دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Ahmed Bounfour
سری:
ISBN (شابک) : 3030901912, 9783030901912
ناشر: Springer
سال نشر: 2022
تعداد صفحات: 308
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 7 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Platforms and Artificial Intelligence: The Next Generation of Competences به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب پلتفرم ها و هوش مصنوعی: نسل بعدی شایستگی ها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
هوش مصنوعی (AI) و پلتفرمها ارتباط نزدیکی با هم دارند. بیشتر سرمایه گذاری ها در هوش مصنوعی، به ویژه در فناوری های حیاتی، توسط پلتفرم های بزرگ انجام می شود. این کتاب توضیح میدهد که چگونه پلتفرمها بر روی هوش مصنوعی سرمایهگذاری میکنند و چگونه هوش مصنوعی بر نسل بعدی شایستگیها تأثیر میگذارد، که از یک رویکرد دوگانه برای انجام این کار پیروی میکند: از یک سو، این کتاب به دنبال درک نحوه سازماندهی پلتفرمهای سرمایهگذاری در موارد نامشهود و هوش مصنوعی است، اما در از سوی دیگر، چارچوبی را برای تشریح چگونگی تغییر شغل ها و شایستگی های هوش مصنوعی در آینده فراهم می کند. علاوه بر این، این کتاب به پنج موضوع اصلی میپردازد: 1. پلتفرمها، پلتفرمسازی، و پایههای مدلهای کسبوکار آنها. 2. هوش مصنوعی، گرایش های تکنولوژیکی، و دستور کار سیاست. 3. هوش مصنوعی، بهره وری و نسل بعدی شایستگی ها. 4. هوش مصنوعی، بهره وری، و شکاف دیجیتال. 5. هوش مصنوعی، اخلاق، و جامعه پسا حقیقت. محتوای کتاب بیشتر بر اساس مقالات ارائه شده در دو قسمت آخر کنفرانس جهانی سرمایه فکری برای جوامع است. این دیدگاه دانشمندان و کارشناسان برجسته را در مورد اینکه چگونه هوش مصنوعی و پلتفرمسازی بر شایستگیها در آینده نزدیک تأثیر میگذارد گرد هم میآورد.
Artificial intelligence (AI) and platforms are closely related. Most investments in AI, especially in critical technologies, are provided by large platforms. This book describes how platforms invest in AI and how AI will impact the next generation of competences, following a twofold approach to do so: on the one hand, the book seeks to understand how platforms for investment in intangibles and AI are organized, but on the other hand, it provides a framework to describe how AI will change jobs and competences in the future. Moreover, the book addresses five main themes: 1. platforms, platformization, and the foundations of their business models; 2. artificial intelligence, technological tendencies, and the policy agenda; 3. artificial intelligence, productivity, and the next generation of competences; 4. artificial intelligence, productivity, and the digital divide; 5. artificial intelligence, ethics, and the post-truth society. The book’s content is mostly based on papers presented at the last two installments of the World Conference on Intellectual Capital for Communities. It brings together the views of leading scholars and experts on how artificial intelligence and platformization will impact competences in the near future.
Foreword Acknowledgements Introduction Contents Part I: Platforms, Platformisation and the Foundations of Their Business Models Digital Platform Modelling: Delineating the Foundations of Their Business Models 1 The Context and Challenges 1.1 Benefits 2 Analytical Approaches 2.1 Defining a Platform: Key Characteristics 2.2 Disciplinary Approaches 2.2.1 The Industrial Economics Approach The Main Arguments in the Economics Literature A Dynamic/Strategic Approach to Platforms Differences Between Platforms and Traditional Vertical Businesses Trust, Regulation and Governance Sharing Economy Platforms Incentive to Contribute Innovation and Crowdsourcing Incentives to Innovate Market Entry, Competition Policy The Winner-Takes-All Argument Platforms as a Substitute for Public Services? 2.2.2 The Engineering Approach 2.3 Platforms as a Set of Strategic Choices 2.3.1 Openness Versus Control 2.4 Platforms as a Lever for Ecosystem Resources 2.4.1 Why Small Firms Join Leading Platforms 2.4.2 How to Invest and Lead a Platform, Notably by Investing in Knowledge 2.4.3 Platform Strategy and Design as a Strategic Choice 2.5 Attention and Data: Key Assets 3 Typologies of Platforms 4 Platforms in the Literature 5 Towards an Integrative Approach 5.1 How Do Platforms Contribute to Innovation? 