دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Fridman A.
سری:
ISBN (شابک) : 9780521847353
ناشر: CUP
سال نشر: 2008
تعداد صفحات: 1024
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 13 مگابایت
در صورت تبدیل فایل کتاب Plasma Chemistry به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب شیمی پلاسما نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب منحصر به فرد مقدمه ای اساسی برای تمام جنبه های شیمی پلاسما مدرن ارائه می دهد. این کتاب مکانیسمها و سینتیکهای فرآیندهای شیمیایی در پلاسما، آمار پلاسما، ترمودینامیک، مکانیک سیالات و الکترودینامیک و همچنین تمام تخلیههای الکتریکی اصلی اعمال شده در شیمی پلاسما را شرح میدهد. این کتاب بیشتر کاربردهای عمده شیمی پلاسما را از الکترونیک گرفته تا پوششهای حرارتی، از تصفیه پلیمرها تا تبدیل سوخت و تولید هیدروژن، و از متالورژی پلاسما تا پزشکی پلاسما را در نظر میگیرد. این کتاب می تواند برای مهندسان، دانشمندان و دانشجویان علاقه مند به فیزیک پلاسما، شیمی پلاسما، مهندسی پلاسما و احتراق، و همچنین در فیزیک شیمی، لیزر، سیستم های انرژی و کنترل محیطی مفید باشد. این کتاب شامل یک پایگاه داده گسترده در مورد سینتیک پلاسما و ترمودینامیک و همچنین بسیاری از فرمول های عددی مناسب برای محاسبات عملی مربوط به فرآیندها و کاربردهای پلاسما شیمیایی خاص است. این کتاب شامل تعداد زیادی مسائل و سوالات مفهومی است که در دروس دانشگاهی مرتبط با پلاسما، لیزر، احتراق، سینتیک شیمیایی، آمار و ترمودینامیک و مکانیک سیالات با دمای بالا و انرژی بالا مفید است.
This unique book provides a fundamental introduction to all aspects of modern plasma chemistry. The book describes mechanisms and kinetics of chemical processes in plasma, plasma statistics, thermodynamics, fluid mechanics, and electrodynamics, as well as all major electric discharges applied in plasma chemistry. The book considers most of the major applications of plasma chemistry from electronics to thermal coatings, from treatment of polymers to fuel conversion and hydrogen production, and from plasma metallurgy to plasma medicine. The book can be helpful to engineers, scientists, and students interested in plasma physics, plasma chemistry, plasma engineering, and combustion, as well as in chemical physics, lasers, energy systems, and environmental control. The book contains an extensive database on plasma kinetics and thermodynamics as well as a lot of convenient numerical formulas for practical calculations related to specific plasma-chemical processes and applications. The book contains a large number of problems and concept questions that are helpful in university courses related to plasma, lasers, combustion, chemical kinetics, statistics and thermodynamics, and high-temperature and high-energy fluid mechanics.
Cover......Page 1
Half-title......Page 3
Title......Page 5
Copyright......Page 6
Dedication......Page 7
Contents......Page 9
Foreword......Page 41
Preface......Page 43
1.1. PLASMA AS THE FOURTH STATE OF MATTER......Page 45
1.2. PLASMA IN NATURE AND IN THE LABORATORY......Page 46
1.3. PLASMA TEMPERATURES: THERMAL AND NON-THERMAL PLASMAS......Page 48
1.4. PLASMA SOURCES FOR PLASMA CHEMISTRY: GAS DISCHARGES......Page 49
1.5. FUNDAMENTALS OF PLASMA CHEMISTRY: MAJOR COMPONENTS OF CHEMICALLY ACTIVE PLASMA AND MECHANISMS OF PLASMA-CHEMICAL PROCESSES......Page 52
1.6. APPLIED PLASMA CHEMISTRY......Page 53
1.7. PLASMA AS A HIGH-TECH MAGIC WAND OF MODERN TECHNOLOGY......Page 54
2.1.1. Elementary Charged Particles in Plasma......Page 56
2.1.2. Elastic and Inelastic Collisions and Their Fundamental Parameters......Page 57
2.1.3. Classification of Ionization Processes......Page 58
2.1.4. Elastic Scattering and Energy Transfer in Collisions of Charged Particles: Coulomb Collisions......Page 59
2.1.5. Direct Ionization by Electron Impact: Thomson Formula......Page 60
2.1.6. Specific Features of Ionization of Molecules by Electron Impact: Frank-Condon Principle and Dissociative Ionization......Page 61
2.1.7. Stepwise Ionization by Electron Impact......Page 62
2.1.9. Photo-Ionization Processes......Page 64
2.1.11. Penning Ionization Effect and Associative Ionization......Page 65
2.2.1. Different Mechanisms of Electron–Ion Recombination in Plasma......Page 66
2.2.2. Dissociative Electron–Ion Recombination and Possible Preliminary Stage of Ion Conversion......Page 67
2.2.3. Three-Body and Radiative Electron–Ion Recombination Mechanisms......Page 69
2.2.4. Ion–Molecular Reactions, Ion–Molecular Polarization Collisions, and the Langevin Rate Coefficient......Page 70
2.2.5. Ion–Atomic Charge Transfer Processes and Resonant Charge Transfer......Page 72
2.2.6. Non-Resonant Charge Transfer Processes and Ion–Molecular Chemical Reactions of Positive and Negative Ions......Page 73
2.3.1. Dissociative Electron Attachment to Molecules as a Major Mechanism of Negative Ion Formation in Electronegative Molecular Gases......Page 75
2.3.2. Three-Body Electron Attachment and Other Mechanisms of Formation of Negative Ions......Page 77
2.3.3. Destruction of Negative Ions: Associative Detachment, Electron Impact Detachment, and Detachment in Collisions with Excited Particles......Page 79
2.3.4. Recombination of Negative and Positive Ions......Page 81
2.3.5. Ion–Ion Recombination in Binary Collisions......Page 82
2.3.6. Three-Body Ion–Ion Recombination: Thomson’s Theory and Langevin Model......Page 83
2.4.1. Thermionic Emission: Sommerfeld Formula and Schottky Effect......Page 86
2.4.2. Field Emission of Electrons in Strong Electric Fields: Fowler-Nordheim Formula and Thermionic Field Emission......Page 87
2.4.3. Secondary Electron Emission......Page 89
2.4.4. Photo-Ionization of Aerosols: Monochromatic Radiation......Page 90
2.4.5. Photo-Ionization of Aerosols: Continuous-Spectrum Radiation......Page 93
2.4.6. Thermal Ionization of Aerosols: Einbinder Formula......Page 95
2.4.7. Space Distribution of Electrons and Electric Field Around a Thermally Ionized Macro-Particle......Page 96
2.4.8. Electric Conductivity of Thermally Ionized Aerosols......Page 97
2.5.1. Vibrational Excitation of Molecules by Electron Impact......Page 98
2.5.2. Rate Coefficients of Vibrational Excitation by Electron Impact: Semi-Empirical Fridman Approximation......Page 100
2.5.3. Rotational Excitation of Molecules by Electron Impact......Page 102
2.5.4. Electronic Excitation of Atoms and Molecules by Electron Impact......Page 103
2.5.5. Dissociation of Molecules by Direct Electron Impact......Page 105
2.5.6. Distribution of Electron Energy in Non-Thermal Discharges Between Different Channels of Excitation and Ionization......Page 107
2.6.1. Vibrational–Translational (VT) Relaxation: Slow Adiabatic Elementary Process......Page 111
2.6.2. Landau–Teller Formula for VT-Relaxation Rate Coefficients......Page 113
2.6.3. Fast Non-Adiabatic Mechanisms of VT Relaxation......Page 115
2.6.4. Vibrational Energy Transfer Between Molecules: Resonant VV Relaxation......Page 116
2.6.5. Non-Resonant VV Exchange: Relaxation of Anharmonic Oscillators and Intermolecular VV Relaxation......Page 118
2.6.7. Relaxation of Electronically Excited Atoms and Molecules......Page 120
2.7.1. Rate Coefficient of Reactions of Excited Molecules......Page 123
2.7.3. Fridman-Macheret α-Model......Page 125
2.7.4. Efficiency of Vibrational Energy in Elementary Reactions Proceeding Through Intermediate Complexes: Synthesis of Lithium Hydride......Page 127
2.7.5. Dissociation of Molecules in Non-Equilibrium Conditions with Essential Contribution of Translational Energy: Non-Equilibrium Dissociation Factor Z......Page 130
2.7.6. Semi-Empirical Models of Non-Equilibrium Dissociation of Molecules Determined by Vibrational and Translational Temperatures......Page 131
PROBLEMS AND CONCEPT QUESTIONS......Page 133
3.1.1. Statistical Distributions: Boltzmann Distribution Function......Page 136
3.1.2. Equilibrium Statistical Distribution of Diatomic Molecules over Vibrational–Rotational States......Page 137
3.1.4. Dissociation Equilibrium in Molecular Gases......Page 138
3.1.6. Thermodynamic Functions of Quasi-Equilibrium Thermal Plasma Systems......Page 139
3.1.7. Non-Equilibrium Statistics of Thermal and Non-Thermal Plasmas......Page 141
