ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Plant Stress Biology

دانلود کتاب زیست شناسی استرس گیاهی

Plant Stress Biology

مشخصات کتاب

Plant Stress Biology

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 9789811593796, 9789811593802 
ناشر: Springer, Singapore 
سال نشر: 2020 
تعداد صفحات: 510
[518] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 10 Mb 

قیمت کتاب (تومان) : 39,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 5


در صورت تبدیل فایل کتاب Plant Stress Biology به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب زیست شناسی استرس گیاهی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب زیست شناسی استرس گیاهی

گیاهانی که در محیط طبیعی رشد می کنند با انواع تنش های زیستی (عفونت پاتوژن ها) و غیر زنده (تنش های شوری، خشکی، گرما و سرما و غیره) مبارزه می کنند. این تنش های فیزیولوژیکی به شدت بر رشد و بهره وری گیاه در شرایط مزرعه تأثیر می گذارد. این چالش ها احتمالاً به عنوان پیامدهای تغییرات اقلیمی جهانی افزایش می یابد و تهدیدی برای امنیت غذایی است. بنابراین، آشنایی با مسیرهای سیگنالینگ زیربنایی، مکانیسم‌های فیزیولوژیکی، بیوشیمیایی و مولکولی در گیاهان و نقش میکروارگانیسم‌های مفید خاک در تحمل تنش گیاهان برای تولید پایدار محصول بسیار مهم است. این جلد توسط متخصصان فیزیولوژی استرس نوشته شده است و آخرین تحقیقات در مورد تحمل گیاهان به تنش های غیر زنده و زنده را پوشش می دهد. در مورد پتانسیل فعل و انفعالات گیاه و میکروب برای جلوگیری از آسیب ناشی از این تنش ها توضیح می دهد. با اطلاعات جامع در مورد جنبه های نظری، فنی و تجربی بیولوژی تنش گیاهی، این حجم گسترده منبع ارزشمندی برای محققان، دانشگاهیان و دانشجویان در زمینه وسیع زیست شناسی تنش گیاهی، فیزیولوژی، میکروبیولوژی، محیط زیست و علوم کشاورزی است.


توضیحاتی درمورد کتاب به خارجی

Plants growing in the natural environment battle with a variety of biotic (pathogens infection) and abiotic (salinity, drought, heat and cold stresses etc.) stresses. These physiological stresses drastically affect plant growth and productivity under field conditions. These challenges are likely to grow as a consequences of global climate change and pose a threat to the food security. Therefore, acquaintance with underlying signalling pathways, physiological, biochemical and molecular mechanisms in plants and the role of beneficial soil microorganisms in plant’s stress tolerance are pivotal for sustainable crop production. This volume written by the experts in the stress physiology and covers latest research on plant’s tolerance to abiotic and biotic stresses. It elaborates on the potential of plant-microbe interactions to avoid the damage caused by these stresses. With comprehensive information on theoretical, technical and experimental aspects of plant stress biology, this extensive volume is a valuable resource for researchers, academician and students in the broad field of plant stress biology, physiology, microbiology, environmental and agricultural science.



