ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Plasma Engineering: Applications from Aerospace to Bio and Nanotechnology

دانلود کتاب مهندسی پلاسما: کاربردها از هوافضا تا زیست و فناوری نانو

Plasma Engineering: Applications from Aerospace to Bio and Nanotechnology

مشخصات کتاب

Plasma Engineering: Applications from Aerospace to Bio and Nanotechnology

ویرایش: 2 
نویسندگان:   
سری:  
ISBN (شابک) : 9780128137024, 0128137029 
ناشر: Academic Press 
سال نشر: 2018 
تعداد صفحات: 572 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 39 مگابایت 

قیمت کتاب (تومان) : 49,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 7


در صورت تبدیل فایل کتاب Plasma Engineering: Applications from Aerospace to Bio and Nanotechnology به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مهندسی پلاسما: کاربردها از هوافضا تا زیست و فناوری نانو نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب مهندسی پلاسما: کاربردها از هوافضا تا زیست و فناوری نانو



مهندسی پلاسما، ویرایش دوم، خواص منحصر به فرد پلاسما (گازهای یونیزه شده) را برای بهبود فرآیندها و عملکرد در بسیاری از زمینه ها، مانند پردازش مواد، رانش فضاپیما و نانوساخت این کتاب این رشته به سرعت در حال گسترش را از دیدگاهی یکپارچه بررسی می‌کند و به مبانی فیزیک و مدل‌سازی و همچنین کاربردهای جدید و واقعی در هوافضا، فناوری نانو و مهندسی زیستی می‌پردازد. این نسخه به روز شده مبانی فیزیک پلاسما را در سطحی مناسب برای دانش آموزانی که از نمونه های کاربردی استفاده می کنند پوشش می دهد و شامل گسترده ترین کاربردهای هر متن موجود در بازار است که حوزه های مهندسی هوافضا، فناوری نانو و مهندسی نانو زیست را در بر می گیرد.

این برای دوره های مهندسی پلاسما یا فیزیک پلاسما در بخش های مهندسی هوافضا، مهندسی برق و فیزیک بسیار مفید است. همچنین به‌عنوان مقدمه‌ای بر مهندسی پلاسما و کاربردهای آن برای محققان اولیه و مهندسین شاغل مفید است.


توضیحاتی درمورد کتاب به خارجی

Plasma Engineering, Second Edition, applies the unique properties of plasmas (ionized gases) to improve processes and performance over many fields, such as materials processing, spacecraft propulsion and nanofabrication. The book considers this rapidly expanding discipline from a unified standpoint, addressing fundamentals of physics and modeling, as well as new and real-word applications in aerospace, nanotechnology and bioengineering. This updated edition covers the fundamentals of plasma physics at a level suitable for students using application examples and contains the widest variety of applications of any text on the market, spanning the areas of aerospace engineering, nanotechnology and nanobioengineering.

This is highly useful for courses on plasma engineering or plasma physics in departments of Aerospace Engineering, Electrical Engineering and Physics. It is also useful as an introduction to plasma engineering and its applications for early career researchers and practicing engineers.



