ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Plant Factory: An Indoor Vertical Farming System for Efficient Quality Food Production

دانلود کتاب کارخانه گیاهان: یک سیستم کشاورزی عمودی داخلی برای تولید مواد غذایی با کیفیت کارآمد

Plant Factory: An Indoor Vertical Farming System for Efficient Quality Food Production

مشخصات کتاب

Plant Factory: An Indoor Vertical Farming System for Efficient Quality Food Production

ویرایش: 2 
نویسندگان: , ,   
سری:  
ISBN (شابک) : 0128166916, 9780128166918 
ناشر: Elsevier Science & Technology 
سال نشر: 2019 
تعداد صفحات: 518 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 17 مگابایت 

قیمت کتاب (تومان) : 52,000



کلمات کلیدی مربوط به کتاب کارخانه گیاهان: یک سیستم کشاورزی عمودی داخلی برای تولید مواد غذایی با کیفیت کارآمد: باغبانی با نور مصنوعی، محصولات غذایی -- برداشت، کشاورزی پایدار، محصولات زراعی -- نوآوری های تکنولوژیکی.



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 12


در صورت تبدیل فایل کتاب Plant Factory: An Indoor Vertical Farming System for Efficient Quality Food Production به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب کارخانه گیاهان: یک سیستم کشاورزی عمودی داخلی برای تولید مواد غذایی با کیفیت کارآمد نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب کارخانه گیاهان: یک سیستم کشاورزی عمودی داخلی برای تولید مواد غذایی با کیفیت کارآمد



Plant Factory: An Indoor Vertical Farming System for Efficient Quality Food Production، ویرایش دوم یک نگاه جامع به اجرای شیوه های کارخانه گیاهی (PF) برای تولید محصولات غذایی برای بهبود امنیت غذایی و پایداری زیست محیطی. این کتاب که توسط متخصصان برجسته در PF و کشاورزی محیط کنترل شده (CEA) ویرایش و تألیف شده است، به پنج بخش شامل مروری و مفهوم سیستم‌های تولید گیاهی بسته (CPPS)، مبانی فیزیک و فیزیولوژی - محیط‌ها و اثرات آنها تقسیم شده است. ، طراحی سیستم، ساخت و ساز، کشت و مدیریت و کارخانه های گیاهی در حال بهره برداری.

علاوه بر پوشش جدید در مورد پیشرفت سریع فناوری LED و کاربرد آن در کشاورزی عمودی داخل ساختمان، ویرایش های دیگر نسخه جدید شامل به روز رسانی شده است. اطلاعات در مورد وضعیت تحقیق و توسعه تجاری و PFAL های تجاری منتخب (کارخانه کارخانه با نور مصنوعی). به روز رسانی های اضافی شامل مواردی است که بر روی میکرو و مینی PFAL ها برای بهبود کیفیت زندگی در مناطق شهری، فیزیک و فیزیولوژی نور، تأثیر PFAL بر اجزای دارویی گیاهان و مسائل مربوط به طراحی، ساخت، کشت و مدیریت سیستم متمرکز شده اند. مربوط به تولید پیوند در سیستم های بسته، تکثیر و آموزش فوتوتوتروفیک، آموزش و انجمن های تجاری فشرده در PFs.


توضیحاتی درمورد کتاب به خارجی

Plant Factory: An Indoor Vertical Farming System for Efficient Quality Food Production, Second Edition presents a comprehensive look at the implementation of plant factory (PF) practices to yield food crops for both improved food security and environmental sustainability. Edited and authored by leading experts in PF and controlled environment agriculture (CEA), the book is divided into five sections, including an Overview and the Concept of Closed Plant Production Systems (CPPS), the Basics of Physics and Physiology - Environments and Their Effects, System Design, Construction, Cultivation and Management and Plant Factories in Operation.