3.1.8. Non-Equilibrium Statistics of Vibrationally Excited Molecules: Treanor Distribution......Page 143
3.2.1. Fokker-Planck Kinetic Equation for Determination of EEDF......Page 144
3.2.2. Druyvesteyn Distribution, Margenau Distributions, and Other Specific EEDF......Page 145
3.2.2.3. Margenau distribution......Page 146
3.2.3. Effect of Electron–Molecular and Electron–Electron Collisions on EEDF......Page 147
3.2.5. Isotropic and Anisotropic Parts of the Electron Distribution Functions: EEDF and Plasma Conductivity......Page 148
3.3.1. Electron Mobility, Plasma Conductivity, and Joule Heating......Page 150
3.3.2. Plasma Conductivity in Crossed Electric and Magnetic Fields......Page 151
3.3.4. Free Diffusion of Electrons and Ions; Continuity Equation; and Einstein Relation Between Diffusion Coefficient, Mobility, and Mean Energy......Page 153
3.3.5. Ambipolar Diffusion and Debye Radius......Page 154
3.3.6. Thermal Conductivity in Plasma......Page 155
3.3.8. Plasma Emission and Absorption of Radiation in Continuous Spectrum and Unsold-Kramers Formula......Page 156
3.3.9. Radiation Transfer in Plasma: Optically Thin and Optically Thick Plasmas......Page 157
3.4.1. Fokker-Plank Kinetic Equation for Non-Equilibrium Vibrational Distribution Functions......Page 158
3.4.2. VT and VV Fluxes of Excited Molecules in Energy Space......Page 159
3.4.3. Non-Equilibrium Vibrational Distribution Functions: Regime of Strong Excitation......Page 161
3.4.4. Non-Equilibrium Vibrational Distribution Functions: Regime of Weak Excitation......Page 163
3.4.5. Kinetics of Population of Electronically Excited States in Plasma......Page 164
3.4.6. Non-Equilibrium Translational Energy Distribution Functions of Heavy Neutrals: Effect of “Hot” Atoms in Fast VT-Relaxation Processes......Page 166
3.4.7. Generation of “Hot” Atoms in Chemical Reactions......Page 167
3.5.1. Kinetic Equation and Vibrational Distributions in Gas Mixtures: Treanor Isotopic Effect in Vibrational Kinetics......Page 168
3.5.2. Reverse Isotopic Effect in Plasma-Chemical Kinetics......Page 170
3.5.3. Macrokinetics of Chemical Reactions of Vibrationally Excited Molecules......Page 173
3.5.4. Vibrational Energy Losses Due to VT Relaxation......Page 175
3.6.1. Energy Efficiency of Quasi-Equilibrium and Non-Equilibrium Plasma-Chemical Processes......Page 176
3.6.2. Energy Efficiency of Plasma-Chemical Processes Stimulated by Vibrational Excitation of Molecules......Page 177
3.6.4. Energy Balance and Energy Efficiency of Plasma-Chemical Processes Stimulated by Vibrational Excitation of Molecules......Page 178
3.6.5. Components of Total Energy Efficiency: Excitation, Relaxation, and Chemical Factors......Page 180
3.6.7. Mass and Energy Transfer Equations in Multi-Component Quasi-Equilibrium Plasma-Chemical Systems......Page 181
3.6.8. Transfer Phenomena Influence on Energy Efficiency of Plasma-Chemical Processes......Page 183
3.7.1. Ideal and Non-Ideal Plasmas......Page 184
3.7.2. Plasma Polarization: Debye Shielding of Electric Field in Plasma......Page 185
3.7.3. Plasmas and Sheaths: Physics of DC Sheaths......Page 186
3.7.4. High-Voltage Sheaths: Matrix and Child Law Sheath Models......Page 188
3.7.5. Electrostatic Plasma Oscillations: Langmuir or Plasma Frequency......Page 189
3.7.7. Magneto-Hydrodynamics: “Diffusion” of Magnetic Field and Magnetic Field Frozen in Plasma......Page 190
3.7.8. Magnetic Pressure: Plasma Equilibrium in Magnetic Field and Pinch Effect......Page 191
3.7.10. Plasma Diffusion Across Magnetic Field......Page 193
3.7.11. Magneto-Hydrodynamic Behavior of Plasma: Alfven Velocity and Magnetic Reynolds Number......Page 194
3.7.12. High-Frequency Plasma Conductivity and Dielectric Permittivity......Page 195
3.7.13. Propagation of Electromagnetic Waves in Plasma......Page 197
3.7.14. Plasma Absorption and Reflection of Electromagnetic Waves: Bouguer Law: Critical Electron Density......Page 198
PROBLEMS AND CONCEPT QUESTIONS......Page 199
4.1.1. Townsend Mechanism of Electric Breakdown and Paschen Curves......Page 201
4.1.2. Spark Breakdown Mechanism: Streamer Concept......Page 203
4.1.3. Meek Criterion of Streamer Formation: Streamer Propagation Models......Page 207
4.1.4. Streamers and Microdischarges......Page 208
4.1.5. Interaction of Streamers and Microdischarges......Page 210
4.1.6. Monte Carlo Modeling of Interaction of Streamers and Microdischarges......Page 211
4.1.7. Self-Organized Pattern of DBD Microdischarges due to Streamer Interaction......Page 212
4.1.8. Steady-State Regimes of Non-Equilibrium Electric Discharges and General Regimes Controlled by Volume and Surface Recombination Processes......Page 214
4.1.9. Discharge Regime Controlled by Electron–Ion Recombination......Page 215
4.1.11. Non-Thermal Discharge Regime Controlled by Charged-Particle Diffusion to the Walls: The Engel-Steenbeck Relation......Page 216
4.2.1. General Structure and Configurations of Glow Discharges......Page 219
4.2.2. Current-Voltage Characteristics of DC Discharges......Page 221
4.2.3. Dark Discharge and Transition from Townsend Dark to Glow Discharge......Page 222
4.2.4. Current-Voltage Characteristics of Cathode Layer: Normal Glow Discharge......Page 223
4.2.5. Abnormal, Subnormal, and Obstructed Regimes of Glow Discharges......Page 225
4.2.6. Positive Column of Glow Discharge......Page 226
4.2.7. Hollow Cathode Glow Discharge......Page 227
4.2.8. Other Specific Glow Discharge Plasma Sources......Page 228
4.2.9. Energy Efficiency Peculiarities of Glow Discharge Application for Plasma-Chemical Processes......Page 230
4.3.1. Classification and Current-Voltage Characteristics of Arc Discharges......Page 231
4.3.2. Cathode and Anode Layers of Arc Discharges......Page 233
4.3.3. Cathode Spots in Arc Discharges......Page 235
4.3.4. Positive Column of High-Pressure Arcs: Elenbaas-Heller Equation......Page 237
4.3.5. Steenbeck-Raizer “Channel” Model of Positive Column......Page 238
4.3.6. Steenbeck-Raizer Arc “Channel” Modeling of Plasma Temperature, Specific Power, and Electric Field in Positive Column......Page 240
4.3.7. Configurations of Arc Discharges Applied in Plasma Chemistry and Plasma Processing......Page 241
4.3.8. Gliding Arc Discharge......Page 244
4.3.9. Equilibrium Phase of Gliding Arc, Its Critical Parameters, and Fast Equilibrium-to-Non-Equilibrium Transition......Page 248
4.3.10. Gliding Arc Stability Analysis and Transitional and Non-Equilibrium Phases of the Discharge......Page 249
4.3.11. Special Configurations of Gliding Arc Discharges: Gliding Arc Stabilized in Reverse Vortex (Tornado) Flow......Page 251
4.4.1. Generation of Thermal Plasma in Radiofrequency Discharges......Page 253
4.4.2. Thermal Plasma Generation in Microwave and Optical Discharges......Page 255
4.4.3. Non-Thermal Radiofrequency Discharges: Capacitive and Inductive Coupling of Plasma......Page 259
4.4.4. Non-Thermal RF-CCP Discharges in Moderate Pressure Regimes......Page 260
4.4.5. Low-Pressure Capacitively Coupled RF Discharges......Page 263
4.4.6. RF Magnetron Discharges......Page 266
4.4.7. Non-Thermal Inductively Coupled RF Discharges in Cylindrical Coil......Page 268
4.4.8. Planar-Coil and Other Configurations of Non-Thermal Inductively Coupled RF Discharges......Page 270
4.4.9. Non-Thermal Low-Pressure Microwave and Other Wave-Heated Discharges......Page 273
4.4.10. Non-Equilibrium Plasma-Chemical Microwave Discharges of Moderate Pressure......Page 275
4.5.1. Corona Discharges......Page 277
4.5.2. Pulsed Corona Discharges......Page 278
4.5.3. Dielectric Barrier Discharges......Page 281
4.5.4. Special Modifications of DBD: Surface, Packed-Bed, and Ferroelectric Discharges......Page 283
4.5.5. Spark Discharges......Page 284
4.5.6. Atmospheric Pressure Glow Mode of DBD......Page 285
4.5.7. APGs: Resistive Barrier Discharge......Page 286
4.5.8. One-Atmosphere Uniform Glow Discharge Plasma as Another Modification of APG......Page 287
4.5.9. Electronically Stabilized APG Discharges......Page 288
4.5.10. Atmospheric-Pressure Plasma Jets......Page 289
4.6.1. General Features of Microdischarges......Page 291
4.6.2. Micro-Glow Discharge......Page 292