فهرست مطالب

Foreword
	Adapting Crop Plants to Stress in a Changing Climate
Preface
Contents
Editors and Contributors
1: Abiotic Stress in Plants: An Overview
	1.1 Introduction
	1.2 Types of Abiotic Stress
		1.2.1 Temperature as Stress Factor
			1.2.1.1 Low Temperature Stress
			1.2.1.2 High Temperature Stress
		1.2.2 Light Stress
		1.2.3 Water Stress
		1.2.4 Salinity Stress
		1.2.5 Heavy Metal Stress
	1.3 Molecular Mechanisms and Signal Transduction in Stress
	1.4 Conclusions
	References
2: Silicon: A Plant Nutritional ``Non-Entity´´ for Mitigating Abiotic Stresses
	2.1 Introduction
	2.2 Silicon: Occurrence and Sources
	2.3 Silicon: Uptake, Transportation, and Accumulation
	2.4 Silicon and Abiotic Stresses
		2.4.1 Drought
		2.4.2 Salinity Stress
		2.4.3 Heavy Metal Stress
			2.4.3.1 Cd Toxicity
			2.4.3.2 As Toxicity
			2.4.3.3 Al Toxicity
		2.4.4 Thermal Stress
		2.4.5 Nutrition Stress
		2.4.6 UV-B Radiation Stress
		2.4.7 Wounding Stress
		2.4.8 High pH Stress
	2.5 Necessity of Silicon in Agriculture
	2.6 Future Prospects
	References
3: Plant Morphological, Physiological Traits Associated with Adaptation Against Heat Stress in Wheat and Maize
	3.1 Introduction
	3.2 Plant Responses to Heat Stress
		3.2.1 Morphological Responses
			3.2.1.1 Growth
			3.2.1.2 Reproductive Development
			3.2.1.3 Grain and Yield
		3.2.2 Physiological Response
			3.2.2.1 Respiration
			3.2.2.2 Photosynthesis and Photosystems
			3.2.2.3 Water Relations
			3.2.2.4 Phytohormones
			3.2.2.5 Oxidative Stress and Antioxidant Defense
	3.3 Screening Methodologies for Heat Tolerance
	3.4 Approaches to Mitigate Heat Stress
		3.4.1 Screening and Breeding for Heat Tolerance
		3.4.2 Molecular Breeding and Transgenic Approach
	3.5 Conclusion and Future Perspective
	References
4: Breeding and Molecular Approaches for Evolving Drought-Tolerant Soybeans
	4.1 Introduction
	4.2 Exploring Roots of Drought Tolerance
	4.3 Breeding Approaches for Drought Tolerance in Soybean
		4.3.1 Three-Tier Selection Scheme
		4.3.2 Genetic and Genomic Resources
	4.4 Quantitative Trait Loci for Drought Tolerance Related Traits
	4.5 Genome-Wide Association Studies for Drought Tolerance Related Traits
	4.6 Transcriptomic Approaches
	4.7 Molecular Events During Drought Stress in Soybean
		4.7.1 Signal Transduction Under Drought Stress
		4.7.2 Role of Transcription Factors in Drought Tolerance
	4.8 Genomics Assisted Breeding
	4.9 Genetic Engineering Approaches for Developing Drought Tolerance in Soybean
		4.9.1 Virus-Induced Gene Silencing: A Potential Biotechnological Tool for Rapid Elucidation of Genes Function
		4.9.2 RNAi Approach: A Powerful Tool for Gene Function Studies and Enhancing Drought Tolerance in  Soybean
		4.9.3 Genome Editing Based Techniques
		4.9.4 Rhizobial Inoculation to Enhance The Drought Stress Tolerance in Soybean
		4.9.5 Application of Nanotechnology to Increase Drought Tolerance in Soybean
	4.10 Conclusions and Future Perspectives
	References
5: Plant Roots and Mineral Nutrition: An Overview of Molecular Basis of Uptake and Regulation, and Strategies to Improve Nutri...
	5.1 Introduction
	5.2 Effect of Nutrient Stress on Root System Architecture
		5.2.1 Altered RSA Under Mineral Nutrient Stress in Various Plants
	5.3 Molecular Regulators in Nutrient Uptake and Transport