In addition to new coverage on the rapid advancement of LED technology and its application in indoor vertical farming, other revisions to the new edition include updated information on the status of business R&D and selected commercial PFALs (plant factory with artificial lighting). Additional updates include those focused on micro and mini-PFALs for improving the quality of life in urban areas, the physics and physiology of light, the impact of PFAL on the medicinal components of plants, and the system design, construction, cultivation and management issues related to transplant production within closed systems, photoautotrophic micro-propagation and education, training and intensive business forums on PFs.



فهرست مطالب

Cover
Plant Factory:
An Indoor Vertical Farming System for Efficient Quality Food Production
Copyright
Contributors
Preface
Part 1: Overview and concept of closed plant production system (CPPS)
1 . Introduction
	References
2 . Role of the plant factory with artificial lighting (PFAL) in urban areas
	2.1 Introduction
	2.2 Interrelated global issues to be solved concurrently
	2.3 Resource inflow and waste outflow in urban areas
	2.4 Energy and material balance in Urban ecosystems
		2.4.1 Photoautotrophs (plants) and heterotrophs (animals and microorganisms)
		2.4.2 Waste produced in urban areas as an essential resource for growing plants
		2.4.3 Plant production systems integrated with other biological systems
		2.4.4 Role of organic fertilizers and microorganisms in the soil
		2.4.5 Stability and controllability of the environment in plant production systems
		2.4.6 Key indices for sustainable food production
		2.4.7 What is “PFAL”?
			Definition
			Scientific benefits of PFALs
		2.4.8 Plants suited and unsuited to PFALs
	2.5 Growing social needs and interest in PFALs
	2.6 Criticisms of PFALs and responses to them
		2.6.1 Introduction
		2.6.2 Initial cost is too high
		2.6.3 Production cost is too high
		2.6.4 Electricity cost is too high, whereas solar light is free
		2.6.5 Labor cost is too high
		2.6.6 PFAL-grown vegetables are neither tasty nor nutritious
		2.6.7 Most PFALs are not making a profit
		2.6.8 Land price is too high
		2.6.9 Water consumption for irrigation is too high
		2.6.10 PFALs can only produce leafy greens—minor vegetables—economically
	2.7 Toward a sustainable PFAL
		2.7.1 Requirements for a sustainable PFAL
		2.7.2 Factors affecting the sustainability of PFALs
			Positive aspects affecting environmental, resource, social, and economic sustainability
			Factors to be solved to improve sustainability
		2.7.3 Similarities between the Earth, space farms, autonomous cities, and PFALs
	2.8 Conclusion
	References
3 . PFAL business and R&D in Asia and North America: status and perspectives
	3.1 Introduction
	3.2 Japan
		3.2.1 Brief history and current status of the PFAL business
		3.2.2 Research and development
		3.2.3 Public service
	3.3 Taiwan
		3.3.1 Status of PFALs in Taiwan
		3.3.2 PFAL expo in Taiwan
		3.3.3 PFAL research
			Cost comparison of PFALs
			Spectra of LEDs used in PFAL
			WSN in PFAL
			Ion-selective sensors for nutrient detection
			Nondestructive plant growth measurement system
			LED tubes with adjustable spectrum and intensity
			UV and FR for phytochemical production and morphogenesis research
			Low-potassium lettuce production for ESRD patients
		3.3.4 Business models of PFAL in Taiwan
		3.3.5 Conclusions
	3.4 Korea
		3.4.1 PFALs, an icon of innovation in future production and consumption
		3.4.2 Research and technical development (RTD)
		3.4.3 Private companies and farms in the PFAL business
		3.4.4 Achievements and challenges
	3.5 China
		3.5.1 Development and current status of PFALs in China
		3.5.2 Research activities
		3.5.3 Typical PFALs and case studies
			Chinese Academy of Agricultural Sciences