فهرست مطالب

Cover\nPlasma Engineering\nCopyright\nDedication\nAbout the Authors\nPreface, Second Edition\nSection I: Introduction\n1 Plasma Concepts\n	1.1 Introduction\n		1.1.1 Debye Length\n		1.1.2 Plasma Oscillations\n		1.1.3 Plasma Types\n			1.1.3.1 Thermonuclear Fusion\n			1.1.3.2 Vacuum Arcs\n			1.1.3.3 Cold Plasma\n			1.1.3.4 Plasma in Nature\n	1.2 Plasma Particle Phenomena\n		1.2.1 Particle Collisions\n			1.2.1.1 Definitions\n			1.2.1.2 Cross Section: Mean Free Path\n			1.2.1.3 Charge Exchange Cross Section\n			1.2.1.4 Coulomb Collision Cross Section\n			1.2.1.5 Ionization Cross Section\n			1.2.1.6 Plasma Equilibrium\n	1.3 Waves and Instabilities in Plasmas\n		1.3.1 Electromagnetic Phenomena in Plasma\n			1.3.1.1 Conservation Law for Electric Charge and Current: Electromagnetic Waves\n			1.3.1.2 Electromagnetic Wave Propagation\n				1.3.1.2.1 Propagation in a Media With High Conductivity (i.e., Metal)\n				1.3.1.2.2 Propagation in a Media With Low Conductivity (i.e., Dielectric)\n		1.3.2 Waves in Plasma\n		1.3.3 Plasma Oscillations\n		1.3.4 Electron Plasma Wave\n		1.3.5 Sound Waves in Plasma\n		1.3.6 Waves in Plasma With Magnetic Field\n		1.3.7 Plasma Instabilities\n			1.3.7.1 Two-Stream Instability\n			1.3.7.2 Kinetic Instabilities\n	1.4 Plasma–Wall Interactions\n		1.4.1 Plasma–Wall Transition: Electrostatic Phenomena\n			1.4.1.1 Condition for Stable Sheath: Bohm Criterion\n			1.4.1.2 Monotonic Solution for Sheath–Presheath Region\n			1.4.1.3 Mathematical Formulation\n				1.4.1.3.1 Presheath (Quasi-Neutral Region, ne=ni)\n				1.4.1.3.2 Sheath\n				1.4.1.3.3 Direct Numerical Solution of the Sheath–Presheath Regions\n			1.4.1.4 Monotonic Potential Distribution in the Sheath\n			1.4.1.5 Solutions in Plasma and Sheath Regions: Procedure of Patching\n			1.4.1.6 Typical Electrostatic Sheath\n				1.4.1.6.1 Child–Langmuir Sheath\n				1.4.1.6.2 Sheath at Floating Wall\n				1.4.1.6.3 Sheath With Arbitrary Ion Distribution Function: Kinetic Approach\n				1.4.1.6.4 Sheath With SEE\n			1.4.1.7 Sheath in a Magnetic Field\n	1.5 Surface Phenomena: Electron Emission and Vaporization\n		1.5.1 Electron Emission\n			1.5.1.1 Thermionic Emission\n			1.5.1.2 Field Emission\n			1.5.1.3 Thermionic–Field Emission\n			1.5.1.4 Secondary Electron Emission\n		1.5.2 Vaporization\n			1.5.2.1 Langmuir Model\n			1.5.2.2 Kinetic Models\n			1.5.2.3 Model of the Nonequilibrium Layer\n				1.5.2.3.1 DSMC Particle Approach\n				1.5.2.3.2 Analytical Approach\n				1.5.2.3.3 Examples of Knudsen Layer Calculation\n				1.5.2.3.4 Ablation of the Teflon Into Discharge Plasma\n				1.5.2.3.5 Outlook on Evaporation Analysis Approached\n	Homework Problems\n		Section 1\n		Section 2\n		Section 3\n		Section 4\n		Section 5\n	References\n2 Plasma Diagnostics\n	2.1 Langmuir Probes\n	2.2 Orbital Motion Limit\n	2.3 Langmuir Probes in Collisional-Dominated Regime\n	2.4 Emissive Probe\n	2.5 Probe in a Magnetic Field\n	2.6 Ion Energy Measurements: Electrostatic Analyzer\n	2.7 High-Frequency Cutoff Plasma Diagnostics\n	2.8 Interferometric Technique\n	2.9 Optical Measurements and Fast Imaging\n	