4.6.3. Micro-Hollow-Cathode Discharge......Page 295
4.6.4. Arrays of Microdischarges: Microdischarge Self-Organization and Structures......Page 296
4.6.5. Kilohertz-Frequency-Range Microdischarges......Page 298
4.6.6. RF Microdischarges......Page 299
PROBLEMS AND CONCEPT QUESTIONS......Page 301
5.1.1. Fundamental and Applied Aspects of the CO2 Plasma Chemistry......Page 303
5.1.2. Major Experimental Results on CO2: Dissociation in Different Plasma Systems and Energy Efficiency of the Process......Page 304
5.1.3. Mechanisms of CO2 Decomposition in Quasi-Equilibrium Thermal Plasma......Page 306
5.1.4. CO2 Dissociation in Plasma, Stimulated by Vibrational Excitation of Molecules......Page 307
5.1.5. CO2 Dissociation in Plasma by Means of Electronic Excitation of Molecules......Page 309
5.1.6. CO2 Dissociation in Plasma by Means of Dissociative Attachment of Electrons......Page 311
5.2.1. Asymmetric and Symmetric CO2 Vibrational Modes......Page 312
5.2.2. Contribution of Asymmetric and Symmetric CO2 Vibrational Modes into Plasma-Chemical Dissociation Process......Page 313
5.2.3. Transition of Highly Vibrationally Excited CO2 Molecules into the Vibrational Quasi Continuum......Page 315
5.2.4. One-Temperature Approximation of CO2 Dissociation Kinetics in Non-Thermal Plasma......Page 317
5.2.5. Two-Temperature Approximation of CO2 Dissociation Kinetics in Non-Thermal Plasma......Page 318
5.2.6. Elementary Reaction Rates of CO2 Decomposition, Stimulated in Plasma by Vibrational Excitation of the Molecules......Page 319
5.3.1. Two-Temperature Approach to Vibrational Kinetics and Energy Balance of CO2 Dissociation in Non-Equilibrium Plasma: Major Energy Balance and Dynamic Equations......Page 320
5.3.2. Two-Temperature Approach to Vibrational Kinetics and Energy Balance of CO2 Dissociation in Non-Equilibrium Plasma: Additional Vibrational Kinetic Relations......Page 321
5.3.3. Results of CO2 Dissociation Modeling in the Two-Temperature Approach to Vibrational Kinetics......Page 323
5.3.4. One-Temperature Approach to Vibrational Kinetics and Energy Balance of CO2 Dissociation in Non-Equilibrium Plasma: Major Equations......Page 324
5.3.5. Threshold Values of Vibrational Temperature, Specific Energy Input, and Ionization Degree for Effective Stimulation of CO2 Dissociation by Vibrational Excitation of the Molecules......Page 325
5.3.6. Characteristic Time Scales of CO2 Dissociation in Plasma Stimulated by Vibrational Excitation of the Molecules: VT-Relaxation Time......Page 326
5.3.7. Flow Velocity and Compressibility Effects on Vibrational Relaxation Kinetics During Plasma-Chemical CO2 Dissociation: Maximum Linear Preheating Temperature......Page 327
5.3.8. CO2 Dissociation in Active and Passive Discharge Zones: Discharge (τeV) and After-Glow (τp) Residence Time......Page 328
5.3.9. Ionization Degree Regimes of the CO2 Dissociation Process in Non-Thermal Plasma......Page 329
5.3.10. Energy Losses Related to Excitation of CO2 Dissociation Products: Hyperbolic Behavior of Energy Efficiency Dependence on Specific Energy Input......Page 330
5.4.2. Kinetic Evolution of Thermal CO2 Dissociation Products During Quenching Phase......Page 332
5.4.3. Energy Efficiency of CO2 Dissociation in Thermal Plasma Under Conditions of Ideal Quenching of Products......Page 333
5.4.4. Vibrational–Translational Non-Equilibrium Effects of Quenching Products of Thermal CO2 Dissociation in Plasma: Super-Ideal Quenching Mode......Page 334
5.4.6. Kinetic Calculations of Energy Efficiency of CO2 Dissociation in Thermal Plasma with Super-Ideal Quenching......Page 335
5.4.7. Comparison of Thermal and Non-Thermal Plasma Approaches to CO2 Dissociation: Comments on Products (CO-O2) Oxidation and Explosion......Page 336
5.5.1. Experiments with Non-Equilibrium Microwave Discharges of Moderate Pressure, Discharges inWaveguide Perpendicular to Gas Flow Direction, and Microwave Plasma Parameters in CO2......Page 337
5.5.2. Plasma-Chemical Experiments with Dissociation of CO2 in Non-Equilibrium Microwave Discharges of Moderate Pressure......Page 339
5.5.3. Experimental Diagnostics of Plasma-Chemical Non-Equilibrium Microwave Discharges in Moderate-Pressure CO2: Plasma Measurements......Page 340
5.5.4. Experimental Diagnostics of Plasma-Chemical Non-Equilibrium Microwave Discharges in Moderate-Pressure CO2: Temperature Measurements......Page 341
5.5.5. CO2 Dissociation in Non-Equilibrium Radiofrequency Discharges: Experiments with Inductively Coupled Plasma......Page 343
5.5.6. CO2 Dissociation in Non-Equilibrium Radiofrequency Discharges: Experiments with Capacitively Coupled Plasma......Page 344
5.5.8. CO2 Dissociation in Different Types of Glow Discharges......Page 346
5.6.1. Dissociation of CO2 in Supersonic Non-Equilibrium Discharges: Advantages and Gasdynamic Characteristics......Page 348
5.6.2. Kinetics and Energy Balance of Non-Equilibrium Plasma-Chemical CO2 Dissociation in Supersonic Flow......Page 350
5.6.4. Experiments with Dissociation of CO2 in Non-Equilibrium Supersonic Microwave Discharges......Page 352
5.6.5. Gasdynamic Stimulation of CO2 Dissociation in Supersonic Flow: “Plasma Chemistry Without Electricity”......Page 353
5.6.6. Plasma Radiolysis of CO2 Provided by High-Current Relativistic Electron Beams......Page 354
5.6.7. Plasma Radiolysis of CO2 in Tracks of Nuclear Fission Fragments......Page 355
5.6.8. Ionization Degree in Tracks of Nuclear Fission Fragments, Energy Efficiency of Plasma Radiolysis of CO2, and Plasma-Assisted Chemonuclear Reactors......Page 357
5.7.2. Kinetics of CO Disproportioning Stimulated in Non-Equilibrium Plasma by Vibrational Excitation of Molecules......Page 358
5.7.3. Experiments with Complete CO2 Dissociation in Microwave Discharges Operating in Conditions of Electron Cyclotron Resonance......Page 360
5.7.4. Experiments with Complete CO2 Dissociation in Stationary Plasma-Beam Discharge......Page 361
5.8.1. Fundamental and Applied Aspects of H2O Plasma Chemistry......Page 362
5.8.2. Kinetics of Dissociation ofWater Vapor Stimulated in Non-Thermal Plasma by Vibrational Excitation of Water Molecules......Page 363
5.8.3. Energy Efficiency of Dissociation of Water Vapor Stimulated in Non-Thermal Plasma by Vibrational Excitation......Page 364
5.8.4. Contribution of Dissociative Attachment of Electrons into Decomposition of Water Vapor in Non-Thermal Plasma......Page 366
5.8.5. Kinetic Analysis of the Chain Reaction of H2O Dissociation via Dissociative Attachment/Detachment Mechanism......Page 368
5.8.6. H2O Dissociation in Thermal Plasma and Quenching of the Dissociation Products: Absolute and Ideal Quenching Modes......Page 369
5.8.7. Cooling Rate Influence on Kinetics of H2O Dissociation Products in Thermal Plasma: Super-Ideal Quenching Effect......Page 370
5.8.8. Water Dissociation and H2 Production in Plasma-Chemical System CO2–H2O......Page 372
5.8.9. CO-to-H2 Shift Reaction: Plasma Chemistry of CO–O2–H2O Mixture......Page 374
5.9.1. Microwave Discharge in Water Vapor......Page 375
5.9.3. Dissociation of Water Vapor in Glow Discharges......Page 376
5.9.4. Dissociation of H2O with Production of H2 and H2O2 in Supersonic Microwave Discharges......Page 378
5.9.5. Plasma Radiolysis of Water Vapor in Tracks of Nuclear Fission Fragments......Page 379
5.10.1. Gas-Phase Plasma Decomposition Reactions in Multi-Phase Technologies......Page 380
5.10.2. Dissociation of Ammonia in Non-Equilibrium Plasma: Mechanism of the Process in Glow Discharge......Page 381
5.10.4. Plasma Dissociation of Sulfur Dioxide......Page 382
5.10.5. Destruction and Conversion of Nitrous Oxide in Non-Equilibrium Plasma......Page 384
5.11.1. Plasma-Chemical Decomposition of Hydrogen Halides: Example of HBr Dissociation with Formation of Hydrogen and Bromine......Page 385
5.11.2. Dissociation of HF, HCl, and HI in Plasma......Page 387
5.11.3. Non-Thermal and Thermal Dissociation of Molecular Fluorine......Page 388
5.11.4. Dissociation of Molecular Hydrogen in Non-Thermal and Thermal Plasma Systems......Page 389
5.11.6. Thermal Plasma Dissociation of Other Diatomic Molecules (O2, Cl2, Br2)......Page 391