			Beijing research centre of intelligent equipment for agriculture, Beijing academy of agriculture and forestry sciences
			South China agricultural university
			AEssense
			Beijing Kingpeng international hi-tech corporation
			Sanan sino-science
			Shouguang
		3.5.4 Conclusion
	3.6 Thailand
		3.6.1 R&D on PFALs in Thailand
		3.6.2 R&D and business in the private sector
		3.6.3 Policy and future prospects for PFALs
	3.7 North America
		3.7.1 History
		3.7.2 Contribution of space science
		3.7.3 Current status and future prospects
	References
	Further reading
4 . Vertical farming in Europe: present status and outlook
	4.1 Introduction
	4.2 Vertical farming nonprofit sector associations
	4.3 The entrepreneurial landscape
		4.3.1 Overview
		4.3.2 Examples for each vertical farming typology
			PFAL
			Container farm
			In-store farm
			Appliance farm
		4.3.3 A deeper look into the Dutch vertical farming landscape
		4.3.4 Projects expected to be completed in the near future
		4.3.5 Examples of vertical farming as a new market for established European companies
	4.4 Final remarks and conclusions
	Acknowledgments
	References
5 . Plant factory as a resource-efficient closed plant production system
	5.1 Introduction
	5.2 Definition and principal components of PFAL
	5.3 Definition of resource use efficiency
		5.3.1 Water use efficiency
		5.3.2 CO2 use efficiency
		5.3.3 Light energy use efficiency of lamps and plant community
		5.3.4 Electrical energy use efficiency of lighting
		5.3.5 Electrical energy use efficiency of heat pumps for cooling
		5.3.6 Inorganic fertilizer use efficiency
	5.4 Representative values of resource use efficiency
	5.5 Electricity consumption and cost
	5.6 Improving light energy use efficiency
		5.6.1 Introduction
		5.6.2 Interplant lighting and upward lighting
		5.6.3 Improving the ratio of light energy received by leaves
		5.6.4 Using LEDs
		5.6.5 Controlling environmental factors other than light
		5.6.6 Controlling air current speed
		5.6.7 Increasing the salable portion of plants
		5.6.8 Increasing annual production capacity and sales volume per unit land area
	5.7 Estimation of rates of photosynthesis, transpiration, and water and nutrient uptake
		5.7.1 Introduction
		5.7.2 Net photosynthetic rate
		5.7.3 Transpiration rate
		5.7.4 Water uptake rate by plants
		5.7.5 Ion uptake rate by plants
		5.7.6 Application
	5.8 Coefficient of performance of heat pump
	References
6 . Micro- and mini-PFALs for improving the quality of life in urban areas
	6.1 Introduction
	6.2 Characteristics and types of m-PFALs
	6.3 m-PFALs in various scenes
		6.3.1 Homes
		6.3.2 Restaurants and shopping centers
		6.3.3 Schools and community centers
		6.3.4 Hospitals
		6.3.5 Offices
		6.3.6 Small shops and rental m-PFALs
	6.4 Design concept of m-PFALs
	6.5 m-PFALs connected by the internet
	6.6 Advanced usage of m-PFAL
		6.6.1 Connecting with a virtual m-PFAL
		6.6.2 Visualizing plant growth as affected by energy and material balance
		6.6.3 Maximizing productivity and benefits using minimum resources
		6.6.4 Learning the basics of an ecosystem
		6.6.5 Challenges
	6.7 m-PFALs connected with other biosystems as a model ecosystem
	6.8 Light source and lighting system design
	Acknowledgments
	References
7 . Rooftop plant production systems in urban areas
	7.1 Introduction
	7.2 Rooftop plant production
		7.2.1 Raised-bed production
		7.2.2 Continuous row farming
		7.2.3 Hydroponic greenhouse growing
	7.3 Building integration
		7.3.1 Stormwater management
		7.3.2 Energy use reductions
	References
Part 2: Basics of physics and physiology — Environments and their effects
8 . Light sources
	8.1 Introduction
	8.2 Classification of light sources
	8.3 Light-emitting diodes
		8.3.1 General benefits
		8.3.2 Outline of the light-emitting mechanism
