دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Ajit Varma (editor), Swati Tripathi (editor), Ram Prasad (editor) سری: ISBN (شابک) : 3030362477, 9783030362478 ناشر: Springer سال نشر: 2020 تعداد صفحات: 358 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 7 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Plant Microbe Symbiosis به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب همزیستی میکروب گیاهی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Contents Chapter 1: The Rhizobium-Plant Symbiosis: State of the Art 1.1 Introduction 1.2 Legume-Rhizobium Symbiosis for Root Nodulation 1.3 Diversity of Legumes Depending on Rhizobium 1.4 Taxonomy and Host Specificity of Rhizobium Species 1.5 Factors Affecting Legume-Rhizobium Symbiosis 1.6 Mechanism Behind Root Nodulation 1.7 Role of Nitrogen and Mechanism of Root Nodulation 1.8 Role of Ethylene in Preinfection Events 1.9 Organogenesis of the Nodule 1.10 Genetic Basis of Phytohormones During Root Nodule Development 1.11 Application of Rhizobia as Biofertilizers 1.12 New Aspects of Plant-Rhizobia Symbiosis 1.13 Conclusion References Chapter 2: Diversity and Importance of the Relationship Between Arbuscular Mycorrhizal Fungi and Nitrogen-Fixing Bacteria in T... 2.1 Introduction 2.2 Agroforestry Systems in the Mexican Tropics 2.3 Functionality of Soil Microorganisms in AFS 2.4 Soil Microorganisms in AFS in the Tropics of Mexico 2.4.1 Arbuscular Mycorrhizal Fungi 2.4.2 Nitrogen-Fixing Bacteria 2.5 Conclusion and Future Prospects References Chapter 3: Nitrogen Fixation in a Legume-Rhizobium Symbiosis: The Roots of a Success Story 3.1 Introduction 3.2 Root Nodule 3.2.1 Definition and Types 3.2.2 Nodule Formation 3.2.2.1 Preinfection Stage 3.2.2.2 Infection Stage 3.2.2.3 Nodule Organogenesis 3.3 N2 Fixation in a Legume-Rhizobium Symbiosis 3.4 Effect of Abiotic Stress on Legume-Rhizobium Symbioses and N2 Fixation 3.4.1 Salinity Stress 3.4.2 Drought Stress 3.4.3 Heat Stress 3.4.4 Soil Acidity/Low pH 3.4.5 Soil Nutrient Deficiency 3.5 Conclusion and Future Prospects References Chapter 4: A Genome-Wide Investigation on Symbiotic Nitrogen-Fixing Bacteria in Leguminous Plants 4.1 Introduction 4.2 Rhizobia and Legume 4.3 Nodulation Factors (NFs) 4.4 Advances in Nitrogen-Fixing Root Nodule Symbiosis 4.5 Genome-Wide Investigation of Nodule Forming Bacteria 4.6 Conclusions and Future Prospects References Chapter 5: Symbiotic Signaling: Insights from Arbuscular Mycorrhizal Symbiosis 5.1 Introduction 5.1.1 Types of Mycorrhiza 5.1.1.1 Ectomycorrhizae (ECM) 5.1.1.2 Endomycorrhizae 5.1.1.3 Arbuscular Mycorrhiza 5.2 Arbuscular Mycorrhizal Development 5.2.1 Asymbiotic Stage 5.2.2 Mutual Recognition of Symbiotic Partners 5.2.2.1 Strigolactones 5.2.2.2 Regulation of Strigolactone Biosynthesis 5.2.2.3 Fungal Signaling Molecules and Plant Receptors 5.2.3 Formation of Appresorium/Hyphopodium 5.2.4 PPA Formation 5.2.4.1 Plant Genes Required for PPA Formation 5.2.5 The Common SYM Pathway 5.2.5.1 SYMRK 5.2.5.2 CASTOR and POLLUX 5.2.5.3 Nucleoporins 5.2.5.4 CCaMK 5.2.5.5 CYCLOPS 5.2.6 Arbuscule Development 5.3 Diverse Roles of AM 5.3.1 Improved Absorption of Water and Nutrients 5.3.2 Improved Phosphorus Uptake 5.3.3 Improvement in Nitrogen-Fixing Capacity of Nodules in Legumes 5.3.4 Enhanced Plant Growth Hormone Production 5.3.5 Suppression of Root Disease 5.3.6 Improvement of Soil´s Physical Characteristics 5.3.7 Harsh Conditions Tolerance 5.3.8 More Survival of Seedlings 5.3.9 Protection Against Heavy Metals 5.3.10 Protection Against Pathogens 5.3.11 Tool for Studying Molecular Mechanisms and Improving Productivity 5.4 Conclusion/Future Perspectives References Chapter 6: Contribution of Beneficial Fungi for Maintaining Sustainable Plant Growth and Soil Fertility 6.1 Introduction 6.2 Role of Mycorrhizae in Maintaining Soil Fertility 6.3 Role of Mycorrhizae in Stress Tolerance to Plants 6.4 Role of Mycorrhizae in Plant Disease Control 6.5 Role of Mycorrhiza