5.1.1 Analysing Products/Services and Services´ Variety The Institutional Perspective Platformization and Traditional Industries The Platformization of the Public Sector: The State as a Platform 5.2 Digital Platforms and Policy 5.2.1 Market Competition 5.2.2 Labour 5.2.3 Data Security 5.3 Questions for Further Research 5.3.1 Innovation Practices 5.3.2 Assessment of Resources and the Impact on Market Structures The Demand Side The Internal/Organizational Side The Supply Side References Growth of Internet Digital Platforms in China: Stages, Trends, and Research Opportunities 1 Introduction 2 Functional Types and Evolution Stages 2.1 Basic Functional Types of Digital Platforms 2.2 Evolution Stages 3 An Institutional Perspective 4 Trends and Research Opportunities References Platforms, AI and the Spillover Effect 1 Introduction 2 Knowledge Diffusion Between Large Firms, SMEs and Platforms 3 Patents and Technological Diffusion 4 Data 5 The Model 5.1 Spillover Definition 5.2 Econometric Specification 6 Results 7 Conclusion Appendix References Part II: Artificial Intelligence, Technological Tendencies and the Policy Agenda Artificial Intelligence: A Review of the Economic Context and Policy Agenda 1 Introduction 2 Digital Innovation, AI and the Economy 2.1 Data as a Core Input for Innovation 2.1.1 Enabling New Services and Business Models 2.1.2 Enhancing Customisation 2.1.3 Optimising Processes 2.2 Faster Innovation Cycles 2.2.1 Designing, Prototyping and Testing New Products and Services 2.2.2 Experimenting with (Not Fully Finished) Products and Services on the Market 2.2.3 Regular Upgrading and Versioning 2.2.4 Personalisation 2.3 Collaborative Innovation 2.3.1 Data Sharing 2.4 Specific Features of AI Within the Field of Digital Technologies 3 Government Policies for Digitalisation and AI 3.1 Digital Innovation Policy Programmes 3.1.1 Target Groups 3.1.2 Priority Technologies and Industries 3.1.3 Main Instruments 3.1.4 Monitoring and Evaluation 3.1.5 Critical Dimensions 3.2 Artificial Intelligence Strategies 3.2.1 Main Objectives 3.2.2 Target Stakeholders 3.2.3 Main Instruments 3.2.4 Critical Dimensions 4 Conclusion References Patents and the Fourth Industrial Revolution: The Global Technology Trends Enabling the Data Economy 1 What Are the 4IR Technologies? Reference Comparing the Methodology for the Development and Project Management of Artificial Intelligence Systems 1 Introduction 1.1 The Problem 2 The Three Methodologies 2.1 Earned Value Management 2.1.1 JTRS Case: Challenges in the EVM-Only Approach 2.2 Knowledge Value Added 2.3 Integrated Risk Management 3 Comparison of Acquisition Methodologies in AI Development 3.1 Comparison of Key Attributes 3.2 Methodologies in AI Acquisition 4 Conclusions and Recommendations Future Research References Part III: Artificial Intelligence, Productivity and the Next Generation of Competences Artificial Intelligence: Productivity Growth and the Transformation of Capitalism 1 Introduction 2 Artificial Intelligence and the Speed of Technological Progress 2.1 Inventions, Product Cycles and Moore´s Law 2.2 Technological Change, Productivity Growth and Inequality 2.3 What Accounts for the Slowdown in Productivity Growth? 2.3.1 Mismeasurement 2.3.2 Demographic Change 2.3.3 Lack of Diffusion 2.4 Innovation and Diffusion: Understanding Two Sides of the Same Coin 2.5 Intangibles, the Speed of Technological Change and Productivity Growth 3 AI and the Transformation of Capitalism 3.1 Transforming Jobs 3.2 Transforming Workplaces 3.3 Transforming Societies 3.4 Blockchain: The Code of Capital 4 What Is at Stake? Policies for the Digital Age 4.1 Innovation Policies 4.2 Taxation and Social Protection 4.3 Competition Policies 4.4 Social Wealth Funds 4.5 Blockchain and the Future of Full Employment 5 Conclusion: Singularity, Super-Intelligence or Enhanced Collective Intelligence? References What Artificial Intelligence Can Do and What It Cannot Do 1 Introduction: A Brief History of Artificial Intelligence 2 What Is Artificial Intelligence? 3 How Are AI Programs Built? 4 Will AI Take over Human Beings? 5 Conclusion: AI Systems and Human Beings References AI, Platformization and the Next Generation of Competences 1 Introduction 1.1 The value of data 1.2 Why think in terms of digital assets? 1.3 Platforms and the new institutional regime 2 Digitization and Employment 2.1 The Starting Point: The Impact of Digitization on Employment 2.2 Change in Work Content and Conditions 3 Artificial Intelligence and the Shift in Skills Profiles 4 Competence Structures: A Starting Point 4.1 The Issue of Competences/Capabilities References Part IV: Artificial Intelligence, Productivity and the Digital Divide Are We Pretender of Digitalization?-Towards a New Management Using Telework and Digital Transformation 1 Introduction 2 Firm´s Productivity and Digital Transformation 2.1 Increasing Productivity Through Digitization 2.2 Using Data to Improve Productivity 3 Telework and Management 3.1 Definition of Telework and Its Transition 3.2 Significance of Introducing Telework 3.3 Management for Productive Telework 4 Response of Japanese Companies to Telework in the Corona Disaster: From the ``Emergency Organization Survey´´ 4.1 Overview of the Emergency Organization Survey 4.2 The Actual Status of Telework Adoption 4.3 Spread of Communication Tools 4.3.1 Use of IT systems 5 Conclusion 5.1 From Emergency Measures to ``Telework´´ as a Corporate Strategy 5.2 From Externalized ``IT´´ to Self-Directed ``DX´´ References Real-Time Management: When AI Goes Fast and Flow 1 Introduction 2 What Do We Know About Real-Time Management? 