2.10 Plasma Spectroscopy\n	2.11 Microwave Scattering\n	Homework Problems\n	References\n3 Electrical Discharges\n	3.1 Electrical Breakdown and Paschen Law\n	3.2 Spark Discharges and Streamer Phenomena\n		3.2.1 Electron Avalanche\n		3.2.2 Streamer Mechanism\n	3.3 Glow Discharge\n		3.3.1 Cathode and Anode Regions\n		3.3.2 Positive Column of the Glow Discharge\n	3.4 Arc Discharges\n		3.4.1 Atmospheric Arc\n			3.4.1.1 Interelectrode Plasma Column of the Arc Discharge\n		3.4.2 Vacuum Arc\n			3.4.2.1 Cathode Region\n				3.4.2.1.1 Overview of the Experiments\n				3.4.2.1.2 Modern Theories\n				3.4.2.1.3 Cathode Spot: Results and Calculations\n			3.4.2.2 Anode Region\n				3.4.2.2.1 Conventional Vacuum Arc: Anode Plasma Observation\n				3.4.2.2.2 Anode Spot: Model and Calculation\n			3.4.2.3 Interelectrode Plasma\n			3.4.2.4 HCVA: Magnetic Field Influence\n	Homework Problems\n	References\n	Further Reading\n4 Plasma Dynamics\n	4.1 Plasma in Electric and Magnetic Fields\n	4.2 Magnetic Mirrors\n	4.3 Remarks on Particle Drift\n	4.4 The E×B Plasma Dynamics in Plasma Devices\n	4.5 Diffusion and Transport of Plasmas\n		4.5.1 Basic Physics of Diffusion\n		4.5.2 Ambipolar Diffusion\n		4.5.3 Diffusion Across a Magnetic Field\n	4.6 Simulation Approaches\n	4.7 Particle-in-Cell Techniques\n		4.7.1 Equation of Motion\n		4.7.2 Integration of the Field Equations\n		4.7.3 Particle and Force Weighting\n			4.7.3.1 Zero-Order Weighting\n			4.7.3.2 First-Order Weighting\n		4.7.4 Particle Generation\n		4.7.5 Example of Application of PIC Simulations\n	4.8 Fluid Simulations of Plasmas: Free Boundary Expansion\n		4.8.1 Fluid Model of a Vacuum Arc Plasma Jet\n		4.8.2 Basic Model\n		4.8.3 Free Plasma Jet Expansion\n			4.8.3.1 Boundary Condition for the Free Plasma Jet Expansion\n			4.8.3.2 Example of a Calculation of Free Boundary Plasma Jet Expansion\n			4.8.3.3 Calculation Example: Hollow Anode Vacuum Arc\n				4.8.3.3.1 Near Anode Region (Anode Sheath)\n			4.8.3.4 Discussion of the Free Boundary Model\n			4.8.3.5 Modeling of the Plasma Flow in High-Current Vacuum Arc Interrupters\n			4.8.3.6 On the Modeling of the Transition From a Diffuse to a Constricted High-Current Mode\n	Homework Problems\n	References\n5 Plasma in Space Propulsion\n	5.1 Plasma in Ablative Plasma Thrusters\n		5.1.1 Ablation Phenomena and the Knudsen Layer\n		5.1.2 Ionization in the Presence of Plasma Acceleration in the Hydrodynamic Region\n			5.1.2.1 Limit of Small Plasma Acceleration\n			5.1.2.2 Regular Sonic Transition\n			5.1.2.3 Numerical Examples\n		5.1.3 Example: Application to the Carbon–Fluorine Plasma in a μ-PPT\n		5.1.4 Ablation-Produced Plasma: Example of Teflon Ablation\n		5.1.5 On the Ablation Mode\n		5.1.6 Electrothermal Capillary-Based PPT\n		5.1.7 The Model of the Ablation-Controlled Discharge\n			5.1.7.1 Teflon Ablation\n			5.1.7.2 Quasi-Neutral Plasma Analyses\n			5.1.7.3 Simulations of the Plasma in PPT\n			5.1.7.4 Thruster Performance\n	5.2 Bulk Plasma and Near-Wall Phenomena in Hall Thruster\n		5.2.1 Plasma Acceleration in Hall Thrusters\n		5.2.2 Anomalous Electron Transport