دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Jagajjit Sahu (editor), Anukool Vaishnav (editor), Harikesh Bahadur Singh (editor) سری: ISBN (شابک) : 0367774429, 9780367774424 ناشر: CRC Pr I Llc سال نشر: 2022 تعداد صفحات: 319 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 12 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Plant-microbe Interactions: Harnessing Next-generation Molecular Technologies for Sustainable Agriculture (Advances and Applications in Biotechnology) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فعل و انفعالات میکروب گیاهی: استفاده از فناوری های مولکولی نسل بعدی برای کشاورزی پایدار (پیشرفت ها و کاربردها در بیوتکنولوژی) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half Title Series Page Title Page Copyright Page Table of Contents Preface Editors Contributors 1. Novel Approaches and Advanced Molecular Techniques for Crop Improvement 1.1 Introduction 1.2 Plant Tissue Culture in Crop Improvement 1.3 Crop Improvement by Genetic Engineering 1.3.1 Mutagenesis 1.3.2 Genome Editing 1.3.3 RNA Interference (RNAi) 1.3.4 Metabolic Engineering 1.4 Novel Genomics Technologies 1.4.1 Application of Next- Generation Sequencing (NGS) Technologies to Crop Improvement 1.4.2 Implications of Different “Omics” Approaches in Crop Improvement 1.4.2.1 Genomics in Crop Improvement 1.4.2.2 Transcriptomics in Crop Improvement 1.4.2.3 Proteomics in Crop Improvement 1.4.2.4 Metabolomics in Crop Improvement 1.5 Role of Bioinformatics in Crop Improvement 1.6 Nanotechnology in Crop Improvement 1.7 Modern Breeding Techniques for Crop Improvement 1.7.1 Allele Mining for Crop Improvement 1.7.1.1 EcoTILLING-Based Allele Mining 1.7.1.2 Sequencing-Based Allele Mining 1.7.1.3 Haplotype-Based AM 1.7.2 Gene Pyramiding for Crop Improvement 1.7.2.1 Marker-Assisted Gene Pyramiding 1.7.2.2 Marker-Assisted Backcrossing 1.7.3 Implication of Marker-Assisted Recurrent Selection (MARS) in Crop Improvement 1.7.4 Implication of Genome- Wide Selection or Genomic Selection (GWS or GS) in Crop Improvement 1.8 Summary and Future Prospects Abbreviations References 2. The Chemical Dialogue during Plant–Microbe Interaction: Implications in Sustainable Agriculture 2.1 Introduction 2.2 Role of Plant Root Exudates in Microbial Colonization 2.3 Chemotaxis Motility and Colonization by Rhizosphere Microbiota 2.4 Role of Extracellular Polysaccharides in PMI 2.5 Quorum Sensing and Biofilm Production during Microbial Colonization 2.6 Modulation of the Plant Immune System by Microorganisms 2.7 Conclusions References 3. Implication of Microbial Signals: Plant Communication 3.1 Introduction 3.2 Plants: Contribution to Microbes 3.3 Chemical Signals in the Rhizosphere and Phyllosphere 3.4 Characterized Chemical Compounds with Role in Plant–Microbe Interactions 3.4.1 Microbial Phytohormones 3.4.2 Cytokinins 3.4.3 Indole-3-Acetic Acid 3.4.4 Gibberellins 3.4.5 Defense Hormones: Mediators of Plant–Microbe Interactions 3.4.6 Stimulatory Compounds 3.4.6.1 Siderophores 3.4.6.2 Lipopeptides 3.4.7 Toxins 3.4.7.1 Polyketides 3.4.7.2 NRPs 3.4.7.3 Terpenes 3.4.7.4 Indole Alkaloids 3.5 Plant Flavonoid Signals 3.6 Impact of Rhizosphere Community Structure on Flavonoid-Mediated Communications 3.6.1 Modification of Patterns of Exudation 3.6.2 Microbial Catabolism 