دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Bhoopander Giri. Mahaveer Prasad Sharma
سری:
ISBN (شابک) : 9789811593796, 9789811593802
ناشر: Springer, Singapore
سال نشر: 2020
تعداد صفحات: 510
[518]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 10 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Plant Stress Biology به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب زیست شناسی استرس گیاهی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
گیاهانی که در محیط طبیعی رشد می کنند با انواع تنش های زیستی (عفونت پاتوژن ها) و غیر زنده (تنش های شوری، خشکی، گرما و سرما و غیره) مبارزه می کنند. این تنش های فیزیولوژیکی به شدت بر رشد و بهره وری گیاه در شرایط مزرعه تأثیر می گذارد. این چالش ها احتمالاً به عنوان پیامدهای تغییرات اقلیمی جهانی افزایش می یابد و تهدیدی برای امنیت غذایی است. بنابراین، آشنایی با مسیرهای سیگنالینگ زیربنایی، مکانیسمهای فیزیولوژیکی، بیوشیمیایی و مولکولی در گیاهان و نقش میکروارگانیسمهای مفید خاک در تحمل تنش گیاهان برای تولید پایدار محصول بسیار مهم است. این جلد توسط متخصصان فیزیولوژی استرس نوشته شده است و آخرین تحقیقات در مورد تحمل گیاهان به تنش های غیر زنده و زنده را پوشش می دهد. در مورد پتانسیل فعل و انفعالات گیاه و میکروب برای جلوگیری از آسیب ناشی از این تنش ها توضیح می دهد. با اطلاعات جامع در مورد جنبه های نظری، فنی و تجربی بیولوژی تنش گیاهی، این حجم گسترده منبع ارزشمندی برای محققان، دانشگاهیان و دانشجویان در زمینه وسیع زیست شناسی تنش گیاهی، فیزیولوژی، میکروبیولوژی، محیط زیست و علوم کشاورزی است.
Plants growing in the natural environment battle with a variety of biotic (pathogens infection) and abiotic (salinity, drought, heat and cold stresses etc.) stresses. These physiological stresses drastically affect plant growth and productivity under field conditions. These challenges are likely to grow as a consequences of global climate change and pose a threat to the food security. Therefore, acquaintance with underlying signalling pathways, physiological, biochemical and molecular mechanisms in plants and the role of beneficial soil microorganisms in plant’s stress tolerance are pivotal for sustainable crop production. This volume written by the experts in the stress physiology and covers latest research on plant’s tolerance to abiotic and biotic stresses. It elaborates on the potential of plant-microbe interactions to avoid the damage caused by these stresses. With comprehensive information on theoretical, technical and experimental aspects of plant stress biology, this extensive volume is a valuable resource for researchers, academician and students in the broad field of plant stress biology, physiology, microbiology, environmental and agricultural science.
Foreword Adapting Crop Plants to Stress in a Changing Climate Preface Contents Editors and Contributors 1: Abiotic Stress in Plants: An Overview 1.1 Introduction 1.2 Types of Abiotic Stress 1.2.1 Temperature as Stress Factor 1.2.1.1 Low Temperature Stress 1.2.1.2 High Temperature Stress 1.2.2 Light Stress 1.2.3 Water Stress 1.2.4 Salinity Stress 1.2.5 Heavy Metal Stress 1.3 Molecular Mechanisms and Signal Transduction in Stress 1.4 Conclusions References 2: Silicon: A Plant Nutritional ``Non-Entity´´ for Mitigating Abiotic Stresses 2.1 Introduction 2.2 Silicon: Occurrence and Sources 2.3 Silicon: Uptake, Transportation, and Accumulation 2.4 Silicon and Abiotic Stresses 2.4.1 Drought 2.4.2 Salinity Stress 2.4.3 Heavy Metal Stress 2.4.3.1 Cd Toxicity 2.4.3.2 As Toxicity 2.4.3.3 Al Toxicity 2.4.4 Thermal Stress 2.4.5 Nutrition Stress 2.4.6 UV-B Radiation Stress 2.4.7 Wounding Stress 2.4.8 High pH Stress 2.5 Necessity of Silicon in Agriculture 2.6 Future Prospects References 3: Plant Morphological, Physiological Traits Associated with Adaptation Against Heat Stress in Wheat and Maize 3.1 Introduction 3.2 Plant Responses to Heat Stress 3.2.1 Morphological