		8.3.3 Configuration types
		8.3.4 Basic terms expressing electrical and optical characteristics
		8.3.5 Electrical and thermal characteristics in operation
		8.3.6 Lighting and light intensity control methods
		8.3.7 Lesser-known benefits and disadvantages related to use
		8.3.8 LED modules with different color LEDs for PFALs
		8.3.9 Pulsed light and its effects
		8.3.10 Description of LED luminaire performance for plant cultivation
	8.4 Fluorescent lamps
		8.4.1 General benefits
		8.4.2 Configuration of tubular fluorescent lamps
		8.4.3 Outline of the light emission mechanism and process
		8.4.4 Relative spectral radiant flux of light emitted from a fluorescent lamp
	References
9 . Plant responses to light
	9.1 Physical properties of light and its measurement
		9.1.1 Physical properties
		9.1.2 Light measurement
	9.2 Plant responses to light environments
		9.2.1 Photoreceptors
			Phytochromes
			Cryptochromes
			Phototropins
			Members of the Zeitlupe family
			UV resistance locus 8
		9.2.2 Plant response to light intensity, photoperiod, and daily light integral
		9.2.3 Plant response to light quality
			Red and blue light
			Red and far-red light
			Green light
			UV light
	9.3 Conclusion
	References
10 . LED advancements for plant-factory artificial lighting
	10.1 Need for CEA of all kinds
	10.2 All-important energy costs
	10.3 Pre-LED era
	10.4 Enter light-emitting diodes (LEDs)
	10.5 History of LED use for plant lighting
	10.6 First LED/plant-growth tests
	10.7 NASA spinoff
	10.8 Sorting out the spectral contributions of LED wavebands
	10.9 Red light
	10.10 Blue light
	10.11 Green light
	10.12 Far-red light
	10.13 White light from LEDs
	10.14 UV radiation from LEDs
	10.15 Advances in LEDs for PFAL
	10.16 Intrinsic LED efficiency
	10.17 Advances in LED utilization
	10.18 Distribution of light from LEDs
	10.19 Leveraging the unique properties of LEDs
	10.20 Phasic co-optimization of LED lighting with the aerial environment
	10.21 Multiple light/growth prescriptions simultaneously in a warehouse
	10.22 Summary
	References
11 . Physical environmental factors and their properties
	11.1 Introduction
	11.2 Temperature, energy, and heat
		11.2.1 Energy balance
		11.2.2 Radiation
		11.2.3 Heat conduction and convection
		11.2.4 Latent heat—transpiration
		11.2.5 Measurement of temperature
	11.3 Water vapor
		11.3.1 Humidity
		11.3.2 Vapor pressure deficit
		11.3.3 Measurement of humidity
	11.4 Moist air properties
		11.4.1 Composition of air
		11.4.2 Psychrometric chart
	11.5 CO2 concentration
		11.5.1 Nature
		11.5.2 Dynamic changes of CO2 concentration in PFALs
		11.5.3 Measurement of CO2 concentration
	11.6 Air current speed
		11.6.1 Nature and definition
		11.6.2 Measurement
	11.7 Number of air exchanges per hour
		11.7.1 Nature and definition
		11.7.2 Measurement of air exchange
	References
12 . Photosynthesis and respiration
	12.1 Introduction
	12.2 Photosynthesis
		12.2.1 Light absorption by photosynthetic pigments
		12.2.2 Electron transport and bioenergetics
		12.2.3 Carbon fixation and metabolism
	12.3 C3, C4, and CAM photosynthesis
	12.4 Respiration
	12.5 Photorespiration
	12.6 Leaf area index (LAI) and light penetration
	12.7 Single leaf and canopy
	References
13 . Growth, development, transpiration, and translocation as affected by abiotic environmental factors
	13.1 Introduction
	13.2 Shoot and root growth
		13.2.1 Growth: definition
		13.2.2 Root growth
	13.3 Environmental factors affecting plant growth and development
		13.3.1 Temperature and plant growth and development
		13.3.2 Daily light integral
		13.3.3 Light quality
		13.3.4 Humidity (VPD)
		13.3.5 CO2 concentration
		13.3.6 Air current speed
		13.3.7 Nutrient and root zone
	13.4 Development (photoperiodism and temperature affecting flower development)
	13.5 Transpiration