3.7 Role of Volatile Organic Compounds 3.8 Molecular Mechanisms Underlying Volatile Perception 3.9 Chemistry of Plant–Plant Signaling 3.10 Microbial Signals Involved in Plant Growth and Development 3.11 Conclusions and Future Aspects References 4. Molecular Aspects of Host–Pathogen Interaction 4.1 Introduction 4.2 Different Stages of Host–Pathogen Interaction 4.2.1 Invasion of the Host by a Pathogen 4.2.2 Evasion of the Host Defense System 4.2.3 Replication of Pathogen Inside the Host 4.2.4 Host-Inherent Capacity to Eradicate the Pathogen 4.3 Genetic and Molecular Basis of Host–Pathogen Interaction 4.3.1 Disease Resistance in Plants through Innate Immunity 4.3.1.1 Basal Defense 4.3.1.2 R Gene-Mediated Defense 4.3.2 Major Classes of R Gene 4.4 Metabolomics in Studying Host–Pathogen Interaction 4.4.1 Concept of Metabolomics 4.4.2 Role of Metabolomics in Plant Pathology 4.4.3 Role in Studying Host–Pathogen Interactions 4.5 Online Repositories for Host–Pathogen Interaction 4.6 Conclusions 4.7 Future Prospects References 5. Omics: A Potential Tool to Delineate the Mechanism of Biocontrol Agents against Plant Pathogens 5.1 Introduction 5.2 Genomics 5.2.1 Trichoderma sp 5.2.2 Pseudomonas sp 5.2.3 Bacillus sp 5.3 Proteomics 5.3.1 Protein Identification 5.3.1.1 Gel-Based Techniques 5.3.1.2 Gel-Free Techniques 5.3.1.3 Label-Free Techniques 5.3.2 Fundamentals of Plant–Microbe (PM) Interactions 5.3.3 Records of Plant, Pathogen, and PGPR Interactions through Proteomic Approaches 5.4 Secretomics in Plant– Pathogen Interaction 5.4.1 Apoplastic Protein Extraction 5.4.2 Analysis of in planta Secreted Proteins 5.5 Transcriptomics in Plant–Pathogen– Antagonist Interaction 5.5.1 Application of Transcriptomics 5.6. Culturomics 5.7 Concluding Remarks Acknowledgment References 6. Bioinformatics Approaches to Improve and Enhance the Understanding of Plant–Microbe Interaction: A Review 6.1 Introduction 6.2 Genomics 6.3 Gene expression Data 6.3.1 Expressed Sequence Tags 6.3.2 Microarrays 6.3.3 RNA-Seq 6.3.4 MicroRNAs 6.4 Protein–Protein Interaction (PPI) Prediction 6.4.1 Homology-Based Prediction 6.4.2 Structure-Based Prediction 6.4.3 Domain-Based Approaches 6.4.4 Motif-and Integration-Based Approaches 6.4.5 Motif–Domain and Motif–Motif Interaction-Based Approaches 6.4.6 Surface Electrostatics and Epitope Prediction 6.4.7 Analysis of Dynamic Character of PPI 6.5 Machine Learning-Based Predictions 6.6 Systems Biology Approach 6.7 Conclusions References 7. Plant–Microbe Interactions in the Age of Sequencing 7.1 Introduction 7.2 Sequencing Technology 7.2.1 First-Generation Sequencing 7.2.2 Second-Generation Sequencing 7.2.3 Third-Generation Sequencing 7.3 Selection of NGS Technique 7.4 Analysis of Sequencing Results 7.4.1 Amplicon Analysis 7.4.2 Metagenome Analysis 7.4.3 De novo Microbial Genome Assembly 7.4.4 Metatranscriptomic Analysis 7.5 Conclusions References 8. Metaomics Technologies in Understanding Ethnomedicinal Plants and Endophyte Microbiome 8.1 Introduction 8.2 Metaomics 8.3 Endophytic Metagenomics 8.4 Approaches to Studying Metagenome 8.5 Comparative Metagenomics 8.6 Techniques Coupled with Metagenomics 8.7 Software for Metagenomic Analysis 8.8 Endophytic Metatranscriptomics 8.9 Endophytic Metaproteomics 8.10 Endophytic Metabolomics 8.11 