PROBLEMS AND CONCEPT QUESTIONS......Page 395
6.1.1. Fundamental and Applied Aspects of NO Synthesis in Air Plasma......Page 399
6.1.2. Mechanisms of NO Synthesis Provided in Non-Thermal Plasma by Excitation of Neutral Molecules: Zeldovich Mechanism......Page 400
6.1.4. NO Synthesis in Thermal Plasma Systems......Page 402
6.1.5. Energy Efficiency of Different Mechanisms of NO Synthesis in Thermal and Non-Thermal Discharge Systems......Page 403
6.2.2. Electronically Adiabatic Channel of NO Synthesis…......Page 405
6.2.3. Electronically Non-Adiabatic Channel of NO Synthesis…......Page 407
6.2.4. Transition Probability Between Vibronic Terms Corresponding to Formation of Intermediate N2O.(1Σ+) Complex......Page 408
6.2.5. Probability of Formation of Intermediate N2O.(1Σ+) Complex in Electronically Non-Adiabatic Channel of NO Synthesis......Page 409
6.2.6. Decay of Intermediate Complex N2O.(1Σ+): Second Stage of Electronically Non-Adiabatic Channel of NO Synthesis......Page 410
6.3.1. Rate Coefficient of Reaction…......Page 411
6.3.2. Energy Balance of Plasma-Chemical NO Synthesis: Zeldovich Mechanism Stimulated by Vibrational Excitation......Page 412
6.3.3. Macro-Kinetics of Plasma-Chemical NO Synthesis: Time Evolution of Vibrational Temperature......Page 413
6.3.4. Energy Efficiency of Plasma-Chemical NO Synthesis: Excitation and Relaxation Factors......Page 414
6.3.6. Stability of Products of Plasma-Chemical Synthesis to Reverse Reactions in Active Zone of Non-Thermal Plasma......Page 415
6.3.7. Effect of “Hot Nitrogen Atoms” on Yield of NO Synthesis in Non-Equilibrium Plasma in Air and Nitrogen–Oxygen Mixtures......Page 416
6.3.8. Stability of Products of Plasma-Chemical NO Synthesis to Reverse Reactions Outside of the Discharge Zone......Page 417
6.4.1. Non-Equilibrium Microwave Discharge in Magnetic Field Operating in Conditions of Electron Cyclotron Resonance......Page 418
6.4.2. Evolution of Vibrational Temperature of Nitrogen Molecules in Non-Equilibrium ECR: Microwave Discharge During Plasma-Chemical NO Synthesis......Page 420
6.4.3. NO Synthesis in the Non-Equilibrium ECR Microwave Discharge......Page 421
6.4.4. NO Synthesis in Non-Self-Sustained Discharges Supported by Relativistic Electron Beams......Page 422
6.4.5. Experiments with NO Synthesis from Air in Stationary Non-Equilibrium Plasma-Beam Discharge......Page 423
6.4.6. Experiments with NO Synthesis from N2 and O2 in Thermal Plasma of Arc Discharges......Page 424
6.4.7. General Schematic and Parameters of Industrial Plasma-Chemical Technology of NO Synthesis from Air......Page 425
6.5.1. Ozone Production as a Large-Scale Industrial Application of Non-Thermal Atmospheric-Pressure Plasma......Page 426
6.5.3. Plasma-Chemical Ozone Formation in Oxygen......Page 427
6.5.4. Optimum DBD Microdischarge Strength and Maximization of Energy Efficiency of Ozone Production in Oxygen Plasma......Page 429
6.5.5. Plasma-Chemical Ozone Generation in Air......Page 430
6.5.6. Discharge Poisoning Effect During Ozone Generation in Air Plasma......Page 431
6.5.7. Temperature Effect on Plasma-Chemical Generation and Stability of Ozone......Page 432
6.5.8. Negative Effect of Water Vapor on Plasma-Chemical Ozone Synthesis......Page 433
6.5.9. Effect of Hydrogen, Hydrocarbons, and Other Admixtures on Plasma-Chemical Ozone Synthesis......Page 434
6.6.2. Tubular DBD Ozone Generators and Large Ozone Production Installations......Page 436
6.6.3. Planar and Surface Discharge Configurations of DBD Ozone Generators......Page 438
6.6.4. Synthesis of Ozone in Pulsed Corona Discharges......Page 439
6.6.5. Peculiarities of Ozone Synthesis in Pulsed Corona with Respect to DBD......Page 440
6.6.6. Possible Specific Contribution of Vibrational Excitation of Molecules to Ozone Synthesis in Pulsed Corona Discharges......Page 441
6.7.1. Plasma-Chemical Gas-Phase Synthesis of KrF2 and Mechanism of Surface Stabilization of Reaction Products......Page 443
6.7.2. Physical Kinetics of KrF2 Synthesis in Krypton Matrix......Page 444
6.7.3. Synthesis of KrF2 in Glow Discharges, Barrier Discharges, and Photo-Chemical Systems......Page 445
6.7.5. Plasma F2 Dissociation as the First Step in Synthesis of Aggressive Fluorine Oxidizers......Page 446
6.7.6. Plasma-Chemical Synthesis of O2F2 and Other Oxygen Fluorides......Page 447
6.7.7. Plasma-Chemical Synthesis of NF3 and Other Nitrogen Fluorides......Page 448
6.7.8. Plasma-Chemical Synthesis of Xenon Fluorides and Other Fluorine Oxidizers......Page 449
6.8.1. Direct Plasma-Chemical Hydrazine (N2H4) Synthesis from Nitrogen and Hydrogen in Non-Equilibrium Discharges......Page 450
6.8.3. Kinetics of Hydrazine (N2H4) Synthesis from N2–H2 Mixture in Non-Thermal Plasma Conditions......Page 451
6.8.4. Synthesis of Ammonia in DBD and Glow Discharges......Page 452
6.8.6. Sulfur Gasification by Carbon Dioxide in Non-Thermal and Thermal Plasmas......Page 453
6.8.7. CN and NO Synthesis in CO–N2 Plasma......Page 456
6.8.8. Gas-Phase Synthesis Related to Plasma-Chemical Oxidation of HCl and SO2......Page 457
PROBLEMS AND CONCEPT QUESTIONS......Page 458
7.1.1. Thermal Plasma Reduction of Iron Ore, Iron Production from Oxides Using Hydrogen and Hydrocarbons, and Plasma-Chemical Steel Manufacturing......Page 461
7.1.2. Productivity and Energy Efficiency of Thermal Plasma Reduction of Iron Ore......Page 463
7.1.3. Hydrogen Reduction of Refractory Metal Oxides in Thermal Plasma and Plasma Metallurgy of Tungsten and Molybdenum......Page 464
7.1.4. Thermal Plasma Reduction of Oxides of Aluminum and Other Inorganic Elements......Page 467
7.1.5. Reduction of Metal Oxides and Production of Metals Using Non-Thermal Hydrogen Plasma......Page 469
7.1.6. Non-Equilibrium Surface Heating and Evaporation Effect in Heterogeneous Plasma-Chemical Processes in Non-Thermal Discharges......Page 470
7.1.7. Non-Equilibrium Surface Heating and Evaporation in Plasma Treatment of Thin Layers of Flat Surfaces: Effect of Short Pulses......Page 471
7.2.2. Production of Pure Metallic Uranium by Carbothermic Plasma-Chemical Reduction of Uranium Oxides......Page 473
7.2.4. Double-Stage Carbothermic Thermal Plasma Reduction of Rare and Refractory Metals from Their Oxides......Page 474
7.2.5. Carbothermic Reduction of Iron from Iron Titanium Oxide Concentrates in a Thermal Plasma Fluidized Bed......Page 475
7.2.6. Production of Silicon Monoxide by SiO2 Decomposition in Thermal Plasma......Page 476
7.2.7. Experiments with SiO2 Reduction to Pure Silicon Monoxide in High-Temperature Radiofrequency ICP Discharges......Page 477
7.2.8. Reduction of Aluminum by Direct Thermal Plasma Decomposition of Alumina......Page 478
7.2.9. Reduction of Vanadium by Direct Plasma Decomposition of Its Oxides, V2O5 and V2O3......Page 480
7.2.10. Reduction of Indium and Germanium by Direct Plasma Decomposition of Their Oxides......Page 483
7.3.1. Using Halides for Production of Metals and Other Elements from Their Compounds......Page 484
7.3.2. Plasma-Chemical Production of Boron: Thermal Plasma Reduction of BCl3 with Hydrogen......Page 485
7.3.4. Hydrogen Reduction of Uranium from Its Hexafluoride (UF6) in Thermal Plasma......Page 486
7.3.5. Hydrogen Reduction of Tantalum (Ta), Molybdenum (Mo), Tungsten (W), Zirconium (Zr), and Hafnium (Hf) from Their Chlorides in Thermal Plasma......Page 487
7.3.6. Hydrogen Reduction of Titanium (Ti), Germanium (Ge), and Silicon (Si) from Their Tetrachlorides in Thermal Plasma......Page 489
7.3.7. Thermal Plasma Reduction of Some Other Halides with Hydrogen: Plasma Production of Intermetallic Compounds......Page 490
7.4.1. Direct Decomposition of Halides and Production of Metals in Plasma......Page 492
7.4.2. Direct UF6 Decomposition in Thermal Plasma: Requirements for Effective Product Quenching......Page 493
7.4.3. Direct Decomposition of Halides of Some Alkali and Alkaline Earth Metals in Thermal Plasma......Page 495
7.4.4. Direct Thermal Plasma Decomposition of Halides of Aluminum, Silicon, Arsenic, and Some Other Elements of Groups 3, 4, and 5......Page 501