	13.6 Translocation
	References
14 . Nutrition and nutrient uptake in soilless culture systems
	14.1 Introduction
	14.2 Essential elements
	14.3 Beneficial elements
	14.4 Nutrient uptake and movement
	14.5 Nutrient solution
	14.6 Solution pH and nutrient uptake
	14.7 Nitrogen form
	14.8 New concept: quantitative management
	14.9 Can individual ion concentrations be managed automatically?
	References
15 . Tipburn
	15.1 Introduction
	15.2 Cause of tipburn
		15.2.1 Inhibition of Ca2+ absorption in root
		15.2.2 Inhibition of Ca2+ transfer from root to shoot
		15.2.3 Competition for Ca2+ distribution
	15.3 Countermeasure
	References
16 . Functional components in leafy vegetables
	16.1 Introduction
	16.2 Low-potassium vegetables
	16.3 Low-nitrate vegetables
		16.3.1 Restriction of feeding nitrate fertilizer to plants
		16.3.2 Reduction in accumulated nitrate by assimilation of nitrate
	16.4 Improving the quality of leafy vegetables by controlling light quality
		16.4.1 Leafy vegetables
		16.4.2 Herbs
	16.5 Conclusion
	References
17 . Medicinal components
	17.1 Introduction
	17.2 Growing medicinal plants under controlled environments: medicinal components and environmental factors
		17.2.1 CO2 concentration and photosynthetic rates
		17.2.2 Temperature stress
		17.2.3 Water stress
		17.2.4 Spectral quality and UV radiation
	17.3 Conclusion
	References
18 . Production of pharmaceuticals in a specially designed plant factory
	18.1 Introduction
	18.2 Candidate crops for PMPs
	18.3 Construction of GM plant factories
	18.4 Optimization of environment conditions for plant growth
		18.4.1 Strawberry
		18.4.2 Tomato
		18.4.3 Rice
Part 3: System design, construction, cultivation and management
19 . Plant production process, floor plan, and layout of PFAL
	19.1 Introduction
	19.2 Motion economy and PDCA cycle
		19.2.1 Principles of motion economy
		19.2.2 PDCA cycle
	19.3 Plant production process
	19.4 Layout
		19.4.1 Floor plan
		19.4.2 Operation room
		19.4.3 Cultivation room
	19.5 Sanitation control
		19.5.1 Biological cleanness
		19.5.2 ISO22000 and HACCP for food safety
	References
20 . Hydroponic systems
	20.1 Introduction
	20.2 Hydroponic systems
	20.3 Sensors and controllers
	20.4 Nutrient management systems
		20. 4.1 Open and closed hydroponic systems
		20.4.2 Changes in nutrient balance under EC-based hydroponic systems
	20.5 Ion-specific nutrient management
	20.6 Sterilization systems
	References
21 . Seeding, seedling production and transplanting
	21.1 Introduction
	21.2 Preparation
	21.3 Seeding
	21.4 Seedling production and transplanting
22 . Transplant production in closed systems
	22.1 Introduction
	22.2 Main components and their functions
		22.2.1 Main components
		22.2.2 Light source, air conditioners, and small fans
		22.2.3 Electricity costs
		22.2.4 Nutrient solution supply
	22.3 Ecophysiology of transplant production
		22.3.1 Introduction
		22.3.2 Effects of light quality on photosynthetic performance in transplants
		22.3.3 Effects of the physical environment on biotic stress resistance in transplants
		22.3.4 Effects of plant–plant interactions on gas exchange within transplant canopy
		22.3.5 Effects of light quality on light competition between neighboring plants and consequent equality of plant growth
		22.3.6 Conclusions
	22.4 Photosynthetic characteristics of vegetable and medicinal transplants as affected by the light environment
		22.4.1 Introduction
		22.4.2 Influence of the light environment on vegetable transplant production
		22.4.3 Effects of PPFD and photoperiod on the growth of vegetable transplants
		22.4.4 Effects of light quality on growth of vegetable transplants
		22.4.5 Photosynthetic characteristics of medicinal D. officinale
	22.5 Blueberry
	22.6 Propagation and production of strawberry transplants
		22.6.1 Vegetative propagation of strawberry