Methodological Challenges 8.12 Conclusions References 9. Plant–Rhizomicrobiome Interactive Ecology through the Lenses of Multi-Omics and Relevant Bioinformatics Approaches 9.1 Introduction 9.2 Genomics and Metagenomics 9.3 Transcriptomics and Metatranscriptomics 9.4 Proteomics and Metaproteomics 9.5 Metabolomics 9.6 Genome Editing Tools 9.7 Bioinformatics Tools and Online Databases 9.8 Conclusive Remarks 9.9 Future Directions References 10. Future Prospects of Next-Generation Sequencing 10.1 Introduction 10.2 First-Generation Sequencing Techniques (FGSTs) 10.3 Second-Generation Sequencing Techniques (SGSTs) 10.4 Third-Generation Sequencing Techniques (TGSTs) 10.5 Single-Molecule DNA Sequencing (SMDS) 10.6 Single-Molecule Real-Time Sequencing (SMRT) 10.7 Nanopore Sequencing 10.8 Potential TGSTs 10.9 NGS Data Analysis 10.10 Use of NGS Techniques in Molecular Plant Biology and Crop Improvement 10.11 Transcriptome Investigation 10.12 Gene Expression Profiling 10.13 Small Noncoding RNA Profiling 10.14 Gene Annotation Using Transcriptome Sequence Data 10.15 Phylogenetic and Ecological Studies 10.16 Allele Mining 10.17 Genetical Genomics 10.18 Epigenetics Studies 10.19 Regulatory Protein Binding Domain Prediction 10.20 Metagenomic Analysis 10.21 Single-Cell Genomics 10.22 Exome Sequencing 10.23 Multiple Genome Sequencing and Resequencing 10.24 Accelerating Genetic Gain in Breeding Populations 10.25 Development of Pan-Genome and Super- Pan-Genome 10.26 Pan-Genome size 10.27 Type of Accessions 10.28 Accelerating the Use of Gene-Based Markers in Breeding 10.29 Capturing Exome Variation 10.30 Future Prospects 10.31 Concluding Remarks References 11. Revisiting Molecular Techniques for Enhancing Sustainable Agriculture 11.1 Introduction 11.2 Molecular Techniques for Deciphering Plant–Microbiome Interactions 11.3 Why are Plant–Microbe Interactions Important for Crop Improvement? 11.4 Next-Generation Techniques in Studying Plant–Microbe Interactions 11.4.1 Next-Generation Sequencing Analysis of Plant–Microbe Interactions 11.4.2 Transcriptome Scan of Plant–Microbe Interactions 11.4.3 Proteome Analyses of Plant–Microbe Interactions 11.4.4 Metabolomics Analyses of Plant–Microbe Interactions 11.4.5 Simultaneous Perusal of Interaction between Plants and Related Microorganisms 11.4.6 Use of Transcriptomics of Multiple Species in Understanding Plant–Microbe Interactions 11.4.7 Phenomics 11.4.8 Challenges and Future Perspectives 11.5 Conclusions References 12. Nanotechnology in Plant Pathology: An Overview 12.1 Introduction 12.2 Need for Nanotechnology in Agriculture 12.3 Nanoformulations of Agrochemicals for Crop Improvement 12.4 Synthesis of Metal NPs from Plant Extract 12.5 Synthesis of Silver NPs from Plant Extract 12.6 Synthesis of Gold NPs from Plant Extract 12.7 Synthesis of Copper NPs from Plant Extract 12.8 Synthesis of Iron and Zinc Oxide NPs from Plant Extract 12.9 Application of Nanotechnology in Plant Pathology 12.10 Silver NPs 12.11 Copper NPs 12.12 Zinc NPs 12.13 Silicon NPs 12.14 Magnesium NPs 12.15 Sulfur NPs 12.16 Gold NPs 12.17 Carbon NPs 12.18 Titanium Dioxide (TiO[sub(2)]) NPs 12.19 Molybdenum NPs 12.20 Liposomes 12.21 Dendrimers 12.22 Conclusions References 13. An Overview of CRISPR and Gene Chip Technology to Study