Responses 3.2.1.1 Growth 3.2.1.2 Reproductive Development 3.2.1.3 Grain and Yield 3.2.2 Physiological Response 3.2.2.1 Respiration 3.2.2.2 Photosynthesis and Photosystems 3.2.2.3 Water Relations 3.2.2.4 Phytohormones 3.2.2.5 Oxidative Stress and Antioxidant Defense 3.3 Screening Methodologies for Heat Tolerance 3.4 Approaches to Mitigate Heat Stress 3.4.1 Screening and Breeding for Heat Tolerance 3.4.2 Molecular Breeding and Transgenic Approach 3.5 Conclusion and Future Perspective References 4: Breeding and Molecular Approaches for Evolving Drought-Tolerant Soybeans 4.1 Introduction 4.2 Exploring Roots of Drought Tolerance 4.3 Breeding Approaches for Drought Tolerance in Soybean 4.3.1 Three-Tier Selection Scheme 4.3.2 Genetic and Genomic Resources 4.4 Quantitative Trait Loci for Drought Tolerance Related Traits 4.5 Genome-Wide Association Studies for Drought Tolerance Related Traits 4.6 Transcriptomic Approaches 4.7 Molecular Events During Drought Stress in Soybean 4.7.1 Signal Transduction Under Drought Stress 4.7.2 Role of Transcription Factors in Drought Tolerance 4.8 Genomics Assisted Breeding 4.9 Genetic Engineering Approaches for Developing Drought Tolerance in Soybean 4.9.1 Virus-Induced Gene Silencing: A Potential Biotechnological Tool for Rapid Elucidation of Genes Function 4.9.2 RNAi Approach: A Powerful Tool for Gene Function Studies and Enhancing Drought Tolerance in Soybean 4.9.3 Genome Editing Based Techniques 4.9.4 Rhizobial Inoculation to Enhance The Drought Stress Tolerance in Soybean 4.9.5 Application of Nanotechnology to Increase Drought Tolerance in Soybean 4.10 Conclusions and Future Perspectives References 5: Plant Roots and Mineral Nutrition: An Overview of Molecular Basis of Uptake and Regulation, and Strategies to Improve Nutri... 5.1 Introduction 5.2 Effect of Nutrient Stress on Root System Architecture 5.2.1 Altered RSA Under Mineral Nutrient Stress in Various Plants 5.3 Molecular Regulators in Nutrient Uptake and Transport 5.3.1 Nitrogen 5.3.2 Phosphorus 5.3.3 Potassium 5.3.4 Sulfur 5.4 MicroRNAs in Nutrient Uptake and Stress 5.5 Nutrient Use Efficiency (NUE) 5.6 Biotechnological Strategies to Ameliorate Stress and Enhance NUE 5.6.1 Genome-Wide Studies 5.6.2 Nutrient Uptake Genes 5.6.3 Nutrient Assimilation Genes 5.6.4 Regulatory Genes Including Transcription Factors and miRNAs 5.6.5 Other Genes 5.7 Modified Root System Architecture (RSA) 5.8 Conclusion, Future Prospects, and Scope References 6: Plant Growth Promoting Rhizobacteria: Mechanisms and Alleviation of Cold Stress in Plants 6.1 Introduction 6.2 Definition and Ecological Diversity of Cold Tolerant Microorganisms 6.3 Effect of Temperature on Growth and Metabolic Activity 6.4 Determinants of Cold Tolerance in Bacteria 6.4.1 Sensing of Cold Temperature 6.4.1.1 Signal Transduction 6.4.1.2 Sensing Low Temperature via Alteration in Nucleic Acid Conformation 6.4.1.3 Sensing Low Temperature via Alteration in Protein Conformation 6.5 Exopolysaccharide Production 6.6 Cell Membrane Associated Changes 6.7 Cold-Active Enzymes 6.8 Antioxidant Enzymes 6.9 RNA Degradosomes 6.10 Cold Shock Proteins (Csps) 6.11 Cold Acclimation Proteins (Caps) or Cold Resistance Protein (CRP) 6.12 Regulation of Major Cold Shock and Cold Acclimation Genes 6.13 Freeze Tolerance in Bacteria 6.13.1 Cryoprotectants 6.13.1.1 Sugar Cryoprotectants 6.13.1.2 Amino Acid Cryoprotectants 6.13.2 Role of Ice Nucleation in Freeze Tolerance 6.13.3 Antifreeze Proteins 6.14 Biotechnological Applications 6.14.1 Biotechnological Application of Cold-Active Enzymes 6.14.1.1 Detergents Industry 6.14.1.2 Food and Pharmaceutical Industry 6.14.1.3 Molecular Biology Research 6.14.1.4 Bioremediation 6.14.2 Biological Cryoprotectants 6.14.3 Microbial Cells as Production Factories 6.15 Agriculture 6.16 Conclusions References 