Health Organization
			19.4.2 United States
			19.4.3 European Commission
			19.4.4 India
		19.5 Noise exposure sources
			19.5.1 Aircraft noise exposure
			19.5.2 Road traffic and railway noise exposure
			19.5.3 In-vehicle noise exposure
			19.5.4 Worksite noise exposure
			19.5.5 Construction site noise exposure
			19.5.6 Occupational and household noise exposure
		19.6 Noise pollution impact
			19.6.1 Human health impact
				19.6.1.1 Hearing loss
				19.6.1.2 Tinnitus
				19.6.1.3 Sleeping disorders
				19.6.1.4 Annoyance and stress
				19.6.1.5 Cardiovascular effects
				19.6.1.6 Cognitive impairment in children
			19.6.2 Health impact on animals
				19.6.2.1 Impact on animals’ communication
				19.6.2.2 Animal vocal adjustment to noise pollution
				19.6.2.3 Stressor impact on animals
				19.6.2.4 Impact on acoustic diversity
		19.7 Identification methods for regional noise-affected habitats
			19.7.1 Modeling results in unprotected land environment
			19.7.2 Modeling results in protected land environment
			19.7.3 Modeling results in marine environment
		19.8 Noise control measures and sustainability
			19.8.1 Sustainable building design
			19.8.2 Noise mapping
			19.8.3 Control measures
				19.8.3.1 Use of barriers and berms along roadside
				19.8.3.2 Use of acoustic building materials
				19.8.3.3 Roadway vehicle noise source control
				19.8.3.4 Road surface and pavement material control
				19.8.3.5 Public awareness and education
				19.8.3.6 Legislation
		19.9 Environmental noise pollution management
			19.9.1 Noise management categories
			19.9.2 Health-related outcomes of remedial measures
		19.10 Summary and concluding remarks
		References
		Further reading
Chapter-20---Assessment-of-radiat_2021_Pollution-Assessment-for-Sustainable-
	20 . Assessment of radiation pollution from nuclear power plants
		20.1 Introduction
		20.2 Radioactive decay
		20.3 Environmental radiation
		20.4 Sources and types of radwaste
			20.4.1 Low-level radioactive waste
			20.4.2 Intermediate-level radioactive waste
			20.4.3 High-level radioactive waste
			20.4.4 Wastes from decommissioning nuclear plants
			20.4.5 Legacy wastes
		20.5 Geologic disposal of high-level radioactive waste
			20.5.1 Outer space
			20.5.2 Subduction zones
			20.5.3 Ice caps
			20.5.4 Geologic isolation on land
			20.5.5 Reservoir rock types for geologic isolation
				20.5.5.1 Shale
				20.5.5.2 Salt vaults
				20.5.5.3 Volcanic tuffs
				20.5.5.4 Crystalline rock cavities
		20.6 Future challenges
		20.7 Environmental effects of nuclear power
			20.7.1 Radioactive waste
			20.7.2 Thermal discharge
			20.7.3 Gaseous releases
			20.7.4 Milling, mining, and enrichment issues
			20.7.5 Accidents, terrorism, and cost issues
		20.8 Nuclear regulations
			20.8.1 International atomic energy agency
			20.8.2 The nuclear energy agency
		20.9 Nuclear power plant accidents and incidents
		20.10 Emission of radioactive materials
		20.11 How dangerous is nuclear radiation?
		20.12 Effects on human health
		20.13 Case study I: Chernobyl, Ukraine
			20.13.1 The chernobyl plant and site
			20.13.2 The 1986 chernobyl accident
			20.13.3 Immediate impact
			20.13.4 Environmental and health impacts
			20.13.5 Progressive closure of the plant
			20.13.6 Chernobyl today
			20.13.7 Lessons learned
		20.14 Case study II: Fukushima, Japan
			20.14.1 The nuclear accident
			20.14.2 Fukushima Daiichi reactors
			20.14.3 Radioactive release and contamination
			20.14.4 Public health and return of evacuees
			20.14.5 Recovery and on-site remediation
			20.14.6 Current status
		20.15 Nuclear safety
		20.16 Summary and concluding remarks
		References
Chapter-21---Artificial-intelligence-and-_2021_Pollution-Assessment-for-Sust
	21 . Artificial intelligence and data analytics for geosciences and remote sensing: theory and application
		21.1 Introduction
		21.2 Machine learning applications
			21.2.1 Mineral mining
			21.2.2 Environmental monitoring
			21.2.3 Mineral exploration
		21.3 Satellite images and Landsat hyperspectral data processing
			21.3.1 Machine learning
			21.3.2 Decision tree
			21.3.3 Multiple-criteria decision analysis method PROAFTN
			21.3.4 Hybrid classification model
		21.4 Decision tree
			21.4.1 Algorithm
			21.4.2 Implementation in R
			21.4.3 Model tree
		21.5 PROAFTN method
			21.5.1 Initialization
			21.5.2 Fuzzy indifference relation
			21.5.3 Membership evaluation
			21.5.4 Categorization
			21.5.5 PROAFTN learning
			21.5.6 Determination of PROAFTN intervals
			21.5.7 Classification model
			21.5.8 Hybrid DT and PROAFTN
			21.5.9 Classification model development
		21.6 Case study I: hybrid DT and PROAFTN method utilization for soil classification from Landsat satellite images
			21.6.1 Data description
			21.6.2 Results
			21.6.3 Summary
		21.7 Case study II: java-based analytical method for mineral exploration at Flin Flon, Saskatchewan, Canada
			21.7.1 Site description
			21.7.2 Java systematic feature extraction tool and its structure
			21.7.3 Data analysis
		21.8 Summary and concluding remarks
		References
Chapter-22---Lifecycle-ass_2021_Pollution-Assessment-for-Sustainable-Practic
	22 . Lifecycle assessment of aquaponics
		22.1 Introduction
		22.2 Aquaponic systems
			22.2.1 Mechanism of aquaponics cycle
			22.2.2 Main components of aquaponics
			22.2.3 Types of aquaponic systems
				22.2.3.1 Aquaponic system inputs and outputs
			22.2.4 Aquaponic system water management
			22.2.5 Types of products of aquaponic systems
			22.2.6 Coupled versus decoupled systems
		22.3 Assessment of aquaponic systems
			22.3.1 Sustainability in aquaponics
			22.3.2 Types of assessment
				22.3.2.1 Environmental sustainability
				22.3.2.2 Economic sustainability
				22.3.2.3 Social sustainability
				22.3.2.4 Overall sustainability assessment
		22.4 Challenges and recommendations
		22.5 Concluding remarks
		Acknowledgments
		References
Index_2021_Pollution-Assessment-for-Sustainable-Practices-in-Applied-Science
	Index
		A
		B
		C
		D
		E
		F
		G
		H
		I
		J
		K
		L
		M
		N
		O
		P
		Q
		R
		S
		T
		U
		V
		W
		X
		Y
		Z




نظرات کاربران