دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: ریاضیات کاربردی ویرایش: 1 نویسندگان: Hubert Rauscher, Massimo Perucca, Guy Buyle سری: ISBN (شابک) : 3527326545, 9783527326549 ناشر: Wiley-VCH سال نشر: 2010 تعداد صفحات: 429 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 14 مگابایت
در صورت تبدیل فایل کتاب Plasma Technology for Hyperfunctional Surfaces: Food, Biomedical, and Textile Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فناوری پلاسما برای سطوح بیشعملکردی: کاربردهای غذایی، زیستپزشکی و نساجی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
بر اساس پروژه ای که توسط اتحادیه اروپا حمایت می شود، این یک منبع ضروری برای محققان در صنعت و دانشگاهی است که به تحقیقات فناوری پلاسما مبتنی بر کاربرد می پردازند. به وضوح در سه بخش تقسیم شده است، بخش اول به مبانی پلاسما اختصاص دارد و اطلاعاتی در مورد موضوعات علمی و نظری پلاسما، تولید پلاسما، فرآیند تصفیه سطح و خصوصیات ارائه می دهد. بخش دوم بر جنبههای تکنولوژیکی و کاربردهای فرآیند پلاسما در بخشهای نساجی، بستهبندی مواد غذایی و بخشهای زیست پزشکی تمرکز دارد، در حالی که بخش پایانی به نگرانیهایی در مورد پایداری زیستمحیطی فرآیندهای پلاسما اختصاص دارد.
Based on a project backed by the European Union, this is a must-have resource for researchers in industry and academia concerned with application-oriented plasma technology research. Clearly divided in three sections, the first part is dedicated to the fundamentals of plasma and offers information about scientific and theoretical plasma topics, plasma production, surface treatment process and characterization. The second section focuses on technological aspects and plasma process applications in textile, food packaging and biomedical sectors, while the final part is devoted to concerns about the environmental sustainability of plasma processes.
Plasma Technology for Hyperfunctional Surfaces......Page 5
Contents......Page 7
Preface......Page 17
List of Contributors......Page 21
List of Contacts......Page 25
Part I Introduction to Plasma Technology for Surface Functionalization......Page 29
1.1 Plasma: the Fourth State of Matter......Page 31
1.2 Historical Highlights......Page 32
1.3 Plasma Fundamentals......Page 34
1.3.1 Free Ideal Gas......Page 35
1.3.2 Interacting Gas......Page 36
1.3.3 The Plasma as a Fluid......Page 39
1.3.4 Waves in Plasmas......Page 40
1.3.5 Relevant Parameters that Characterize the State of Plasma......Page 42
1.4 Classification of Technological Plasmas......Page 45
1.4.1 Hot (Thermal) Plasmas and Their Applications......Page 46
1.4.2 Cold (Nonthermal) Plasmas and Their Applications......Page 47
1.5.1 Elementary Plasma–Chemical Reactions......Page 50
1.5.2 Elastic Scattering and Inelastic Thomson Scattering: Ionization Cross-section......Page 52
1.5.3 Molecular Ionization Mechanisms......Page 53
1.5.4 Stepwise Ionization by Electron Impact......Page 54
1.6 Plasma Sheaths......Page 56
References......Page 59
2.1 Introduction......Page 61
2.2 Low Pressure Plasma Systems......Page 62
2.2.1.1 Introduction......Page 63
2.2.1.3 Example: Duo-Plasmaline – a Linearly Extended Plasma Source......Page 64
2.2.1.4 Electron Cyclotron Resonance Heated Plasmas......Page 68
2.2.2.1 Introduction......Page 71
2.2.2.2 Capacitive Coupled Plasma for Biomedical Applications......Page 72
2.2.3.2 Cathodic Arc PVD Systems......Page 73
2.2.3.3 Example: Treatment of Food Processing Tools by LARCPVD System......Page 76
2.3 Atmospheric Pressure Plasma Systems......Page 77
2.3.1.1 Standard Corona Treatment......Page 79
2.3.1.3 Liquid Deposition......Page 80
2.3.2 Remote Surface Treatment......Page 82
2.3.2.1 Plasma Sources Used for Modeling......Page 83
2.3.2.2 Example: AcXys Plasma......Page 85
2.4 Summary......Page 86
References......Page 87
3.1 Introduction......Page 91
3.2 Polymer Etching......Page 93
3.3 Plasma Grafting......Page 94