Mechanisms\n			5.2.2.1 Plasma Oscillations\n			5.2.2.2 NWC Definition\n			5.2.2.3 Mathematical Model of the NWC\n		5.2.3 Structure of E×B Layer\n		5.2.4 Plasma Flow in a Hall Thruster: Calculation Example\n			5.2.4.1 Sheath and Plasma–Sheath Transition\n			5.2.4.2 Plasma Presheath Model\n			5.2.4.3 Electron Collisions\n			5.2.4.4 Plasma Flow in Hall Thruster Channel: Simulation Results\n			5.2.4.5 Physical Interpretation of Results\n		5.2.5 Peculiarities of the Plasma Flow in Hall Thrusters: 2D Potential Distribution\n		5.2.6 Anodic Plasma in Hall Thrusters\n		5.2.7 Model of the Hollow Anode\n			5.2.7.1 Analytical Solution\n			5.2.7.2 Model of the Anodic Plasma Jet\n			5.2.7.3 Calculations of the Anodic Plasma\n		5.2.8 Thruster With Anode Layer\n			5.2.8.1 Plasma Boundary Issues in TAL\n			5.2.8.2 Plasma Flow of the Quasi-Neutral Plasma\n			5.2.8.3 Example of TAL Simulation: High-Power Bismuth TAL\n			5.2.8.4 Example of Calculation: TAL—Analysis of the Space-Charge Sheath Near the Channel Wall\n		5.2.9 Multiscale Analysis of Hall Thrusters\n	5.3 Micropropulsion\n		5.3.1 Ablative Microthrusters\n			5.3.1.1 Ablative PPT\n			5.3.1.2 Microlaser Plasma Thruster\n			5.3.1.3 Micro-Vacuum Arc Thruster\n			5.3.1.4 Microcathode Arc Thruster\n			5.3.1.5 Preflight Testing and Flight Experiments With μCAT\n		5.3.2 Microthrusters Based on Liquid Propellants\n			5.3.2.1 Liquid PPT\n			5.3.2.2 Field Emission Electric Propulsion\n			5.3.2.3 Colloid Thruster\n			5.3.2.4 FEEP Operation in the Colloid Mode With Low Isp Range\n			5.3.2.5 Other Micropropulsion Concepts\n	5.4 Plasma Plumes From Thrusters\n		5.4.1 Description of the Plume Model\n			5.4.1.1 Ion Beam Generated From the Thruster\n			5.4.1.2 Electron Flow\n			5.4.1.3 Neutral Density\n			5.4.1.4 Potential Distribution\n		5.4.2 Example of Plasma Plume Simulation: Hall Thruster Plume\n		5.4.3 Plasma Plume Ejected From a μ-LPT\n			5.4.3.1 Laser-Generated Plasma Expansion\n			5.4.3.2 Example of Calculation of Expanding Plume From μ-LPT\n		5.4.4 Magnetic Field Effects on the Plasma Plume\n			5.4.4.1 Effect of the Magnetic Field on the Hall Thruster Plasma Plume\n			5.4.4.2 Near-Field Plasma Plume of PPT\n			5.4.4.3 Boundary Conditions for the Plume Simulation\n			5.4.4.4 Plasma Plume Electrodynamics\n			5.4.4.5 Example of Plasma Plume Simulations\n			5.4.4.6 Comparison With Experimental Data\n	5.5 Plasma Phenomena in Hypersonic Flows\n	Homework Problems\n		Section 1\n		Section 2\n		Section 3\n	References\n	Further Reading\n6 Plasma Nanoscience and Nanotechnology\n	6.1 Plasmas for Nanotechnology\n		6.1.1 Definitions\n		6.1.2 Plasma-Based Synthesis of Nanoparticles\n		6.1.3 Synthesis of Carbon Nanoparticles\n			6.1.3.1 Carbon Nanotubes\n			6.1.3.2 Graphene\n		6.1.4 Controlled Synthesis of Carbon Nanostructures in Arc Plasmas: Theoretical Premise\n			6.1.4.1 SWNT Interaction With Arc Plasma\n	6.2 Magnetically Enhanced Synthesis of Nanostructures in Plasmas\n		6.2.1 Arc-Discharge Plasma System for Synthesis of SWNT\n		6.2.2 Synthesis of SWCNTs in a Magnetic Field\n		6.2.3 Effect of Magnetic Field on SWNT