		5.3.1 Nitrogen
		5.3.2 Phosphorus
		5.3.3 Potassium
		5.3.4 Sulfur
	5.4 MicroRNAs in Nutrient Uptake and Stress
	5.5 Nutrient Use Efficiency (NUE)
	5.6 Biotechnological Strategies to Ameliorate Stress and Enhance NUE
		5.6.1 Genome-Wide Studies
		5.6.2 Nutrient Uptake Genes
		5.6.3 Nutrient Assimilation Genes
		5.6.4 Regulatory Genes Including Transcription Factors and miRNAs
		5.6.5 Other Genes
	5.7 Modified Root System Architecture (RSA)
	5.8 Conclusion, Future Prospects, and Scope
	References
6: Plant Growth Promoting Rhizobacteria: Mechanisms and Alleviation of Cold Stress in Plants
	6.1 Introduction
	6.2 Definition and Ecological Diversity of Cold Tolerant Microorganisms
	6.3 Effect of Temperature on Growth and Metabolic Activity
	6.4 Determinants of Cold Tolerance in Bacteria
		6.4.1 Sensing of Cold Temperature
			6.4.1.1 Signal Transduction
			6.4.1.2 Sensing Low Temperature via Alteration in Nucleic Acid Conformation
			6.4.1.3 Sensing Low Temperature via Alteration in Protein Conformation
	6.5 Exopolysaccharide Production
	6.6 Cell Membrane Associated Changes
	6.7 Cold-Active Enzymes
	6.8 Antioxidant Enzymes
	6.9 RNA Degradosomes
	6.10 Cold Shock Proteins (Csps)
	6.11 Cold Acclimation Proteins (Caps) or Cold Resistance Protein (CRP)
	6.12 Regulation of Major Cold Shock and Cold Acclimation Genes
	6.13 Freeze Tolerance in Bacteria
		6.13.1 Cryoprotectants
			6.13.1.1 Sugar Cryoprotectants
			6.13.1.2 Amino Acid Cryoprotectants
		6.13.2 Role of Ice Nucleation in Freeze Tolerance
		6.13.3 Antifreeze Proteins
	6.14 Biotechnological Applications
		6.14.1 Biotechnological Application of Cold-Active Enzymes
			6.14.1.1 Detergents Industry
			6.14.1.2 Food and Pharmaceutical Industry
			6.14.1.3 Molecular Biology Research
			6.14.1.4 Bioremediation
		6.14.2 Biological Cryoprotectants
		6.14.3 Microbial Cells as Production Factories
	6.15 Agriculture
	6.16 Conclusions
	References
7: Microbe-Mediated Mitigation of Abiotic Stress in Plants
	7.1 Introduction
	7.2 Salt Stress Tolerance
	7.3 Drought Resistance
	7.4 Plastic Pollution
		7.4.1 Microplastics in the Soil Environment
		7.4.2 Quantification of Microplastic in Soil
		7.4.3 Impact of Plastics on Soil Environment
	7.5 Plastic Degrading Soil Microflora
	7.6 Conclusions and Outlook
	References
8: Orchestration of MicroRNAs and Transcription Factors in the Regulation of Plant Abiotic Stress Response
	8.1 Introduction
	8.2 TFs-miRNAs: Regulating Plant Heat Stress Response
	8.3 miRNA-TFs: Regulating Drought and Salinity
	8.4 miRNAs-TFs: Regulating Cold Stress
	8.5 miRNA-TFs: Regulating Heavy Metal Stress
	8.6 TFs-miRNA: Regulating Phosphate Homeostasis
	8.7 miRNAs-TFs: Regulating Nitrogen Homeostasis
	8.8 TFs-miRNA: Regulating Copper Homeostasis
	8.9 TFs-miR395: Regulating Sulfate Homeostasis
	8.10 Conclusion and Future Perspective
	References
9: Phytohormones: A Promising Alternative in Boosting Salinity Stress Tolerance in Plants
	9.1 Introduction
	9.2 Environmental Constraints Limiting Agricultural Production
		9.2.1 Salinity as Major Abiotic Stress
		9.2.2 Impact of Salinity on Plants
	9.3 Role of Phytohormones in Plants
		9.3.1 Salicylic Acid
		9.3.2 Jasmonic Acid
	9.4 Approaches to Combat Salinity Stress