3.4.1 Chain Polymerization......Page 96
3.4.2 Plasma Polymerization......Page 98
3.5 Example: Plasma Polymerization......Page 99
3.5.1.1 Theoretical Background......Page 100
3.5.1.2 Example: Polymerization of HEMA on PET Fabric......Page 101
3.5.2 Plasma Polymerization of HDMSO......Page 103
3.6 Conclusion......Page 104
References......Page 105
4.2 Optical Emission Spectroscopy......Page 107
4.2.1 Theory of Optical Emission......Page 108
4.2.2 Spectroscopy......Page 110
4.2.3 OES Bench and Set-up......Page 111
4.3 Optical Absorption Spectroscopy......Page 113
4.3.1 Actinometry......Page 114
4.4 Laser Induced Fluorescence (LIF)......Page 115
References......Page 116
5.1 Introduction to Surface Characterization Techniques......Page 119
5.2 X-ray Photoelectron Spectroscopy (XPS) or Electron Spectroscopy for Chemical Analysis (ESCA)......Page 122
5.2.1 Principles of XPS......Page 123
5.2.2 XPS Core Level Chemical Shift......Page 124
5.2.3 Quantitative Analysis......Page 125
5.2.4 Quantitative Analysis of Nitrogen Plasma-Treated Polypropylene......Page 126
5.2.6 Determination of Thin Coating Thickness by Angle-Resolved XPS......Page 128
5.2.7 Mapping......Page 132
5.2.8 Summary of XPS......Page 133
5.3.1 Principles of ToF-SSIMS......Page 134
5.3.2 Applications of ToF-SSIMS......Page 135
5.3.2.4 Data Treatment by Multivariate Methods: Multi-Ion SIMS......Page 136
5.3.2.5.2 Polypropylene Packaging......Page 137
5.3.2.5.3 SiOx Barner Coating on PET......Page 139
5.3.2.5.4 Anti-UV Additive qualification on PET Films......Page 140
5.4.1 Operating Modes in AFM......Page 142
5.4.1.1.1 Constant Force Mode......Page 143
5.4.1.2 Resonant Modes......Page 145
5.4.1.2.2 Phase Contrast Mode......Page 146
5.4.2 Summary and Outlook......Page 147
5.5.1 Principles of SEM......Page 149
5.5.3 New Generation of SEM......Page 150
5.5.4 Chemical Analysis......Page 151
5.6.1 Principles of TEM......Page 152
5.6.4 Chemical Analysis......Page 154
5.6.6 Sample Requirements......Page 155
5.7 Contact Angle Measurement......Page 157
5.7.1.1 Owens and Wendt Model for Surface Energy Calculation......Page 158
5.7.1.2 Good and Van Oss Model for Surface Energy Calculation......Page 159
References......Page 160
Part II Hyperfunctional Surfaces for Textiles, Food and Biomedical Applications......Page 161
6.1.1 Potential Impact of Plasma on the Textile Industry......Page 163
6.1.2 Plasma Basics......Page 165
6.1.4 Classification of Plasmas from the Textile Viewpoint......Page 166
6.1.4.1 Pressure-based......Page 168
6.1.4.2 Substrate-based......Page 169
6.2.1 Overview of Functionalizations......Page 170
6.2.2.2 Basic Plasma Effect on Substrate......Page 171
6.2.2.3 Aging......Page 172
6.3 Integration of Plasma Processes into the Textile Manufacturing Chain......Page 174
6.3.1 Fiber Level......Page 175
6.3.2 Filament Level......Page 176
6.3.3.1.3 Other Natural Fibers......Page 177
6.3.4 Fabric Level......Page 178
6.3.4.1.1 Natural Materials......Page 179
6.3.4.2 Knitted Textiles......Page 180
6.3.4.3 Non-wovens......Page 181
6.3.5 Intermediate/Finished Textile Material......Page 182
6.4.2 Surface Cleanliness......Page 183
6.4.3 Three-dimensional Structure of Textiles......Page 184
6.4.4 Large Surface Area......Page 185
6.5.1 Assessing the Surface Energy of Textiles......Page 186
6.5.1.1.1 Wilhelmy Method......Page 187
6.5.1.1.2 Washburn Method......Page 188
6.5.1.2.1 Wilhelmy Method......Page 189
6.5.1.2.2 Washburn Method......Page 190
6.5.1.3 Tests and Standards for Evaluating Hydrophobic/Oleophobic Properties......Page 191
6.5.1.3.1 Water Repellency: Spray Test......Page 192
6.5.1.3.2 Water/Alcohol Repellency......Page 193
6.5.1.3.3 Oil Repellency......Page 194
6.5.2.1 Plasma Experiments at Low Pressure......Page 195
6.5.2.1.1 First Screening of Precursors......Page 196