		22.6.2 Licensing and certification
		22.6.3 Plug transplants
		22.6.4 Transplant production in a PFAL
			Configuration of S-PFAL
			Environmental control
			Small propagules with high planting density
			Fixing of runner tips
			Separation of runner plants
			Simultaneous growth of propagules
			LED lighting for S-PFAL
			Productivity of S-PFAL
		22.6.5 Application of S-PFAL in Korea
	References
23 . Photoautotrophic micropropagation
	23.1 Introduction
	23.2 Development of PAM
	23.3 Advantages and disadvantages of PAM for growth enhancement of in vitro plants
	23.4 Natural ventilation system using different types of small culture vessels
	23.5 Forced ventilation system for large culture vessels
	23.6 Potential for secondary metabolite production of in vitro medicinal plants using photoautotrophic micropropagation
		23.6.1 Introduction
		23.6.2 Scaling up a photoautotrophic micropropagation system to an aseptic culture room—a closed plant production system (CPPS)
	23.7 Conclusion
	References
24 . Biological factor management
	24.1 Introduction
	24.2 Controlling algae
		24.2.1 Hydrogen peroxide
		24.2.2 Ozonated water
		24.2.3 Chlorine
		24.2.4 Substrates
	24.3 Microorganism management
		24.3.1 Microbiological testing
		24.3.2 Environmental testing—airborne microorganisms
		24.3.3 Measurement of fallen bacteria using the plate method
		24.3.4 Measurement of airborne microorganisms
		24.3.5 Quality testing—testing for bacteria and fungi
		24.3.6 Examples of reports of microbiological testing in PFALs
	24.4 Concluding remarks
	References
25 . Design and management of PFALs
	25.1 Introduction
	25.2 Structure and function of the PFAL-D&M system
	25.3 PFAL-D (design) subsystem
		25.3.1 Lighting system (LS)
	25.4 PFAL-M subsystem
		25.4.1 Structure of software
		25.4.2 Logical structure of equations
	25.5 Design of the lighting system
		25.5.1 PPFD distribution
		25.5.2 Scheduling the lighting cycles to minimize the electricity charge
	25.6 Electricity consumption and its reduction
		25.6.1 Daily changes in electricity consumption
		25.6.2 COP as affected by the temperature difference between inside and outside
		25.6.3 COP as affected by the actual cooling load
		25.6.4 Monthly changes in electricity consumption
		25.6.5 Visualization of power consumption by components on the display screen
		25.6.6 Rates of net photosynthesis, dark respiration, and water uptake by plants
	25.7 Three-dimensional distribution of air temperature
	25.8 Plant growth measurement, analysis, and control
		25.8.1 Determination of parameter values for the plant growth curve
		25.8.2 Determination of dates for transplanting
		25.8.3 Determination of the number of culture panels for different growth stages
	25.9 Conclusions
	References
26 . Automated technology in plant factories with artificial lighting
	26.1 Introduction
	26.2 Seeding device
	26.3 Seedling selection robot system
	26.4 Shuttle-type transfer robot
	26.5 Cultivation panel washer
	Reference
27 . Life cycle assessment
	27.1 Standard of life cycle assessment (LCA)
		27.1.1 Introduction
		27.1.2 Goal and scope definition
		27.1.3 Life cycle inventory analysis
		27.1.4 Life cycle impact assessment
		27.1.5 Interpretation
	27.2 General remarks for the assessment of PFALs
		27.2.1 Inventory data collection/impact assessment
		27.2.2 Functional unit
		27.2.3 Interpretation
	27.3 A case study of LCA on plant factories (Kikuchi et al., 2018)
		27.3.1 Settings: indicators
		27.3.2 Settings: life cycle boundary and functional unit
		27.3.3 Settings: data for assessments
		27.3.4 Settings: applied energy technology options
		27.3.5 Results and discussion
	27.4 Summary and outlook
	References
	Further reading
28 . Education, training, and business workshops and forums on plant factories
	28.1 Introduction