7.4.5. Direct Thermal Plasma Decomposition of Halides of Titanium (Ti), Zirconium (Zr), Hafnium (Hf), Vanadium (V), and Niobium (Nb)......Page 505
7.4.6. Direct Decomposition of Halides of Iron (Fe), Cobalt (Co), Nickel (Ni), and Other Transition Metals in Thermal Plasma......Page 509
7.4.7. Direct Decomposition of Halides and Reduction of Metals in Non-Thermal Plasma......Page 513
7.4.8. Kinetics of Dissociation of Metal Halides in Non-Thermal Plasma: Distribution of Halides over Oxidation Degrees......Page 514
7.5.1. Plasma-Chemical Synthesis of Metal Nitrides from Elements: Gas-Phase and Heterogeneous Reaction Mechanisms......Page 516
7.5.2. Synthesis of Nitrides of Titanium and Other Elements by Plasma-Chemical Conversion of Their Chlorides......Page 517
7.5.3. Synthesis of Silicon Nitride (Si3N4) and Oxynitrides by Non-Thermal Plasma Conversion of Silane (SiH4)......Page 518
7.5.6. Gas-Phase Synthesis of Carbides in Plasma-Chemical Reactions of Halides with Hydrocarbons......Page 519
7.6.1. Plasma Production of Zirconia (ZrO2) by Decomposition of Zircon Sand (ZrSiO4)......Page 521
7.6.2. Plasma Production of Manganese Oxide (MnO) by Decomposition of Rhodonite (MnSiO3)......Page 522
7.6.4. Production of Uranium Oxide (U3O8) by Thermal Plasma Decomposition of Uranyl Nitrate (UO2(NO3)2) Aqueous Solutions......Page 526
7.6.6. Plasma-Chemical Production of Oxide Powders for Synthesis of High-Temperature Superconducting Composites......Page 527
7.6.8. Conversion of Silicon Tetrafluoride (SiF4) withWater Vapor into Silica (SiO2) and HF in Thermal Plasma......Page 528
7.6.9. Production of Pigment Titanium Dioxide (TiO2) by Thermal Plasma Conversion of Titanium Tetrachloride (TiCl4) in Oxygen......Page 529
7.6.10. Thermal Plasma Conversion of Halides in Production of Individual and Mixed Oxides of Chromium, Aluminum, and Titanium......Page 530
7.6.11. Thermal Plasma Treatment of Phosphates: Tricalcium Phosphate (Ca3(PO4)2) and Fluoroapatite (Ca5F(PO4)3)......Page 531
7.7.1. Production of Hydrides in Thermal and Non-Thermal Plasma......Page 532
7.7.2. Non-Thermal Plasma Mechanisms of Hydride Formation by Hydrogen Gasification of Elements and by Hydrogenation of Thin Films......Page 533
7.7.3. Synthesis of Metal Carbonyls in Non-Thermal Plasma: Effect of Vibrational Excitation of CO Molecules on Carbonyl Synthesis......Page 534
7.7.4. Plasma-Chemical Synthesis of Borides of Inorganic Materials......Page 536
7.8.1. Plasma Cutting Technology......Page 537
7.8.2. Plasma Welding Technology......Page 538
7.8.4. Plasma Spheroidization and Densification of Powders......Page 539
PROBLEMS AND CONCEPT QUESTIONS......Page 540
8.1.1. Plasma Spraying as a Thermal Spray Technology......Page 543
8.1.2. DC-Arc Plasma Spray: Air Plasma Spray......Page 544
8.1.3. DC-Arc Plasma Spray: VPS, LPPS, CAPS, SPS, UPS, and Other Specific Spray Approaches......Page 545
8.1.4. Radiofrequency Plasma Spray......Page 546
8.1.5. Thermal Plasma Spraying of Monolithic Materials......Page 547
8.1.6. Thermal Plasma Spraying of Composite Materials......Page 549
8.1.7. Thermal Spray Technologies: Reactive Plasma Spray Forming......Page 551
8.1.8. Thermal Plasma Spraying of Functionally Gradient Materials......Page 552
8.2.1. Main Principles of Plasma Etching as Part of Integrated Circuit Fabrication Technology......Page 554
8.2.2. Etch Rate, Anisotropy, Selectivity, and Other Plasma Etch Requirements......Page 555
8.2.3. Basic Plasma Etch Processes: Sputtering......Page 558
8.2.4. Basic Plasma Etch Processes: Pure Chemical Etching......Page 559
8.2.6. Basic Plasma Etch Processes: Ion-Enhanced Inhibitor Etching......Page 560
8.2.7. Surface Kinetics of Etching Processes; Kinetics of Ion Energy-Driven Etching......Page 561
8.2.8. Discharges Applied for Plasma Etching: RF-CCP Sources, RF Diodes and Triodes, and MERIEs......Page 563
8.2.10. Discharge Kinetics in Etching Processes: Ion Density and Ion Flux......Page 564
8.2.11. Discharge Kinetics in Etching Processes: Density and Flux of Neutral Etchants......Page 565
8.3.2. Pure Chemical F-Atom Etching of Silicon: Flamm Formulas and Doping Effect......Page 567
8.3.3. Ion Energy-Driven F-Atom Etching Process: Main Etching Mechanisms......Page 568
8.3.4. Plasma Etching of Silicon in CF4 Discharges: Kinetics of Fluorine Atoms......Page 569
8.3.5. Plasma Etching of Silicon in CF4 Discharges: Kinetics of CFx Radicals and Competition Between Etching and Carbon Deposition......Page 570
8.3.6. Plasma Etching of Silicon by Cl Atoms......Page 572
8.3.9. Plasma Etching of Aluminum......Page 573
8.3.11. Plasma Etching of Refractory Metals and Semiconductors......Page 574
8.4.1. In Situ Plasma Cleaning in Micro-Electronics and Related Environmental Issues......Page 575
8.4.2. Remote Plasma Cleaning Technology in Microelectronics: Choice of Cleaning Feedstock Gas......Page 576
8.4.3. Kinetics of F-Atom Generation from NF3, CF4, and C2F6 in Remote Plasma Sources......Page 577
8.4.4. Surface and Volume Recombination of F Atoms in Transport Tube......Page 579
8.4.5. Effectiveness of F Atom Transportation from Remote Plasma Source......Page 582
8.4.6. Other Plasma Cleaning Processes: Passive Plasma Cleaning......Page 583
8.4.7. Other Plasma Cleaning Processes: Active Plasma Cleaning......Page 584
8.5.1. Plasma-Enhanced Chemical Vapor Deposition: General Principles......Page 585
8.5.2. PECVD of Thin Films of Amorphous Silicon......Page 586
8.5.3. Kinetics of Amorphous Silicon Film Deposition in Silane (SiH4) Discharges......Page 587
8.5.5. Plasma Processes of Silicon Oxide (SiO2) Film Growth: PECVD from Silane–Oxygen Feedstock Mixtures and Conformal and Non-Conformal Deposition Within Trenches......Page 589
8.5.7. PECVD Process of Silicon Nitride (Si3N4)......Page 591
8.5.9. Physical Sputter Deposition......Page 592
8.5.10. Reactive Sputter Deposition Processes......Page 593
8.5.11. Kinetics of Reactive Sputter Deposition: Hysteresis Effect......Page 594
8.6.1. Ion-Beam Implantation......Page 595
8.6.2. Plasma-Immersion Ion Implantation: General Principles......Page 596
8.6.3. Dynamics of Sheath Evolution in Plasma-Immersion Ion Implantation: From Matrix Sheath to Child Law Sheath......Page 597
8.6.4. Time Evolution of Implantation Current in PIII Systems......Page 599
8.6.5. PIII Applications for Processing Semiconductor Materials......Page 600
8.6.6. PIII Applications for Modifying Metallurgical Surfaces: Plasma Source Ion Implantation......Page 601
8.7.2. Major Characteristics of the Microarc (Electrolytic-Spark) Oxidation Process......Page 602
8.7.3. Mechanism of Microarc (Electrolytic-Spark) Oxidation Coating of Aluminum in Sulfuric Acid......Page 603
8.7.4. Breakdown of Oxide Film and Starting Microarc Discharge......Page 604
8.7.5. Microarc Discharge Plasma Chemistry of Oxide Coating Deposition on Aluminum in Concentrated Sulfuric Acid Electrolyte......Page 606
8.7.6. Direct Micropatterning and Microfabrication in Atmospheric-Pressure Microdischarges......Page 607
8.7.7. Microetching, Microdeposition, and Microsurface Modification by Atmospheric-Pressure Microplasma Discharges......Page 608
8.8.1. Nanoparticles in Plasma: Kinetics of Dusty Plasma Formation in Low-Pressure Silane Discharges......Page 610
8.8.2. Formation of Nanoparticles in Silane: Plasma Chemistry of Birth and Catastrophic Evolution......Page 611
8.8.3. Critical Phenomena in Dusty Plasma Kinetics: Nucleation of Nanoparticles, Winchester Mechanism, and Growth of First Generation of Negative Ion Clusters......Page 614
8.8.4. Critical Size of Primary Nanoparticles in Silane Plasma......Page 616
8.8.5. Critical Phenomenon of Neutral-Particle Trapping in Silane Plasma......Page 617
8.8.6. Critical Phenomenon of Super-Small Nanoparticle Coagulation......Page 619
8.8.7. Critical Change of Plasma Parameters due to Formation of Nano-Particles: α–γ Transition......Page 621
8.8.8. Other Processes of Plasma Production of Nanoparticles: Synthesis of Aluminum Nanopowder and Luminescent Silicon Quantum Dots......Page 623
8.8.9. Plasma Synthesis of Nanocomposite Particles......Page 624
