دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2 نویسندگان: Toyoki Kozai, Genhua Niu, Michiko Takagaki سری: ISBN (شابک) : 0128166916, 9780128166918 ناشر: Elsevier Science & Technology سال نشر: 2019 تعداد صفحات: 518 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 17 مگابایت
کلمات کلیدی مربوط به کتاب کارخانه گیاهان: یک سیستم کشاورزی عمودی داخلی برای تولید مواد غذایی با کیفیت کارآمد: باغبانی با نور مصنوعی، محصولات غذایی -- برداشت، کشاورزی پایدار، محصولات زراعی -- نوآوری های تکنولوژیکی.
در صورت تبدیل فایل کتاب Plant Factory: An Indoor Vertical Farming System for Efficient Quality Food Production به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کارخانه گیاهان: یک سیستم کشاورزی عمودی داخلی برای تولید مواد غذایی با کیفیت کارآمد نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Plant Factory: An Indoor Vertical Farming System for Efficient Quality Food Production، ویرایش دوم یک نگاه جامع به اجرای شیوه های کارخانه گیاهی (PF) برای تولید محصولات غذایی برای بهبود امنیت غذایی و پایداری زیست محیطی. این کتاب که توسط متخصصان برجسته در PF و کشاورزی محیط کنترل شده (CEA) ویرایش و تألیف شده است، به پنج بخش شامل مروری و مفهوم سیستمهای تولید گیاهی بسته (CPPS)، مبانی فیزیک و فیزیولوژی - محیطها و اثرات آنها تقسیم شده است. ، طراحی سیستم، ساخت و ساز، کشت و مدیریت و کارخانه های گیاهی در حال بهره برداری.
علاوه بر پوشش جدید در مورد پیشرفت سریع فناوری LED و کاربرد آن در کشاورزی عمودی داخل ساختمان، ویرایش های دیگر نسخه جدید شامل به روز رسانی شده است. اطلاعات در مورد وضعیت تحقیق و توسعه تجاری و PFAL های تجاری منتخب (کارخانه کارخانه با نور مصنوعی). به روز رسانی های اضافی شامل مواردی است که بر روی میکرو و مینی PFAL ها برای بهبود کیفیت زندگی در مناطق شهری، فیزیک و فیزیولوژی نور، تأثیر PFAL بر اجزای دارویی گیاهان و مسائل مربوط به طراحی، ساخت، کشت و مدیریت سیستم متمرکز شده اند. مربوط به تولید پیوند در سیستم های بسته، تکثیر و آموزش فوتوتوتروفیک، آموزش و انجمن های تجاری فشرده در PFs.
Plant Factory: An Indoor Vertical Farming System for Efficient Quality Food Production, Second Edition presents a comprehensive look at the implementation of plant factory (PF) practices to yield food crops for both improved food security and environmental sustainability. Edited and authored by leading experts in PF and controlled environment agriculture (CEA), the book is divided into five sections, including an Overview and the Concept of Closed Plant Production Systems (CPPS), the Basics of Physics and Physiology - Environments and Their Effects, System Design, Construction, Cultivation and Management and Plant Factories in Operation.
In addition to new coverage on the rapid advancement of LED technology and its application in indoor vertical farming, other revisions to the new edition include updated information on the status of business R&D and selected commercial PFALs (plant factory with artificial lighting). Additional updates include those focused on micro and mini-PFALs for improving the quality of life in urban areas, the physics and physiology of light, the impact of PFAL on the medicinal components of plants, and the system design, construction, cultivation and management issues related to transplant production within closed systems, photoautotrophic micro-propagation and education, training and intensive business forums on PFs.
Cover Plant Factory: An Indoor Vertical Farming System for Efficient Quality Food Production Copyright Contributors Preface Part 1: Overview and concept of closed plant production system (CPPS) 1 . Introduction References 2 . Role of the plant factory with artificial lighting (PFAL) in urban areas 2.1 Introduction 2.2 Interrelated global issues to be solved concurrently 2.3 Resource inflow and waste outflow in urban areas 2.4 Energy and material balance in Urban ecosystems 2.4.1 Photoautotrophs (plants) and heterotrophs (animals and microorganisms) 2.4.2 Waste produced in urban areas as an essential resource for growing plants 2.4.3 Plant production systems integrated with other biological systems 2.4.4 Role of organic fertilizers and microorganisms in the soil 2.4.5 Stability and controllability of the environment in plant production systems 2.4.6 Key indices for sustainable food production 2.4.7 What is “PFAL”? Definition Scientific benefits of PFALs 2.4.8 Plants suited and unsuited to PFALs 2.5 Growing social needs and interest in PFALs 2.6 Criticisms of PFALs and responses to them 2.6.1 Introduction 2.6.2 Initial cost is too high 2.6.3 Production cost is too high 2.6.4 Electricity cost is too high, whereas solar light is free 2.6.5 Labor cost is too high 2.6.6 PFAL-grown vegetables are neither tasty nor nutritious 2.6.7 Most PFALs are not making a profit 2.6.8 Land price is too high 2.6.9 Water consumption for irrigation is too high 2.6.10 PFALs can only produce leafy greens—minor vegetables—economically 2.7 Toward a sustainable PFAL 2.7.1 Requirements for a sustainable PFAL 2.7.2 Factors affecting the sustainability of PFALs Positive aspects affecting environmental, resource, social, and economic sustainability Factors to be solved to improve sustainability 2.7.3 Similarities between the Earth, space farms, autonomous cities, and PFALs 2.8 Conclusion References 3 . PFAL business and R&D in Asia and North America: status and perspectives 3.1 Introduction 3.2 Japan 3.2.1 Brief history and current status of the PFAL business 3.2.2 Research and development 3.2.3 