2.1 Real-Time Management Depends on the Managers´ Interpretation of Clock Time 3 AI and Real Time: Three Scenarios 3.1 Business as Usual with More Complexity and Just Faster 3.2 Disruption: Extreme Customization Experience 3.2.1 Lemonade Home Insurance App AI Going Fast and Flow: Example 3.3 Distortion: Extreme Dysfunctionality 3.3.1 Ethical Biases in Programming 3.3.2 Ethical Biases in Hiring 3.3.3 Other Ethical Dilemmas 4 How to Manage and Embrace Real-Time Technologies Such as AI Appendix: CTM Survey A. Questions About the ``WHAT´´ B. Questions About the ``WHY´´ C. Questions About the ``HOW´´ References Artificial Intelligence and the Digital Divide: From an Innovation Perspective 1 Introduction 2 The Digital Divide and the Fourth Industrial Revolution: Toward an AI Divide? 3 Problem Definition and Scoping 4 The AI Innovation Perspective 4.1 AI and Patents 4.2 The Impact of AI: Fields of Application 4.3 Who Is Part of the AI Revolution? The AI Innovators as Reflected in Patenting Activity 4.4 AI Researchers as Reflected on Scientific Publications 5 What Do These Results Tell Us and How Can They Be Explained? 5.1 AI Is Everywhere 5.2 Universities Carry Out Research Across Different Geographies and Levels of Economic Development, Yet a Divide Can Be Obser... 5.3 An AI Divide Seems to Already Be There: But It Remains to Be Seen How the Situation Will Evolve over Time and How AI Will ... 5.4 The Importance of Data and Related Access 6 Moving Forward 6.1 Governments, Policy and Regulation Response 6.2 Global/Interagency Initiatives: Can AI Lessen the Digital Divide? 6.3 The Importance of AI Talent 6.4 Toward AI Democratization-and Reduction of the AI Divide? 7 Conclusion Part V: AI, Ethics and the Post-Truth Society Post-Truth: Organisational Social Responsibility in an AI-Driven Society 1 Introduction 2 Potential Crisis of Truth 3 Responsibility/Accountability Vacuum of AI Computing 3.1 Nissenbaum´s Four Barriers to Accountability in Computing 3.2 Possible Controversial Scenarios 3.3 Obscured Accountability When FLOSS Is Used 3.4 Scapegoated End-Users 3.5 Autonomous Systems as Scapegoats 3.6 Changes in the Meaning of a Bug 4 Retrieving Responsibility/Accountability in Computing 4.1 Expected Roles of Organisations in Terms of Responsible AI 4.2 Individual Attitudes Required in an AI-Driven Society 4.3 Remedies for Harm Caused by AI-Based Systems 5 Conclusions References Co-constructing Shared Values and Ethical Practice for the Next Generation: Lessons Learned from a Curriculum on Information E... 1 Introduction 1.1 A Concrete Need for a Curriculum in Scientific Integrity and Research Ethics for Information Technologists 1.2 A Fundamental Need to Rethink Our Ethical Frameworks for the Information Age 2 Constraints and Goals of the Course 2.1 Training Methods in Research Ethics, Compliance, and Information Ethics 2.1.1 Scientific Integrity and Research Ethics Training 2.1.2 Compliance Training in Highly Regulated Industries 2.1.3 Curricula on Information Ethics, Security, Privacy, and AI Ethics 2.2 Expectations of Stakeholders 2.2.1 Faculty 2.2.2 Students 2.3 Design Choices 2.3.1 Cultural Context 2.3.2 Form 2.3.3 Toward a Co-construction of Values and Ethical Practices 3 A Course Proposition 3.1 The Doctoral Contract 3.2 Scientific Integrity: Producing Knowledge Correctly 3.3 Research Ethics: Producing Knowledge Responsibly 3.4 Information Ethics 3.4.1 The Object of Study: Computer Systems, Data and Networks 3.4.2 Society and Economic Players 3.4.3 The Human 3.4.4 On the Transformative Nature of Information Technologies 3.5 Intellectual Property: Protection of the Value Produced 3.6 Scientific and Ethical Communication on the Internet: Protection and Limits of Free Expression 3.7 Personal Data and Privacy Online: Protecting Our Digital Identities 3.8 Emerging Issues (Open Areas of Digital Ethics) 3.9 Conclusion of the Course 4 Reception of the Course 4.1 Feedback from the Students 4.1.1 Course Appreciation 4.1.2 Course content 4.1.3 Didactics 4.1.4 Questions Difficulty Assessment 4.2 Feedback from the Teaching Body 5 Conclusion 5.1 AI Ethics and Its Place in a General Curriculum on Technology Ethics for STEM Disciplines 5.1.1 Course Objectives and AI Ethics 5.1.2 Maturity the Area of AI Ethics 5.1.3 Socio-centric vs Techno-centric Approaches to Information Ethics 5.2 Future Directions References