8.9.1. Highly Organized Carbon Nanostructures: Fullerenes and Carbon Nanotubes......Page 625
8.9.3. Plasma Synthesis of Endohedral Fullerenes......Page 627
8.9.5. Plasma Synthesis of Carbon Nanotubes by Dissociation of Carbon Compounds......Page 628
8.9.6. Surface Modification of Carbon Nanotubes by RF Plasma......Page 629
PROBLEMS AND CONCEPT QUESTIONS......Page 630
9.1.1. Kinetics of Thermal Plasma Pyrolysis of Methane and Other Hydrocarbons: The Kassel Mechanism......Page 633
9.1.3. Electric Cracking of Natural Gas with Production of Acetylene–Hydrogen or Acetylene–Ethylene–Hydrogen Mixtures......Page 635
9.1.4. Other Processes and Regimes of Hydrocarbon Conversion in Thermal Plasma......Page 636
9.1.5. Some Chemical Engineering Aspects of Plasma Pyrolysis of Hydrocarbons......Page 639
9.1.6. Production of Vinyl Chloride as an Example of Technology Based on Thermal Plasma Pyrolysis of Hydrocarbons......Page 640
9.1.7. Plasma Pyrolysis of Hydrocarbons with Production of Soot and Hydrogen......Page 641
9.2.2. High-Efficiency CH4 Conversion into C2H2 in Non-Thermal Moderate-Pressure Microwave Discharges......Page 642
9.2.3. Limits of Quasi-Equilibrium Kassel Kinetics for Plasma Conversion of CH4 into C2H2......Page 644
9.2.4. Contribution of Vibrational Excitation to Methane Conversion into Acetylene in Non-Equilibrium Discharge Conditions......Page 645
9.2.5. Non-Equilibrium Kinetics of Methane Conversion into Acetylene Stimulated by Vibrational Excitation......Page 646
9.2.6. Other Processes of Decomposition, Elimination, and Isomerization of Hydrocarbons in Non-Equilibrium Plasma: Plasma Catalysis......Page 647
9.3.1. Synthesis of Dicyanogen (C2N2) from Carbon and Nitrogen in Thermal Plasma......Page 648
9.3.2. Co-Production of Hydrogen Cyanide (HCN) and Acetylene (C2H2) from Methane and Nitrogen in Thermal Plasma Systems......Page 649
9.3.3. Hydrogen Cyanide (HCN) Production from Methane and Nitrogen in Non-Thermal Plasma......Page 650
9.3.4. Production of HCN and H2 in CH4–NH3 Mixture in Thermal and Non-Thermal Plasmas......Page 652
9.3.5. Thermal and Non-Thermal Plasma Conversion Processes in CO–N2 Mixture......Page 653
9.3.6. Other Non-Equilibrium Plasma Processes of Organic Nitrogen Compounds Synthesis......Page 654
9.4.1. Thermal Plasma Synthesis of Reactive Mixtures for Production of Vinyl Chloride......Page 655
9.4.2. Thermal Plasma Pyrolysis of Dichloroethane, Butyl Chloride, Hexachlorane, and Other Organic Chlorine Compounds for Further Synthesis of Vinyl Chloride......Page 656
9.4.3. Thermal Plasma Pyrolysis of Organic Fluorine Compounds......Page 657
9.4.5. Thermal Plasma Pyrolysis of Chlorofluorocarbons......Page 658
9.4.6. Non-Thermal Plasma Conversion of CFCs and Other Plasma Processes with Halogen-Containing Organic Compounds......Page 660
9.5.2. Non-Thermal Plasma Direct Synthesis of Methanol from Methane and Water Vapor......Page 661
9.5.3. Production of Formaldehyde (CH2O) by CH4 Oxidation in Thermal and Non-Thermal Plasmas......Page 662
9.5.4. Non-Thermal Plasma Oxidation of Methane and Other Hydrocarbons with Production of Methanol and Other Organic Compounds......Page 663
9.5.5. Non-Thermal Plasma Synthesis of Aldehydes, Alcohols, and Organic Acids in Mixtures of Carbon Oxides with Hydrogen: Organic Synthesis in CO2–H2O Mixture......Page 664
9.5.6. Non-Thermal Plasma Production of Methane and Acetylene from Syngas (CO–H2)......Page 665
9.6.2. General Aspects of Mechanisms and Kinetics of Plasma Polymerization......Page 666
9.6.3. Initiation of Polymerization by Dissociation of Hydrocarbons in Plasma Volume......Page 667
9.6.5. Plasma-Initiated Chain Polymerization: Mechanisms of Plasma Polymerization of Methyl Methacrylate......Page 669
9.6.6. Plasma-Initiated Graft Polymerization......Page 670
9.6.7. Formation of Polymer Macroparticles in Volume of Non-Thermal Plasma in Hydrocarbons......Page 671
9.6.9. Some Specific Properties of Plasma-Polymerized Films......Page 672
9.6.10. Electric Properties of Plasma-Polymerized Films......Page 674
9.6.11. Some Specific Applications of Plasma-Polymerized Film Deposition......Page 675
9.7.1. Plasma Treatment of Polymer Surfaces......Page 676
9.7.2. Major Initial Chemical Products Created on Polymer Surfaces During Their Interaction with Non-Thermal Plasma......Page 677
9.7.3. Kinetics of Formation of Main Chemical Products in Process of Polyethylene Treatment in Pulsed RF Discharges......Page 678
9.7.5. Non-Thermal Plasma Etching of Polymer Materials......Page 680
9.7.6. Contribution of Electrons and Ultraviolet Radiation in the Chemical Effect of Plasma Treatment of Polymer Materials......Page 681
9.7.7. Interaction of Atoms, Molecules, and Other Chemically Active Heavy Particles Generated in Non-Thermal Plasma with Polymer Materials: Plasma-Chemical Oxidation of Polymer Surfaces......Page 682
9.7.8. Plasma-Chemical Nitrogenation of Polymer Surfaces......Page 683
9.7.10. Synergetic Effect of Plasma-Generated Active Atomic/Molecular Particles and UV Radiation During Plasma Interaction with Polymers......Page 684
9.8.1. Plasma Modification of Wettability of Polymer Surfaces......Page 685
9.8.2. Plasma Enhancement of Adhesion of Polymer Surfaces: Metallization of Polymer Surfaces......Page 687
9.8.4. Plasma Treatment of Textile Fibers: Treatment of Wool......Page 689
9.8.5. Plasma Treatment of Textile Fibers: Treatment of Cotton and Synthetic Textiles and the Lotus Effect......Page 692
9.8.7. Plasma-Chemical Processes for Final Fabric Treatment......Page 693
9.8.8. Plasma-Chemical Treatment of Plastics, Rubber Materials, and Special Polymer Films......Page 698
9.9.1. Application of Polymer Membranes for Gas Separation: Enhancement of Polymer Membrane Selectivity by Plasma Polymerization and by Plasma Modification of Polymer Surfaces......Page 699
9.9.2. Microwave Plasma System for Surface Modification of Gas-Separating Polymer Membranes......Page 700
9.9.3. Influence of Non-Thermal Discharge Treatment Parameters on Permeability of Plasma-Modified Gas-Separating Polymer Membranes......Page 701
9.9.4. Plasma Enhancement of Selectivity of Gas-Separating Polymer Membranes......Page 703
9.9.5. Chemical and Structural Modification of Surface Layers of Gas-Separating Polymer Membranes by Microwave Plasma Treatment......Page 705
9.9.6. Theoretical Model of Modification of Polymer Membrane Surfaces in After-Glow of Oxygen-Containing Plasma of Non-Polymerizing Gases: Lame Equation......Page 706
9.9.7. Elasticity/Electrostatics Similarity Approach to Permeability of Plasma-Treated Polymer Membranes......Page 707
9.9.8. Effect of Cross-Link’s Mobility and Clusterization on Permeability of Plasma-Treated Polymer Membranes......Page 708
9.9.9. Modeling of Selectivity of Plasma-Treated Gas-Separating Polymer Membranes......Page 710
9.9.10. Effect of Initial Membrane Porosity on Selectivity of Plasma-Treated Gas-Separating Polymer Membranes......Page 711
9.10.1. General Features of Diamond-Film Production and Deposition in Plasma......Page 712
9.10.2. Different Discharge Systems Applied for Synthesis of Diamond Films......Page 713
9.10.3. Non-Equilibrium Discharge Conditions and Gas-Phase Plasma-Chemical Processes in the Systems Applied for Synthesis of Diamond Films......Page 715
9.10.4. Surface Chemical Processes of Diamond-Film Growth in Plasma......Page 716
9.10.5. Kinetics of Diamond-Film Growth......Page 717
PROBLEMS AND CONCEPT QUESTIONS......Page 718
10.1.1. General Features of Plasma-Assisted Production of Hydrogen from Hydrocarbons: Plasma Catalysis......Page 720
10.1.2. Syngas Production by Partial Oxidation of Methane in Different Non-Equilibrium Plasma Discharges, Application of Gliding Arc Stabilized in Reverse Vortex (Tornado) Flow......Page 722
10.1.3. Plasma Catalysis for Syngas Production by Partial Oxidation of Methane in Non-Equilibrium Gliding Arc Stabilized in Reverse Vortex (Tornado) Flow......Page 725
10.1.4. Non-Equilibrium Plasma-Catalytic Syngas Production from Mixtures of Methane with Water Vapor......Page 727
10.1.5. Non-Equilibrium Plasma-Chemical Syngas Production from Mixtures of Methane with Carbon Dioxide......Page 729