7: Microbe-Mediated Mitigation of Abiotic Stress in Plants 7.1 Introduction 7.2 Salt Stress Tolerance 7.3 Drought Resistance 7.4 Plastic Pollution 7.4.1 Microplastics in the Soil Environment 7.4.2 Quantification of Microplastic in Soil 7.4.3 Impact of Plastics on Soil Environment 7.5 Plastic Degrading Soil Microflora 7.6 Conclusions and Outlook References 8: Orchestration of MicroRNAs and Transcription Factors in the Regulation of Plant Abiotic Stress Response 8.1 Introduction 8.2 TFs-miRNAs: Regulating Plant Heat Stress Response 8.3 miRNA-TFs: Regulating Drought and Salinity 8.4 miRNAs-TFs: Regulating Cold Stress 8.5 miRNA-TFs: Regulating Heavy Metal Stress 8.6 TFs-miRNA: Regulating Phosphate Homeostasis 8.7 miRNAs-TFs: Regulating Nitrogen Homeostasis 8.8 TFs-miRNA: Regulating Copper Homeostasis 8.9 TFs-miR395: Regulating Sulfate Homeostasis 8.10 Conclusion and Future Perspective References 9: Phytohormones: A Promising Alternative in Boosting Salinity Stress Tolerance in Plants 9.1 Introduction 9.2 Environmental Constraints Limiting Agricultural Production 9.2.1 Salinity as Major Abiotic Stress 9.2.2 Impact of Salinity on Plants 9.3 Role of Phytohormones in Plants 9.3.1 Salicylic Acid 9.3.2 Jasmonic Acid 9.4 Approaches to Combat Salinity Stress 9.4.1 Phytohormone Treatment to Enhance Salinity Stress Tolerance 9.4.1.1 Application of Phytohormones for Salinity Tolerance in Plants Under In-Vitro Conditions 9.4.1.2 Exogenous Application of Phytohormone to Enhance Salinity Stress Tolerance in Plants 9.4.2 Transgenic Approach for Generation of Salinity-Tolerant Plants 9.4.3 Genome Editing for Salinity Stress Alleviation 9.5 Conclusion and Future Outlook References 10: Microbe-Mediated Biotic Stress Signaling and Resistance Mechanisms in Plants 10.1 Introduction 10.2 Impact of Biotic Stresses in Plants 10.3 How Do Plants Manage Biotic Stress? 10.3.1 Recognition of Biotic Stress 10.3.2 Overcoming Biotic Stress 10.4 Microbe-Induced Resistance Against Biotic Stress in Plants 10.5 SAR Signaling 10.6 ISR Signaling 10.6.1 Elicitors of ISR 10.6.2 Root Colonization as an Early Signaling Event in ISR 10.6.3 Suppression of Plant PTI or ETI 10.6.4 Regulation of ISR 10.7 Herbivore-Induced Resistance (HIR) Signaling 10.8 Microbe-Assisted Mitigation of Biotic Stresses 10.9 Conclusion and Future Prospective References 11: Role of WRKY Transcription Factor Superfamily in Plant Disease Management 11.1 Introduction 11.2 WRKY TFs: Structure 11.3 Classification of WRKY TFs 11.4 Regulation of WRKY TFs 11.4.1 Kinases 11.4.2 Autoregulation and Cross Regulation 11.4.3 Positive and Negative Regulation 11.4.4 Epigenetic Regulation 11.4.5 Proteasome Regulation 11.4.6 Small RNA Regulation 11.5 Role of WRKY TFs Against Phytopathogens 11.5.1 Role of Host Plant WRKY Against Viral Diseases 11.5.2 Role of Host Plant WRKY Against Bacterial Diseases 11.5.3 Role of Host Plant WRKY Against Fungal Diseases 11.6 Conclusion References 12: Unraveling the Molecular Mechanism of Magnaporthe oryzae Induced Signaling Cascade in Rice 12.1 Introduction 12.2 PTI Responses in Rice-M. oryzae Interaction 12.2.1 PRRs and PAMPs Identified So Far 12.2.2 Chitin-LysM Domain Protein-Mediated Immunity 12.2.3 MSP1-Triggered Immunity in Rice 12.2.4 MoHRIP1-Induced Signaling in Rice 12.3 Downstream Responses of PTI Signaling 12.3.1 Activation of MAPK Cascade 12.3.2 Transcription Factor (TFs)-Mediated Downstream Responses 12.3.3 Apoplastic Reactive Oxygen Species Burst 12.3.4 Production of Antimicrobial Compounds and Phytohormones 12.3.5 Callose Deposition 12.4 ETI in Rice-M. oryzae Interaction 12.4.1 Effector Suppression of PTI 12.4.2 R-Genes and Avr Effectors 12.5 Rice Blast Resistance Breeding References 13: The Role of Endophytic Insect-Pathogenic Fungi in Biotic Stress Management 13.1 Introduction 