6.5.2.1.2 Aging of the Samples......Page 197
6.5.2.2 Plasma Experiments at Atmospheric Pressure (Aldyne System)......Page 198
6.5.3.1 Preliminary Experiments......Page 199
6.5.3.2 Washing Durability......Page 200
6.5.3.3 Abrasion Durability......Page 201
6.6 Transferring Plasma Technology to Industrial Processes......Page 202
6.6.1 Textile Sector Related Issues......Page 203
6.6.2 Fundamental Aspects Regarding Industrialization......Page 204
6.7 Summary......Page 205
References......Page 206
7.1 Bacterial Adhesion to Biomaterials: Biofilm Formation......Page 211
7.1.2 Mechanism for Bacterial Adhesion to Surfaces......Page 212
7.1.3 Biofilm Formation – a Multistep Process......Page 214
7.1.4.1 Role of the Conditioning Film......Page 215
7.1.4.2 Material Surface Characteristics......Page 216
7.1.4.3 Micro-organism Characteristics......Page 218
7.1.4.4 Environmental Factors......Page 219
7.2.1 Pre-surgery Precautionary Approach......Page 220
7.2.3 Surface-engineering Approach......Page 221
7.2.3.1 High Surface Energy Approach......Page 222
7.2.3.2 Low Surface Energy Approach......Page 223
7.2.3.3 Surfaces with Bound Tethered Antimicrobial Agents......Page 224
7.2.4 \'Antibiofilm\' Approach......Page 225
7.3 Role of Plasma Processing in Biofouling Prevention......Page 226
7.3.2 Plasma-Induced Grafting......Page 227
7.3.3 Plasma Polymerization......Page 228
7.3.4 Plasma Sterilization......Page 229
7.4.1 PEO Films and Plasma Deposition......Page 230
7.4.2.1 Retention of the PEO Character and Film Stability......Page 231
7.4.2.2 Protein Adsorption......Page 233
7.4.2.3 Cell Attachment and Proliferation......Page 234
7.4.3 Plasma Polymerization in Pulsed Mode......Page 236
7.4.4 Sterilization of PEO-like Films......Page 238
7.4.5 Composite Films: Ag Nanoparticles in a PEO-like Matrix......Page 239
7.4.5.1 Synthesis of Ag Nanoparticles and Deposition on Surfaces......Page 240
7.4.5.2 Composite AgNP/PEO Surfaces and Their Antibacterial Activity......Page 241
7.5 Summary......Page 244
References......Page 245
8.2 Fundamentals of Gas Diffusion through Polymers......Page 253
8.2.1 Diffusion, Solubility, and Permeability of Polymers......Page 255
8.2.2 Diagnostic Methods......Page 258
8.2.3 Barrier Concepts......Page 261
8.3.1.1 Selection of Two-dimensional and Three-dimensional Polymer Substrates......Page 262
8.3.1.3 Measurement of the Coating Thickness......Page 263
8.3.2.1 SiOx Barrier Films Deposited from O2: HMDSOGas Mixtures......Page 264
8.3.2.1.1 O2 Permeation Measurements: Determination of the Diffusion Coefficient......Page 265
8.3.2.1.2 O2 Permeation Measurements: Variation of the O2: HMDSO Gas Mixture Ratio......Page 266
8.3.2.1.3 FTIR Analysis: Chemical Composition of the Surface of the SiOx Barrier Films Deposited from Different O2: HMDSO Gas Mixtures......Page 267
8.3.2.2.1 O2 Permeation Measurements: Variation of the O2: HMDSN Gas Mixture Ratio......Page 271
8.3.2.2.2 FTIR Analysis: Comparing Best Performing SiOx Barrier Films Deposited from O2 : HMDSOand fromO2 : HMDSN Gas Mixtures......Page 273
8.3.2.2.3 O2 Permeation Measurements: Variation of the Film Thickness......Page 274
8.3.3.1 ECR Plasma Source: Comparing the Barrier Properties of SiOx Films Deposited on PP and on PET Foil by Variation of the O2 : HMDSOGas Mixture Ratio......Page 275
8.3.3.2 Duo-Plasmaline Plasma Source: SiOx Barrier Films Deposited from O2: HMDSNGas Mixtures......Page 277
8.3.4 ECR Plasma Deposition of SiOx Barrier Films on Polymer Trays Designed for Food Packaging......Page 279
8.3.4.1 ECR Plasma Deposition of SiOx Barrier Films Without Directed Gas Supply and Customized Magnet Configuration: Variation of the Plasma Deposition Time and of the Distance between Sample and Plasma......Page 280
8.3.4.2 Achieving Industrially Relevant Plasma Deposition Times by Directed Gas Supply and Customized Magnet Configuration......Page 283