Plant–Microbe Interaction 13.1 Introduction 13.2 Holo-Omics for Plant Biology: Advantages and Challenges 13.3 Recent Advancements in Plant–Microbe Crosstalk Studies 13.3.1 CRISPR/Cas9 Manipulation 13.3.2 Role of Microarrays and Gene Chip Technologies 13.4 Conclusions Acknowledgment Conflict of Interest References 14. Functional Genomic Approaches to Improve Rice Productivity through Leaf Architecture 14.1 Introduction 14.2 Review of Literature 14.2.1 Rice Taxonomy and Origin 14.2.2 Rice Genetic Resources 14.2.3 Improving Rice Productivity 14.2.4 C[sub(4)] Leaf Anatomy 14.2.5 Leaf Development 14.2.6 Rice Genome Functional Analysis 14.2.7 Semi- Quantitative PCR 14.2.8 Gas Exchange Measurements 14.3 Conclusions References 15. Tapping the Role of Plant Volatiles Inducing Multi- Trophic Interactions for Sustainable Agricultural Production 15.1 Introduction 15.2 Volatile Organic Compounds (VOCs): Classification and Biosynthesis 15.2.1 Terpenoids 15.2.2 Phenylpropanoid/ Benzenoid Compounds 15.2.3 Fatty Acid Derivatives 15.2.4 Amino Acid Derivatives 15.3 Role of Volatile Organic Compounds (VOCs) in Plant Growth 15.4 Role of Plant Volatiles in Stress Management 15.4.1 VOCs Repelling Insect Herbivores 15.4.2 VOCs Suppressing Phytopathogens 15.4.3 VOCs Evading Abiotic Stress 15.5 Application in Crop Improvement 15.6 Conclusions and Future Prospects Acknowledgments References 16. Desiccation Tolerance in Orthodox and Recalcitrant Seeds 16.1 Introduction 16.1.1 Desiccation Tolerance as the Basis of Long-Term Seed Viability 16.2 Mechanisms of Desiccation Tolerance in Developing Seeds 16.3 Master Transcription Factors and Regulatory Mechanisms of Desiccation Tolerance 16.4 The Role of Various Factors and Signaling in Developing Seeds 16.4.1 The Role of ABA Signaling in DT 16.4.2 The Role of LEA Protein and HSP Signaling in Seed DT 16.4.3 The Role of Carbohydrate Signaling in Seed DT 16.4.3.1 The Role of Sugars, Especially Sucrose, in DT 16.4.3.2 The Role of RFO in Seed DT 16.5 Antioxidants, Both Enzymatic and Non-Enzymatic, Play a Role in Seed Desiccation Tolerance 16.6 Tolerance to Desiccation in Germinated Seeds 16.7 Experimental Approaches to DT 16.8 Modification in Desiccation: Removal of Cytoplasmic Water 16.9 Contradictory Results 16.10 Conclusions Abbreviations References 17. Chemical Ecology in Belowground Plant Communication 17.1 Introduction 17.1.1 Microbiome and Arbuscular Mycorrhizal Fungi 17.1.2 Agricultural Practices and Plant Microbiome 17.1.2.1 Glomalin and Microbiome 17.1.2.2 Soil and Microbiome 17.2 Conclusions References 18. Possible Bioremediation Strategies for Arsenic Detoxification by Consortium of Beneficial Bacteria 18.1 Introduction 18.2 Strategies Adopted by Bacteria to Alleviate Arsenic Toxicity 18.2.1 Arsenic Uptake and Efflux Systems 18.2.2 Bacterial Redox Reaction 18.2.2.1 Oxidation of Arsenite to Arsenate 18.2.2.2 Reduction of Arsenate to Arsenite 18.2.2.3 Biovolatilization of Arsenic 18.3 Molecular Mechanisms of Bacterial Tolerance to Arsenic Species 18.4 Role of Bacteria in Arsenic Toxicity Amelioration in Plants 18.5 A Genomic Perspective of Arsenic Bioremediation 18.6 How a Bacterial Consortium Plays a Better Role Than Individual Strains 18.7 Conclusions and Future Prospects Acknowledgments References Index