10.1.6. Plasma-Catalytic Direct Decomposition (Pyrolysis) of Ethane in Atmospheric-Pressure Microwave Discharges......Page 731
10.1.7. Plasma Catalysis in the Process of Hydrogen Production by Direct Decomposition (Pyrolysis) of Methane......Page 732
10.1.8. Mechanism of Plasma Catalysis of Direct CH4 Decomposition in Non-Equilibrium Discharges......Page 733
10.1.9. Plasma-Chemical Conversion of Propane, Propane–Butane Mixtures, and Other Gaseous Hydrocarbons to Syngas and Other Hydrogen-Rich Mixtures......Page 734
10.2.1. Specific Applications of Plasma-Chemical Reforming of Liquid Automotive Fuels: On-Board Generation of Hydrogen-Rich Gases......Page 736
10.2.2. Plasma-Catalytic Steam Conversion and Partial Oxidation of Kerosene for Syngas Production......Page 737
10.2.3. Plasma-Catalytic Conversion of Ethanol with Production of Syngas......Page 738
10.2.4. Plasma-Stimulated Reforming of Diesel Fuel and Diesel Oils into Syngas......Page 741
10.2.6. Plasma-Stimulated Reforming of Aviation Fuels into Syngas......Page 742
10.2.7. Plasma-Stimulated Partial Oxidation Reforming of Renewable Biomass: Biodiesel......Page 743
10.2.8. Plasma-Stimulated Partial Oxidation Reforming of Bio-Oils and Other Renewable Biomass into Syngas......Page 744
10.3.1. Combined Plasma–Catalytic Approach Versus Plasma Catalysis in Processes of Hydrogen Production by Partial Oxidation of Hydrocarbons......Page 745
10.3.2. Pulsed-Corona-Based Combined Plasma–Catalytic System for Reforming of Hydrocarbon Fuel and Production of Hydrogen-Rich Gases......Page 746
10.3.4. Partial Oxidation Reforming of Isooctane Stimulated by Non-Equilibrium Atmospheric-Pressure Pulsed Corona Discharge......Page 747
10.3.5. Reforming of Isooctane and Hydrogen Production in Pulsed-Corona-Based Combined Plasma–Catalytic System......Page 748
10.3.6. Comparison of Isooctane Reforming in Plasma Preprocessing and Plasma Postprocessing Configurations of the Combined Plasma–Catalytic System......Page 750
10.4.1. Coal and Its Composition, Structure, and Conversion to Other Fuels......Page 751
10.4.2. Thermal Conversion of Coal......Page 752
10.4.3. Transformations of Sulfur-Containing Compounds During Thermal Conversion of Coal......Page 754
10.4.5. Thermodynamic Analysis of Coal Conversion in Thermal Plasma......Page 755
10.4.6. Kinetic Phases of Coal Conversion in Thermal Plasma......Page 756
10.4.7. Kinetic Analysis of Thermal Plasma Conversion of Coal: Kinetic Features of the Major Phases of Coal Conversion in Plasma......Page 758
10.4.8. Coal Conversion in Non-Thermal Plasma......Page 759
10.5.2. Thermal Plasma Jet Pyrolysis of Coal in Argon, Hydrogen, and Their Mixtures: Plasma Jet Production of Acetylene from Coal......Page 760
10.5.3. Heating of Coal Particles and Acetylene Quenching During Pyrolysis of Coal in Argon and Hydrogen Plasma Jets......Page 763
10.5.5. Coal Gasification in a Thermal Plasma Jet of Water Vapor......Page 765
10.5.6. Coal Gasification by H2O and Syngas Production in Thermal Plasma Jets: Application of Steam Plasma Jets and Plasma Jets of Other Gases......Page 766
10.5.9. Direct Pyrolysis of Coal with Production of Acetylene (C2H2) in Arc Plasma of Argon and Hydrogen......Page 768
10.5.10. Direct Gasification of Coal with Production of Syngas (H2–CO) in Electric Arc Plasma of Water Vapor......Page 769
10.5.11. Coal Conversion in Non-Equilibrium Plasma of Microwave Discharges......Page 770
10.5.12. Coal Conversion in Non-Equilibrium Microwave Discharges Containing Water Vapor or Nitrogen......Page 772
10.5.13. Coal Conversion in Low-Pressure Glow and Other Strongly Non-Equilibrium Non-Thermal Discharges......Page 774
10.5.14. Plasma-Chemical Coal Conversion in Corona and Dielectric Barrier Discharges......Page 775
10.6.2. Thermodynamics of the Conversion of Hydrocarbons into Hydrogen with Production of Carbon Suboxides and without CO2 Emission......Page 776
10.6.3. Plasma-Chemical Conversion of Methane and Coal into Carbon Suboxide......Page 778
10.6.4. Mechanochemical Mechanism of Partial Oxidation of Coal with Formation of Suboxides......Page 779
10.6.5. Kinetics of Mechanochemical Partial Oxidation of Coal to Carbon Suboxides......Page 780
10.6.6. Biomass Conversion into Hydrogen with the Production of Carbon Suboxides and Without CO2 Emission......Page 781
10.7.1. H2S Dissociation in Plasma with Production of Hydrogen and Elemental Sulfur and Its Industrial Applications......Page 782
10.7.2. Application of Microwave, Radiofrequency, and Arc Discharges for H2S Dissociation with Production of Hydrogen and Elemental Sulfur......Page 784
10.7.3. Technological Aspects of Plasma-Chemical Dissociation of Hydrogen Sulfide with Production of Hydrogen and Elemental Sulfur......Page 785
10.7.4. Kinetics of H2S Decomposition in Plasma......Page 788
10.7.5. Non-Equilibrium Clusterization in a Centrifugal Field and Its Effect on H2S Decomposition in Plasma with Production of Hydrogen and Condensed-Phase Elemental Sulfur......Page 789
10.7.6. Influence of the Centrifugal Field on Average Cluster Sizes: Centrifugal Effect Criterion for Energy Efficiency of H2S Decomposition in Plasma......Page 792
10.7.7. Effect of Additives (CO2, O2, and Hydrocarbons) on Plasma-Chemical Decomposition of H2S......Page 793
10.7.8. Technological Aspects of H2 Production fromWater in Double-Step and Multi-Step Plasma-Chemical Cycles......Page 795
PROBLEMS AND CONCEPT QUESTIONS......Page 797
11.1.1. General Features of Plasma-Assisted Ignition and Combustion......Page 799
11.1.2. Experiments with Plasma Ignition of Supersonic Flows......Page 801
11.1.3. Non-Equilibrium Plasma Ignition of Fast and Transonic Flows: Low-Temperature Fuel Oxidation Versus Ignition......Page 802
11.1.4. Plasma Sustaining of Combustion in Low-Speed Gas Flows......Page 804
11.1.5. Kinetic Features of Plasma-Assisted Ignition and Combustion......Page 805
11.1.6. Combined Non-Thermal/Quasi-Thermal Mechanism of Flame Ignition and Stabilization: “Zebra” Ignition and Application of Non-Equilibrium Magnetic Gliding Arc Discharges......Page 807
11.1.7. Magnetic Gliding Arc Discharge Ignition of Counterflow Flame......Page 809
11.1.8. Plasma Ignition and Stabilization of Combustion of Pulverized Coal: Application for Boiler Furnaces......Page 812
11.2.2. Numerical Analysis of Contribution of Plasma-Generated Radicals to Stimulate Ignition......Page 814
11.2.3. Possibility of Plasma-Stimulated Ignition Below the Auto-Ignition Limit: Conventional Kinetic Mechanisms of Explosion of Hydrogen and Hydrocarbons......Page 815
11.2.4. Plasma Ignition in H2–O2–He Mixtures......Page 817
11.2.5. Plasma Ignition in Hydrocarbon–Air Mixtures......Page 818
11.2.6. Analysis of Subthreshold Plasma Ignition Initiated Thermally: The “Bootstrap” Effect......Page 819
11.2.7. Subthreshold Ignition Initiated by Plasma-Generated Radicals......Page 820
11.2.8. Subthreshold Ignition Initiated by Plasma-Generated Excited Species......Page 822
11.2.9. Contribution of Plasma-Excited Molecules into Suppressing HO2 Formation During Subthreshold Plasma Ignition of Hydrogen......Page 823
11.2.10. Subthreshold Plasma Ignition of Hydrogen Stimulated by Excited Molecules Through Dissociation of HO2......Page 825
11.2.11. Subthreshold Plasma Ignition of Ethylene Stimulated by Excited Molecules Effect of NO......Page 827
11.2.12. Contribution of Ions in the Subthreshold Plasma Ignition......Page 828
11.2.13. Energy Efficiency of Plasma-Assisted Combustion in Ram/Scramjet Engines......Page 829
11.3.1. General Features of Electric Propulsion: Ion and Plasma Thrusters......Page 831
11.3.2. Optimal Specific Impulse of an Electric Rocket Engine......Page 832
11.3.3. Electric Rocket Engines Based on Ion Thrusters......Page 833
11.3.4. Classification of Plasma Thrusters: Electrothermal Plasma Thrusters......Page 834
11.3.6. Magneto-Plasma-Dynamic Thrusters......Page 835
11.4.1. Plasma Interaction with High-Speed Flows and Shocks......Page 836
11.4.3. Plasma Aerodynamic Effects in Ballistic Range Tests......Page 837