13.2 Role of Fungal Endophytes in Plant Growth Promotion and Protection 13.3 EIPF and Their Role in Plant Growth Promotion 13.4 The Role of EIPF in Plant Defense 13.5 EIPF in Nutrient Exchange 13.6 EIPF in Plant Protection Against Pests and Diseases 13.7 Mechanisms of Plant Protection 13.8 Applications of EIPF in Sustainable Agriculture and Biotechnology References 14: Biological Overview and Adaptability Strategies of Tamarix Plants, T. articulata and T. gallica to Abiotic Stress 14.1 Introduction 14.2 Biology, Ecology, and Phylogeography of Tamarix Genus in Algeria 14.2.1 Tamarix Species Distribution in Algerian Areas 14.2.2 Biology of Tamarix Species 14.2.3 Tamarix articulata Vahll (Aphylla (L) Karst, Orientalis) 14.2.4 Tamarix gallica L. 14.3 Morphological and Anatomical Adaptation Strategies of Tamarixt to Abiotic Stress 14.3.1 Adaptation Strategies Employed by T. articulata Under Algerian Abiotic Stress Conditions 14.3.1.1 Anatomical Adaptation Strategies to Erosion Stress 14.3.1.2 Anatomical Adaptation Strategies to Drought Stress 14.3.1.3 Anatomical Adaptation Strategies to Saline Stress 14.3.2 Anatomical and Morphological Adaptation Strategies of T. gallica to Abiotic Stress Conditions 14.3.2.1 Anatomical Adaptation to Drought Stress 14.3.2.2 Anatomical Adaptation to Water Erosion 14.3.2.3 Anatomical Adaptation to Saline Stress 14.3.2.4 T. gallica Anatomical Tolerance Mechanisms to Pollutants: Arsenic 14.4 Biochemical Adaptation of Tamarix to Abiotic Stress 14.4.1 Biochemical and Physiological Adaptation Strategies of T. articulata to Abiotic Stress 14.4.1.1 Neutralization of Reactive Oxygen Species Damages 14.4.1.2 Inhibition of Abiotic Stress by Polyphenols 14.4.1.3 Biochemical Adaptation Strategies to Saline Conditions 14.4.1.4 Action of T. articulata Face to Metals Trace Elements 14.5 Biochemical and Physiological Adaptation Strategies of T. gallica to Abiotic Stress 14.5.1 T. gallica Strategy of Neutralization of Reactive Oxygen Species Damages 14.5.2 Action of Polyphenolic on T. gallica Abiotic Stress Adaptation 14.5.3 Biochemical Adaptation Strategy of T. gallica to Metals Elements Pollution 14.6 AMF Application Strategies 14.7 Conclusion References 15: Plant Synthetic Biology: A Paradigm Shift Targeting Stress Mitigation, Reduction of Ecological Footprints and Sustainable ... 15.1 Introduction 15.2 Optimizing and Re-Designing Photosynthetic Efficiency 15.3 Ecologically Sustainable Fertilization 15.3.1 Engineering Perception of N2-Fixing Bacteria in Cereals 15.3.2 Engineering Expression of Nitrogenase in Plant Cells Organelles 15.3.3 Transfer of N2 Fixing Traits to Microorganisms Closely Associated With Non-Leguminous Crops 15.4 Green Sensors 15.5 Bioremediation and Stress Mitigation 15.6 Sustainable Bio-Manufacturing 15.7 Increasing the Nutritional Value of Crop Plants 15.8 Valuable Plant Metabolites in Microorganism 15.9 Synthetic Plant Genomes 15.10 Conclusions and Future Perspectives References 16: Role of Calcium Signalling During Plant-Herbivore Interaction 16.1 Introduction 16.2 Generation of Calcium Signatures During Plant-Herbivore Interaction 16.3 Calcium: Transporters During Plant-Herbivore Attack 16.3.1 Ca2+-ATPases 16.3.2 Ca2+/Proton Exchangers 16.3.3 Ca2+ Channels 16.3.4 Cyclic Nucleotide: Gated Channels (CNGCs) 16.3.5 Glutamate Receptor: Like Channels (GLRCs) 16.3.6 Two: Pore Channels 16.3.7 Annexins Channels 16.4 Calcium Sensors: Perception, Decoding, and Relaying of Ca2+ Signatures 16.4.1 Calmodulin 16.4.2 Calmodulin-Like [CaM-Like] 16.4.3 Calcineurins B-Like 16.4.4 Calcium Dependent Protein Kinases 16.4.5 CaM-Dependent Protein Kinase (CCaMK) 16.5 Role of Ca2+ Signalling at Subcellular Organelles During Herbivory 16.6 Ca2+-Mediated Local and Systemic Signalling During Herbivory 16.7 Conclusion References