Chirality\n		6.2.4 Synthesis of Graphene in Arc Plasmas\n		6.2.5 Current State of the Art of Plasma-Based Synthesis of Carbon Nanostructures\n			6.2.5.1 Large-Scale Production\n			6.2.5.2 Control of Synthesis\n			6.2.5.3 Outlook\n	6.3 Nanoparticle Synthesis in Electrical Arcs: Modeling and Diagnostics\n		6.3.1 Arc-Discharge Plasma\n			6.3.1.1 Model of the Arc Discharge\n		6.3.2 Experimental Studies of the Arc-Discharge Plasmas for Nanoparticle Synthesis\n			6.3.2.1 Langmuir Probe Diagnostics\n			6.3.2.2 Analysis of Emission Spectra From Arc Plasmas\n		6.3.3 Two-Dimensional Simulation of Atmospheric Arc Plasmas\n		6.3.4 Model of the CNT Synthesis in Arc-Discharge Plasmas\n		6.3.5 Recent Progress in Understanding of the Plasma-Based Synthesis of Carbon Nanomaterials\n		6.3.6 Remark on the Plasma-Based Synthesis of 2D Materials\n	Homework Problems\n	References\n7 Plasma Medicine\n	7.1 Plasmas for Biomedical Applications\n		7.1.1 Introduction\n		7.1.2 Cold Atmospheric Plasmas\n			7.1.2.1 State of the Art Modeling of the Cold Plasma Jets\n			7.1.2.2 Characterization of CAP jet\n	7.2 Cold Plasma Interaction With Cells\n		7.2.1 Cell Migration\n		7.2.2 Integrin Activation by a CAP Jet\n			7.2.2.1 Dermal Fibroblasts and Human Corneal Epithelial Cells Reduce Their Migration in Response to CAP\n			7.2.2.2 Activating Fibroblast Integrins Reduces Their Response to CAP\n			7.2.2.3 Integrins Activation by CAP\n			7.2.2.4 FA of Treated Cells\n			7.2.2.5 Relationship Between Integrins and FA Adhesions\n			7.2.2.6 Thermodynamic Model of the CAP Effect on the Cell Membrane\n	7.3 Application of CAP in Cancer Therapy\n		7.3.1 Cold Plasma Selectivity\n		7.3.2 Gene Expression Analysis\n		7.3.3 Targeting the Cancer Cell Cycle by CAP\n			7.3.3.1 The Cell Cycle\n			7.3.3.2 CAP Effect on the Cell Migration and Velocity Distribution Among the Chosen Cell Population\n			7.3.3.3 Identification of the Cell Cycle Changes in G2/M Phase\n			7.3.3.4 Studies of the Cell Population’s Distribution During the Cell Cycle Under CAP Treatment\n			7.3.3.5 Cell Synchronization Effect on the G2/M-Peak Increase\n			7.3.3.6 CAP Targets the Cell Cycle\n			7.3.3.7 Remarks on CAP Effects\n	7.4 Molecular Mechanisms of the CAP-Based Anticancer Treatment\n	7.5 Recent Progress in Plasma-Based Cancer Therapy\n		7.5.1 Simulation of CAP Interaction With Tumor\n		7.5.2 Plasma Self-Organization Phenomena\n		7.5.3 Cold Plasma Application In Vivo Targeting Glioblastoma\n		7.5.4 Understanding Mechanism of CAP Selectivity\n		7.5.5 Strong H2O2 Production\n		7.5.6 Adaptive Plasma Devices\n	Homework Problems\n	References\n	Further Reading\nAppendix Physical Constants in SI\n	A.1 Ionization Potentials\n	A.2 Work Function\n	A.3 Ion-Induced Secondary Emission Coefficients [1]\n		A.3.1 Glow Discharge\n			A.3.1.1 Normal cathode fall in various gases\n			A.3.1.2 A, B Coefficients in Equation for Breakdown Voltage (a/p=Aexp(−BpE))\n	A.4 Vacuum Arcs\n	A.5 Arc Burning Voltage\n	A.6 Sputtering yield (xenon ions) [7]\n	A.7 Cross Sections for Helium and Nitrogen [8,9]\n	References\nIndex\nBack Cover




نظرات کاربران