		9.4.1 Phytohormone Treatment to Enhance Salinity Stress Tolerance
			9.4.1.1 Application of Phytohormones for Salinity Tolerance in Plants Under In-Vitro Conditions
			9.4.1.2 Exogenous Application of Phytohormone to Enhance Salinity Stress Tolerance in Plants
		9.4.2 Transgenic Approach for Generation of Salinity-Tolerant Plants
		9.4.3 Genome Editing for Salinity Stress Alleviation
	9.5 Conclusion and Future Outlook
	References
10: Microbe-Mediated Biotic Stress Signaling and Resistance Mechanisms in Plants
	10.1 Introduction
	10.2 Impact of Biotic Stresses in Plants
	10.3 How Do Plants Manage Biotic Stress?
		10.3.1 Recognition of Biotic Stress
		10.3.2 Overcoming Biotic Stress
	10.4 Microbe-Induced Resistance Against Biotic Stress in Plants
	10.5 SAR Signaling
	10.6 ISR Signaling
		10.6.1 Elicitors of ISR
		10.6.2 Root Colonization as an Early Signaling Event in ISR
		10.6.3 Suppression of Plant PTI or ETI
		10.6.4 Regulation of ISR
	10.7 Herbivore-Induced Resistance (HIR) Signaling
	10.8 Microbe-Assisted Mitigation of Biotic Stresses
	10.9 Conclusion and Future Prospective
	References
11: Role of WRKY Transcription Factor Superfamily in Plant Disease Management
	11.1 Introduction
	11.2 WRKY TFs: Structure
	11.3 Classification of WRKY TFs
	11.4 Regulation of WRKY TFs
		11.4.1 Kinases
		11.4.2 Autoregulation and Cross Regulation
		11.4.3 Positive and Negative Regulation
		11.4.4 Epigenetic Regulation
		11.4.5 Proteasome Regulation
		11.4.6 Small RNA Regulation
	11.5 Role of WRKY TFs Against Phytopathogens
		11.5.1 Role of Host Plant WRKY Against Viral Diseases
		11.5.2 Role of Host Plant WRKY Against Bacterial Diseases
		11.5.3 Role of Host Plant WRKY Against Fungal Diseases
	11.6 Conclusion
	References
12: Unraveling the Molecular Mechanism of Magnaporthe oryzae Induced Signaling Cascade in Rice
	12.1 Introduction
	12.2 PTI Responses in Rice-M. oryzae Interaction
		12.2.1 PRRs and PAMPs Identified So Far
		12.2.2 Chitin-LysM Domain Protein-Mediated Immunity
		12.2.3 MSP1-Triggered Immunity in Rice
		12.2.4 MoHRIP1-Induced Signaling in Rice
	12.3 Downstream Responses of PTI Signaling
		12.3.1 Activation of MAPK Cascade
		12.3.2 Transcription Factor (TFs)-Mediated Downstream Responses
		12.3.3 Apoplastic Reactive Oxygen Species Burst
		12.3.4 Production of Antimicrobial Compounds and Phytohormones
		12.3.5 Callose Deposition
	12.4 ETI in Rice-M. oryzae Interaction
		12.4.1 Effector Suppression of PTI
		12.4.2 R-Genes and Avr Effectors
	12.5 Rice Blast Resistance Breeding
	References
13: The Role of Endophytic Insect-Pathogenic Fungi in Biotic Stress Management
	13.1 Introduction
	13.2 Role of Fungal Endophytes in Plant Growth Promotion and Protection
	13.3 EIPF and Their Role in Plant Growth Promotion
	13.4 The Role of EIPF in Plant Defense
	13.5 EIPF in Nutrient Exchange
	13.6 EIPF in Plant Protection Against Pests and Diseases
	13.7 Mechanisms of Plant Protection
	13.8 Applications of EIPF in Sustainable Agriculture and Biotechnology
	References
14: Biological Overview and Adaptability Strategies of Tamarix Plants, T. articulata and T. gallica to Abiotic Stress
	14.1 Introduction
	14.2 Biology, Ecology, and Phylogeography of Tamarix Genus in Algeria
		14.2.1 Tamarix Species Distribution in Algerian Areas
		14.2.2 Biology of Tamarix Species