in Plant Nutrition 6.6 Role of Mycorrhizae in Nitrogen Fixation 6.7 Conclusion References Chapter 7: Biofertilizers Toward Sustainable Agricultural Development 7.1 Introduction 7.2 Role of Biofertilizers in Agriculture 7.2.1 Azotobacter 7.2.2 Azospirillum 7.2.3 Rhizobium 7.2.4 Cyanobacteria 7.2.5 Azolla 7.2.6 Gluconacetobacter diazotrophicus 7.3 P-Solubilization 7.3.1 Bacteria 7.3.2 Fungi 7.4 P-Mobilizers 7.4.1 Mycorrhiza 7.5 K-Solubilizing Bacteria 7.6 Plant Growth-Promoting Rhizobacteria (PGPR) 7.7 Zinc Solubilizers 7.8 Innovation Approaches of Biofertilizers for Sustainable Agriculture Production 7.9 Conclusion and Future Prospects References Chapter 8: Plant Microbiome: Trends and Prospects for Sustainable Agriculture 8.1 Introduction 8.2 Plant Microbiome Concept 8.2.1 Evolution of Microbial Interaction: The Hologenome Concept 8.2.2 Composition of Plant-Associated Microflora 8.2.3 Impact of Anthropogenic Interventions on Plant Microbiome Composition 8.2.4 Taking the Plant Microbiome Association to the Next Level: Genomic Level 8.3 Plant Associative Microbiota Leases Each Other Services for Survival 8.4 Approaches to Study Plant Microbiome 8.4.1 Metagenomics in Plant Microbiome Studies 8.4.2 Metatranscriptomics in Plant Microbiome Studies 8.4.3 Metaproteomics in Plant Microbiome Studies 8.4.4 Metabolomics in Plant Microbiome Studies 8.5 Microbiome and Crop Production 8.5.1 Phytohormone Production 8.5.2 Nutrient Acquisition in Plants 8.5.3 Alleviation of Abiotic Stress 8.5.4 Biocontrol 8.6 Future Prospects References Chapter 9: Plants and Microbes: Bioresources for Sustainable Development and Biocontrol 9.1 Introduction 9.2 Biocontrol for Sustainable Development 9.3 Bioresources 9.3.1 Need for Sustainable Development 9.3.2 Plants as Bioresources 9.3.2.1 Source of Lignocellulosic Biomass Wastes 9.3.2.2 Microbes as a Bioresource 9.4 Plants and Microbial Interactions 9.5 Beneficial Interaction of Plants and Microbes for Bioresource Production 9.6 What is Biocontrol? 9.6.1 Need of Biocontrol 9.6.2 Major Factors for the Success of Biocontrol 9.6.3 Role of Cyanobacteria for Biotechnology: Environment and Sustainability 9.6.3.1 Cyanobacterial Bioactive Compounds 9.6.3.2 Cyanobacterial Bioplastics 9.6.3.3 Cyanobacterial Consortia for Bioremediation Purposes 9.7 Integrated Resource Management 9.8 Applications of Plants and Microbially Derived Biomass in Sustainable Development 9.8.1 Agriculture Application 9.8.2 Composting 9.8.3 Wastewater Treatment 9.9 Conclusion References Chapter 10: Plant-Microbiome Interactions in Hydrocarbon-Contaminated Soils 10.1 Introduction 10.2 The Active Role of Plants in the Metabolism of Hydrocarbons and How They Are Assisted by Microorganisms 10.2.1 Uptake and Degradation of Hydrocarbons by Plants 10.2.2 Phytotoxicity of Hydrocarbons 10.2.3 The Role of Bacteria to Assist Plants in Hydrocarbon-Contaminated Soils 10.2.4 The Role of Fungi to Assist Plants in Hydrocarbon-Contaminated Soils 10.3 The Active Role of Microorganisms in the Metabolism of Hydrocarbons and How They Are Assisted by Plants 10.3.1 Uptake and Degradation of Hydrocarbons by Bacteria 10.3.2 Degradation of Hydrocarbons by Fungi 10.3.3 The Role of Plants in Assisting Hydrocarbon Uptake/Degradation by Microorganisms 10.4 The Construction of the Holobiont Concept Through Omics Approaches 10.5 Conclusion and Future Prospects References Chapter 11: Rhizoremediation: A Unique Plant Microbiome Association of Biodegradation 11.1 Introduction 11.2 Bioremediation Approaches 11.3 Bioaugmentation Approaches 11.4 Phytoremediation Approaches 11.5 Rhizoremediation Approaches 11.6 Factor Influencing PAH Degradation 11.7 Bioavailability Approaches 11.8 Biodegradation of PAH 11.9 The Rate of PAH Biodegradation 11.10 Microbial Enzymes Involved in PAH Degradation Process 11.11 Improvement in Rhizoremediation 11.12 Conclusion References Chapter 12: Pesticide Tolerant Rhizobacteria: Paradigm of Disease Management