8.4 Conclusions......Page 286
References......Page 287
9.1 Introduction......Page 291
9.2 Recent Developments in PVD Coatings......Page 292
9.3 Coatings Trends and Market Share......Page 295
9.4 Coatings Application in the Food Processing Sector......Page 296
9.5 Coating Requirements in the Food Sector......Page 297
9.5.1 Wear Resistance......Page 298
9.6 Selection of Methodologies for Effective Characterization of Coatings for the Food Sector......Page 299
9.6.1.1.1 Application to Anti-wear Coatings for Food Processing Tools......Page 301
9.6.1.2.1 Application to Anti-wear Coatings......Page 302
9.6.2.1 Hardness......Page 304
9.6.2.1.1 Application to Anti-wear Coatings for Food Processing Tools......Page 305
9.6.2.2 Pin-on-disk......Page 307
9.6.3.3 Salt Spray Test......Page 308
9.7.1 Relevant Substrates and Functionalities Required for Cutting Applications......Page 309
9.7.2 Technical Analysis and Choice of the Proper Coating Chemistry and Technique......Page 310
9.7.3 Coating Development......Page 313
9.7.4 Case Study: PVD Coating of Saw Blades......Page 316
9.7.5 Case Study: PVD Coating of Hammers for Food Treatment......Page 319
References......Page 322
10.1 Introduction......Page 323
10.2.1 Full Kinetic Models and Reduced Model for Technological Plasma......Page 325
10.2.2 Electron Kinetics......Page 327
10.2.3 Plasma Chemistry......Page 329
10.2.4.1 Air-based Discharges......Page 330
10.2.4.2 Nitrogen-based Discharges......Page 334
10.2.4.3 CF4-based Discharges......Page 337
10.2.5 Influence of Impurities on Composition of Gas Activated by Nonthermal Plasma......Page 338
10.3.1.1 Description of Chemical Reaction Modeling......Page 342
10.3.1.2.1 Abstraction of H Atoms from H-sites by OH Radicals......Page 348
10.3.2 Results of Modeling and Comparison with Experimental Data......Page 349
References......Page 356
Part III Economical, Ecological, and Safety Aspects......Page 361
11.1.1.1 General......Page 363
11.1.1.3 Hydrophobic and Oleophobic Textile Market......Page 364
11.1.2 Biomedical Market Perspective......Page 365
11.1.3 Food Packaging Market Potential......Page 367
11.2 Case Study: Up-Scaling of the Plasma Treatment of Hammers for Meat Milling......Page 368
11.2.2 Analysis of Scenario 2 – Outsourcing......Page 369
11.2.3 Analysis of Scenario 3 – In-house......Page 370
11.2.4 Investment and Operating Cost......Page 371
11.2.5 Comparative Analysis of All Three Scenarios......Page 372
11.2.6 Final Considerations......Page 373
References......Page 374
12.1 Introduction to LCA......Page 375
12.2 Environmental Impact of Traditional Surface Processing: the Reason for Developing Innovative Solutions Supported by Dedicated LCA......Page 378
12.3 LCA Applied to Plasma Surface Processing: Case Studies......Page 381
12.3.1 Scope, Functional Unit, and System Boundaries......Page 382
12.3.2 Life Cycle Inventory (LCI) and Hypothesis......Page 384
12.3.3 Inventory Data and Results......Page 388
12.3.3.1 The Anti-corrosion Process......Page 389
12.3.3.2.1 Total Energy Requirement......Page 392
12.3.3.2.2 Output of the Oleophobic PET Processes......Page 394
12.3.3.2.3 Output of the Hydrophobic PET/Cotton Processes......Page 395
12.3.4 Impact Assessment......Page 397
12.3.5.2 Example 1: General Sensitivity Analysis for the LCA Study of the Textile Processes......Page 399
12.3.6 Concluding Considerations on LCA Study......Page 403
12.4 Process Safety for the Working Environment......Page 406
12.4.1 Atmospheric Pressure Plasma Unit: Standard Con.guration......Page 407
12.4.2 Devising Safe Processes for Industrial Applications Maintaining the Semi-continuous Feeding......Page 409
12.4.3 Final Considerations on Process Safety......Page 416
References......Page 417
Index......Page 419