	28.2 JPFA business workshops
	28.3 Business forums
		28.3.1 Basic course on PFALs
		28.3.2 Advanced course on PFALs
Part 4: PFALs in operation and its perspectives
29 . Selected PFALs in the United States, the Netherlands, and China
	29.1 Introduction
	29.2 AeroFarms in the United States
		29.2.1 Company outline and vision and mission
		29.2.2 Technical characteristics of the company
		29.2.3 Business features and business model
		29.2.4 Main crops and product brand name
		29.2.5 Outline of PFAL of AeroFarms
		29.2.6 Challenges
		29.2.7 Research and development
		29.2.8 Future plans
	29.3 Signify facility in the Netherlands—GrowWise center
		29.3.1 Company outline, vision, and mission
		29.3.2 Business features and business model
		29.3.3 Technical characteristics and outline of GrowWise center
		29.3.4 Targeted market, challenges, and future plans
	29.4 BrightBox in the Netherlands
		29.4.1 Company outline, vision, and mission
		29.4.2 History and technical background of the company
		29.4.3 Features of the business
		29.4.4 Outline of PFAL and technical characteristics
		29.4.5 Challenges and future plans
	29.5 Fujian Sanan Sino-Science photobiotech in China
		29.5.1 Company outline, vision, and mission
		29.5.2 Business features and business model
		29.5.3 Outline of PFALs of Sanan Sino-Science
		29.5.4 Technical characteristics and research and development
		29.5.5 Future plans
	Acknowledgments
	References
30 . Selected PFALs in Japan
	30.1 Introduction
	30.2 New PFAL built in 2017 in Japan—808 factory
		30.2.1 Company outline, vision, and mission
		30.2.2 History and technical background of the company
		30.2.3 Business features and business model
		30.2.4 Main crops and product brand name
		30.2.5 Outline of PFALs: first and second facilities of the 808 Factory
		30.2.6 Technical characteristics
		30.2.7 Future plans
	30.3 New PFAL built in 2018 in Japan—Spread
		30.3.1 Company outline, vision, and mission
		30.3.2 History and technical background of the company
		30.3.3 Business features and business model
		30.3.4 Main crops and product brand name
		30.3.5 Outline of PFALs of Spread
		30.3.6 Technical characteristics
		30.3.7 Challenges
		30.3.8 Future plans
	30.4 New PFAL system developed in Japan—PlantX
		30.4.1 Company outline, vision, and mission
		30.4.2 History and technical background of the company
		30.4.3 Technical characteristics
		30.4.4 Future plans
	30.5 Conclusion
	Acknowledgments
	References
31 . Representative plant factories in Taiwan
	31.1 Introduction
	31.2 Representative PFALs in Taiwan
		31.2.1 Cal-Com Bio Corp. of the New Kinpo Group
		31.2.2 Glonacal Green Technology Corp
		31.2.3 Tingmao agricultural biotechnology
		31.2.4 PFAL building inside a greenhouse
	31.3 The largest PF in Taiwan
32 . Challenges for the next-generation PFALs
	32.1 Introduction
	32.2 Lighting system
		32.2.1 Upward lighting
		32.2.2 Using green LEDs
		32.2.3 Layouts of LEDs
	32.3 Breeding and seed propagation
		32.3.1 Vegetables suited to PFALs
		32.3.2 Seed propagation and breeding using PFALs
		32.3.3 Medicinal plants
	32.4 Cultivation
		32.4.1 Culture system with restricted root mass
		32.4.2 Ever-flowering berry and fruit vegetable production in PFALs
	32.5 PFALs with solar cells
	References
33 . Conclusions: resource-saving and resource-consuming characteristics of PFALs
	33.1 Roles of PFALs in urban areas
	33.2 Benefits of producing fresh vegetables using PFALs in urban areas
	33.3 Resource-saving characteristics of PFALs
	33.4 Possible reductions in electricity consumption and initial investment
	33.5 Electricity consumption
	33.6 Initial resource investment
	33.7 Increasing the productivity and quality
	33.8 Dealing with power cuts
	33.9 Challenges
	References
Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z
Back Cover




نظرات کاربران