11.4.5. High-Speed Aerodynamic Effects of Filamentary Discharges......Page 839
11.4.6. Aerodynamic Effects of Surface and Dielectric Barrier Discharges: Aerodynamic Plasma Actuators......Page 841
11.4.7. Plasma Application for Inlet Shock Control: Magneto-Hydrodynamics in Flow Control and Power Extraction......Page 842
11.5.1. Plasma Power Electronics......Page 843
11.5.2. Plasma MHD Generators in Power Electronics: Different Types of MHD Generators......Page 844
11.5.3. Major Electric and Thermodynamic Characteristics of MHD Generators......Page 845
11.5.4. Electric Conductivity of Working Fluid in Plasma MHD Generators......Page 846
11.5.5. Plasma Thermionic Converters of Thermal Energy into Electricity: Plasma Chemistry of Cesium......Page 847
11.6.1. Classification of Lasers: Inversion Mechanisms in Gas and Plasma Lasers and Lasers on Self-Limited Transitions......Page 848
11.6.2. Pulse-Periodic Self-Limited Lasers on Metal Vapors and on Molecular Transitions......Page 849
11.6.4. Ionic Gas-Discharge Lasers of Low Pressure: Argon and He–Ne Lasers......Page 850
11.6.6. Plasma Lasers Using Electronic Transitions: He–Cd, He–Zn, He–Sr, and Penning Lasers......Page 851
11.6.7. Plasma Lasers Based on Atomic Transitions of Xe and on Transitions of Multi-Charged Ions......Page 852
11.6.8. Excimer Lasers......Page 853
11.6.9. Gas-Discharge Lasers Using Vibrational–Rotational Transitions: CO2 Lasers......Page 854
11.6.11. Plasma Stimulation of Chemical Lasers......Page 855
11.6.12. Energy Efficiency of Chemical Lasers: Chemical Lasers with Excitation Transfer......Page 856
11.6.13. Plasma Sources of Radiation with High Spectral Brightness......Page 858
11.6.14. Mercury-Containing and Mercury-Free Plasma Lamps......Page 859
11.6.15. Plasma Display Panels and Plasma TV......Page 860
11.7.1. Industrial SO2 Emissions and Plasma Effectiveness of Cleaning Them......Page 861
11.7.2. Plasma-Chemical SO2 Oxidation to SO3 in Air and Exhaust Gas Cleaning Using Relativistic Electron Beams......Page 862
11.7.3. SO2 Oxidation in Air to SO3 Using Continuous and Pulsed Corona Discharges......Page 863
11.7.4. Plasma-Stimulated Liquid-Phase Chain Oxidation of SO2 in Droplets......Page 864
11.7.5. Plasma-Catalytic Chain Oxidation of SO2 in Clusters......Page 866
11.7.6. Simplified Mechanism and Energy Balance of the Plasma-Catalytic Chain Oxidation of SO2 in Clusters......Page 867
11.7.7. Plasma-Stimulated Combined Oxidation of NOx and SO2 in Air: Simultaneous Industrial Exhaust Gas Cleaning of Nitrogen and Sulfur Oxides......Page 868
11.7.8. Plasma-Assisted After Treatment of Automotive Exhaust: Kinetic Mechanism of Double-Stage Plasma-Catalytic NOx and Hydrocarbon Remediation......Page 869
11.7.9. Plasma-Assisted Catalytic Reduction of NOx in Automotive Exhaust Using Pulsed Corona Discharge: Cleaning of Diesel Engine Exhaust......Page 871
11.8.2. Mechanisms and Energy Balance of the Non-Thermal Plasma Treatment of VOC Emissions: Treatment of Exhaust Gases from Paper Mills andWood Processing Plants......Page 874
11.8.3. Removal of Acetone and Methanol from Air Using Pulsed Corona Discharge......Page 876
11.8.4. Removal of Dimethyl Sulfide from Air Using Pulsed Corona Discharge......Page 877
11.8.5. Removal of α-Pinene from Air Using Pulsed Corona Discharge; Plasma Treatment of Exhaust Gas Mixtures......Page 879
11.8.6. Treatment of Paper Mill Exhaust Gases UsingWet Pulsed Corona Discharge......Page 880
11.8.7. Non-Thermal Plasma Control of Diluted Large-Volume Emissions of Chlorine-Containing VOCs......Page 883
11.8.8. Non-Thermal Plasma Removal of Elemental Mercury from Coal-Fired Power Plants and Other Industrial Offgases......Page 887
11.8.9. Mechanism of Non-Thermal Plasma Removal of Elemental Mercury from Exhaust Gases......Page 888
11.8.10. Plasma Decomposition of Freons (Chlorofluorocarbons) and OtherWaste Treatment Processes Organized in Thermal and Transitional Discharges......Page 889
PROBLEMS AND CONCEPT QUESTIONS......Page 890
12.1.1. Application of Low-Pressure Plasma for Biological Sterilization......Page 892
12.1.2. Inactivation of Micro-Organisms by Non-Equilibrium High-Pressure Plasma......Page 894
12.1.3. Plasma Species and Factors Active for Sterilization: Direct Effect of Charged Particles......Page 895
12.1.4. Plasma Species and Factors Active for Sterilization: Effects of Electric Fields, Particularly Related to Charged Plasma Particles......Page 898
12.1.5. Plasma Species and Factors Active for Sterilization: Effect of Reactive Neutral Species......Page 899
12.1.7. Plasma Species and Factors Active for Sterilization: Effect of Ultraviolet Radiation......Page 902
12.2.1. Direct and Indirect Effects of Non-Thermal Plasma on Bacteria......Page 903
12.2.2. Two Experiments Proving Higher Effectiveness of Direct Plasma Treatment of Bacteria......Page 906
12.2.3. Surface Versus In-Depth Plasma Sterilization: Penetration of DBD Treatment into Fluid for Biomedical Applications......Page 907
12.2.4. Apoptosis Versus Necrosis in Plasma Treatment of Cells: Sublethal Plasma Treatment Effects......Page 909
12.3.1. General Features of Plasma Inactivation of Airborne Bacteria......Page 910
12.3.2. Pathogen Detection and Remediation Facility for Plasma Sterilization of Air Streams......Page 911
12.3.3. Special DBD Configuration – the Dielectric Barrier Grating Discharge – Applied in PDRF for Plasma Sterilization of Air Streams......Page 913
12.3.4. Rapid and Direct Plasma Deactivation of Airborne Bacteria in the PDRF......Page 914
12.3.5. Phenomenological Kinetic Model of Non-Thermal Plasma Sterilization of Air Streams......Page 915
12.3.6. Kinetics and Mechanisms of Rapid Plasma Deactivation of Airborne Bacteria in the PDRF......Page 916
12.4.1. Needs and General Features of Plasma Water Treatment: Water Disinfection Using UV Radiation, Ozone, or Pulsed Electric Fields......Page 918
12.4.2. Electrical Discharges in Water......Page 919
12.4.3. Mechanisms and Characteristics of Plasma Discharges in Water......Page 920
12.4.4. Physical Kinetics of Water Breakdown......Page 922
12.4.5. Experimental Applications of Pulsed Plasma Discharges for Water Treatment......Page 923
12.4.6. Energy-EffectiveWater Treatment Using Pulsed Spark Discharges......Page 924
12.5.1. Plasma-Assisted Regulation of Biological Properties of Medical Polymer Materials......Page 926
12.5.2. Plasma-Assisted Attachment and Proliferation of Bone Cells on Polymer Scaffolds......Page 928
12.5.3. DBD Plasma Effect on Attachment and Proliferation of Osteoblasts Cultured over Poly-ε-Caprolactone Scaffolds......Page 929
12.5.4. Controlling of Stem Cell Behavior on Non-Thermal Plasma Modified Polymer Surfaces......Page 931
12.6.1. Direct Plasma Medicine: Floating-Electrode Dielectric Barrier Discharge......Page 932
12.6.2. Direct Plasma-Medical Sterilization of Living Tissue Using FE-DBD Plasma......Page 933
12.6.3. Non-Damage (Toxicity) Analysis of Direct Plasma Treatment of Living Tissue......Page 934
12.7.2. Experiments with Non-Thermal Atmospheric-Pressure Plasma-Assisted In Vitro Blood Coagulation......Page 936
12.7.3. In Vivo Blood Coagulation Using FE-DBD Plasma......Page 937
12.7.4. Mechanisms of Non-Thermal Plasma-Assisted Blood Coagulation......Page 938
12.8.1. Discharge Systems for Air-Plasma Surgery and Nitrogen Oxide (NO) Therapy......Page 940
12.8.2. Medical Use of Plasma-Generated Exogenic NO......Page 942
12.8.3. Experimental Investigations of NO Effect on Wound Healing and Inflammatory Processes......Page 943
12.8.4. Clinical Aspects of Use of Air Plasma and Exogenic NO in Treatment of Wound Pathologies......Page 944
12.8.5. Air Plasma and Exogenic NO in Treatment of Inflammatory and Destructive Illnesses......Page 948
12.9.1. Non-Thermal Plasma Treatment of Melanoma Skin Cancer......Page 950
12.9.2. Non-Thermal Plasma Treatment of Cutaneous Leishmaniasis......Page 952
12.9.3. Non-Equilibrium Plasma Treatment of Corneal Infections......Page 954
12.9.4. Remarks on the Non-Thermal Plasma-Medical Treatment of Skin......Page 955
PROBLEMS AND CONCEPT QUESTIONS......Page 956
References......Page 959
Index......Page 1007