and Plant Growth Promotion 12.1 Introduction 12.2 Mechanism of Plant Growth Promotion 12.2.1 Direct Mechanism of Plant Growth Promotion 12.2.1.1 N2 Fixation 12.2.1.2 Plant Hormones 12.2.1.3 Phosphate Solubilization 12.2.1.4 ACC Deaminase (EC 4.1.99.4) 12.2.2 Indirect Mechanism of Plant Growth Promotion 12.2.2.1 Induced Systemic Resistance (ISR) 12.2.2.2 Antibiosis 12.3 Pesticide Degradation/Toleration by Soil Bacteria 12.4 Plant Growth-Promoting Activities of Pesticide-Degrading/Tolerating Strains 12.5 Conclusion References Chapter 13: Structure and Function of Rhizobiome 13.1 Introduction 13.2 Structure of Rhizobiome 13.3 Functions of Rhizobiome 13.3.1 Rhizobiome Contributes to Plant Nutrition by Increasing Availability of the Limiting Nutrients 13.3.2 Rhizobiome Contributes to Plant Growth by Producing Plant Growth Hormones, ACC Deaminase, and/or Volatile Organic Compo... 13.3.3 Rhizobiome Directly Contributes to Plant Health by Controlling the Pathogens 13.3.4 Rhizobiome Indirectly Contributes to Plant Health by Stimulating the Plant Resistance 13.3.5 Functional Genomics of Barley Rhizobiome 13.4 Factors That Affect Structure of Rhizobiome 13.4.1 Root Exudates Determine the Structure of Rhizobiome 13.4.1.1 Root Exudates 13.4.1.2 Root Exudates Recruit Certain Microbial Species into Rhizocompartments 13.4.1.3 Root Exudates Defend Plant Roots from Natural Enemies, Thereby Indirectly Altering Rhizobiome 13.4.2 Plant Immune System Also Shapes Rhizobiome 13.5 Methods for Studying Rhizobiome Structure and Function 13.6 Summary References Chapter 14: Soil Microbes-Medicinal Plants Interactions: Ecological Diversity and Future Prospect 14.1 Introduction 14.2 Diversity of Rhizospheric Bacteria Associated with Medicinal Plant 14.3 Diversity of Rhizosphere Fungi Associated with Medicinal Plant 14.4 Effect of Rhizospheric Microbiome on Medicinal Plant Growth and Nutrient Uptake 14.5 Effect of Rhizospheric Microbiome on Biotic and Abiotic Stress Tolerance 14.6 Conclusions References Chapter 15: Insight to Biotechnological Advances in the Study of Beneficial Plant-Microbe Interaction with Special Reference t... 15.1 Introduction 15.2 Agrobacterium tumefaciens: Natural Plant Genetic Engineer 15.3 Signal Transduction and Host Immune Response 15.4 Quorum Sensing and Quenching 15.5 Plant Genes Involved in Susceptibility/Resistance to Agrobacterium Transformation 15.5.1 Factor Affecting Agrobacterium Plant Transformation 15.6 Recent Advances/Application in Plant Biology Research 15.7 Omics Approaches for Understanding Plant-Microbe Interaction Complexity 15.8 Conclusion References Chapter 16: Amelioration of Salt Stress Tolerance in Plants by Plant Growth-Promoting Rhizobacteria: Insights from ``Omics´´ A... 16.1 Introduction 16.2 Physiological and Molecular Responses of Plants to Salinity Stress 16.3 Rhizospheric Bacteria to Mitigate Salt Stress in Plants 16.4 Role of PGPR in Salinity Stress Tolerance and Plant Growth Promotion 16.5 Omics Approaches to Address the Alleviation of Salt Stress by PGPR: Transcriptome, Proteome and Metabolome Analyses 16.6 Future Perspectives References Chapter 17: Plant Microbial Ecology as a Potential Option for Stress Management in Plants 17.1 Introduction 17.2 What is Stress? 17.3 Stress in Plants 17.4 Types of Plant Stresses 17.5 Abiotic and Biotic Plant Stresses 17.6 Different Phases Induced by Stress 17.6.1 Response Phase 17.6.2 Restitution Phase 17.6.3 End Phase 17.6.4 Regeneration Phase 17.7 Plant-Microbe Interactions for Stress Management in Plants 17.8 Mechanisms of Plant-Microbe Interactions in Rhizosphere 17.9 Plant-Microbe Interactions for Alleviation of Abiotic Stresses 17.9.1 Drought as Stress 17.9.2 Salinity as Stress 17.9.3 Heavy Metal Toxicity as Stress 17.9.4 Cold Stress in Plants 17.9.5 Heat Stress of Plants 17.9.6 Osmotic Stress to Plants 17.9.7 Alleviation of Biotic Stresses 17.10 OMICS Approach of Stress Management in Fields 17.11 Conclusion References