		14.2.3 Tamarix articulata Vahll (Aphylla (L) Karst, Orientalis)
		14.2.4 Tamarix gallica L.
	14.3 Morphological and Anatomical Adaptation Strategies of Tamarixt to Abiotic Stress
		14.3.1 Adaptation Strategies Employed by T. articulata Under Algerian Abiotic Stress Conditions
			14.3.1.1 Anatomical Adaptation Strategies to Erosion Stress
			14.3.1.2 Anatomical Adaptation Strategies to Drought Stress
			14.3.1.3 Anatomical Adaptation Strategies to Saline Stress
		14.3.2 Anatomical and Morphological Adaptation Strategies of T. gallica to Abiotic Stress Conditions
			14.3.2.1 Anatomical Adaptation to Drought Stress
			14.3.2.2 Anatomical Adaptation to Water Erosion
			14.3.2.3 Anatomical Adaptation to Saline Stress
			14.3.2.4 T. gallica Anatomical Tolerance Mechanisms to Pollutants: Arsenic
	14.4 Biochemical Adaptation of Tamarix to Abiotic Stress
		14.4.1 Biochemical and Physiological Adaptation Strategies of T. articulata to Abiotic Stress
			14.4.1.1 Neutralization of Reactive Oxygen Species Damages
			14.4.1.2 Inhibition of Abiotic Stress by Polyphenols
			14.4.1.3 Biochemical Adaptation Strategies to Saline Conditions
			14.4.1.4 Action of T. articulata Face to Metals Trace Elements
	14.5 Biochemical and Physiological Adaptation Strategies of T. gallica to Abiotic Stress
		14.5.1 T. gallica Strategy of Neutralization of Reactive Oxygen Species Damages
		14.5.2 Action of Polyphenolic on T. gallica Abiotic Stress Adaptation
		14.5.3 Biochemical Adaptation Strategy of T. gallica to Metals Elements Pollution
	14.6 AMF Application Strategies
	14.7 Conclusion
	References
15: Plant Synthetic Biology: A Paradigm Shift Targeting Stress Mitigation, Reduction of Ecological Footprints and Sustainable ...
	15.1 Introduction
	15.2 Optimizing and Re-Designing Photosynthetic Efficiency
	15.3 Ecologically Sustainable Fertilization
		15.3.1 Engineering Perception of N2-Fixing Bacteria in Cereals
		15.3.2 Engineering Expression of Nitrogenase in Plant Cells Organelles
		15.3.3 Transfer of N2 Fixing Traits to Microorganisms Closely Associated With Non-Leguminous Crops
	15.4 Green Sensors
	15.5 Bioremediation and Stress Mitigation
	15.6 Sustainable Bio-Manufacturing
	15.7 Increasing the Nutritional Value of Crop Plants
	15.8 Valuable Plant Metabolites in Microorganism
	15.9 Synthetic Plant Genomes
	15.10 Conclusions and Future Perspectives
	References
16: Role of Calcium Signalling During Plant-Herbivore Interaction
	16.1 Introduction
	16.2 Generation of Calcium Signatures During Plant-Herbivore Interaction
	16.3 Calcium: Transporters During Plant-Herbivore Attack
		16.3.1 Ca2+-ATPases
		16.3.2 Ca2+/Proton Exchangers
		16.3.3 Ca2+ Channels
		16.3.4 Cyclic Nucleotide: Gated Channels (CNGCs)
		16.3.5 Glutamate Receptor: Like Channels (GLRCs)
		16.3.6 Two: Pore Channels
		16.3.7 Annexins Channels
	16.4 Calcium Sensors: Perception, Decoding, and Relaying of Ca2+ Signatures
		16.4.1 Calmodulin
		16.4.2 Calmodulin-Like [CaM-Like]
		16.4.3 Calcineurins B-Like
		16.4.4 Calcium Dependent Protein Kinases
		16.4.5 CaM-Dependent Protein Kinase (CCaMK)
	16.5 Role of Ca2+ Signalling at Subcellular Organelles During Herbivory
	16.6 Ca2+-Mediated Local and Systemic Signalling During Herbivory
	16.7 Conclusion
	References




نظرات کاربران