Public service 3.3 Taiwan 3.3.1 Status of PFALs in Taiwan 3.3.2 PFAL expo in Taiwan 3.3.3 PFAL research Cost comparison of PFALs Spectra of LEDs used in PFAL WSN in PFAL Ion-selective sensors for nutrient detection Nondestructive plant growth measurement system LED tubes with adjustable spectrum and intensity UV and FR for phytochemical production and morphogenesis research Low-potassium lettuce production for ESRD patients 3.3.4 Business models of PFAL in Taiwan 3.3.5 Conclusions 3.4 Korea 3.4.1 PFALs, an icon of innovation in future production and consumption 3.4.2 Research and technical development (RTD) 3.4.3 Private companies and farms in the PFAL business 3.4.4 Achievements and challenges 3.5 China 3.5.1 Development and current status of PFALs in China 3.5.2 Research activities 3.5.3 Typical PFALs and case studies Chinese Academy of Agricultural Sciences Beijing research centre of intelligent equipment for agriculture, Beijing academy of agriculture and forestry sciences South China agricultural university AEssense Beijing Kingpeng international hi-tech corporation Sanan sino-science Shouguang 3.5.4 Conclusion 3.6 Thailand 3.6.1 R&D on PFALs in Thailand 3.6.2 R&D and business in the private sector 3.6.3 Policy and future prospects for PFALs 3.7 North America 3.7.1 History 3.7.2 Contribution of space science 3.7.3 Current status and future prospects References Further reading 4 . Vertical farming in Europe: present status and outlook 4.1 Introduction 4.2 Vertical farming nonprofit sector associations 4.3 The entrepreneurial landscape 4.3.1 Overview 4.3.2 Examples for each vertical farming typology PFAL Container farm In-store farm Appliance farm 4.3.3 A deeper look into the Dutch vertical farming landscape 4.3.4 Projects expected to be completed in the near future 4.3.5 Examples of vertical farming as a new market for established European companies 4.4 Final remarks and conclusions Acknowledgments References 5 . Plant factory as a resource-efficient closed plant production system 5.1 Introduction 5.2 Definition and principal components of PFAL 5.3 Definition of resource use efficiency 5.3.1 Water use efficiency 5.3.2 CO2 use efficiency 5.3.3 Light energy use efficiency of lamps and plant community 5.3.4 Electrical energy use efficiency of lighting 5.3.5 Electrical energy use efficiency of heat pumps for cooling 5.3.6 Inorganic fertilizer use efficiency 5.4 Representative values of resource use efficiency 5.5 Electricity consumption and cost 5.6 Improving light energy use efficiency 5.6.1 Introduction 5.6.2 Interplant lighting and upward lighting 5.6.3 Improving the ratio of light energy received by leaves 5.6.4 Using LEDs 5.6.5 Controlling environmental factors other than light 5.6.6 Controlling air current speed 5.6.7 Increasing the salable portion of plants 5.6.8 Increasing annual production capacity and sales volume per unit land area 5.7 Estimation of rates of photosynthesis, transpiration, and water and nutrient uptake 5.7.1 Introduction 5.7.2 Net photosynthetic rate 5.7.3 Transpiration rate 5.7.4 Water uptake rate by plants 5.7.5 Ion uptake rate by plants 5.7.6 Application 5.8 Coefficient of performance of heat pump References 6 . Micro- and mini-PFALs for improving the quality of life in urban areas 6.1 Introduction 6.2 Characteristics and types of m-PFALs 6.3 m-PFALs in various scenes 6.3.1 Homes 6.3.2 Restaurants and shopping centers 6.3.3 Schools and community centers 6.3.4 Hospitals 6.3.5 Offices 6.3.6 Small shops and rental m-PFALs 6.4 Design concept of m-PFALs 6.5 m-PFALs connected by the internet 6.6 Advanced usage of m-PFAL 6.6.1 Connecting with a virtual m-PFAL 6.6.2 Visualizing plant growth as affected by energy and material balance 6.6.3 Maximizing productivity and benefits using minimum resources 6.6.4 Learning the basics of an ecosystem 6.6.5 Challenges 6.7 m-PFALs connected with other biosystems as a model ecosystem 6.8 Light source and lighting system design Acknowledgments References 7 . Rooftop plant production systems in urban areas 7.1 Introduction 7.2 Rooftop plant production 7.2.1 Raised-bed production 7.2.2 Continuous row farming 7.2.3 Hydroponic greenhouse growing 7.3 Building integration 7.3.1 Stormwater management 7.3.2 Energy use reductions References Part 2: Basics of physics and physiology — Environments and their effects 8 . Light sources 8.1 Introduction 8.2 Classification of light sources 8.3 Light-emitting diodes 8.3.1 General benefits 8.3.2 Outline of the light-emitting mechanism 8.3.3 Configuration types 8.3.4 Basic terms expressing electrical and optical characteristics 8.3.5 Electrical and thermal characteristics in operation 8.3.6 Lighting and light intensity control methods 8.3.7 Lesser-known benefits and disadvantages related to use 8.3.8 LED modules with different color LEDs for PFALs 8.3.9 Pulsed light and its effects 8.3.10 Description of LED luminaire performance for plant cultivation 8.4 Fluorescent lamps 8.4.1 General benefits 8.4.2 Configuration of tubular fluorescent lamps 8.4.3 Outline of the light emission mechanism and process 8.4.4 Relative spectral radiant flux of light emitted from a fluorescent lamp References 9 . Plant responses to light 9.1 Physical properties of light and its measurement 9.1.1 Physical properties 9.1.2 Light measurement 9.2 Plant responses to light environments 9.2.1 Photoreceptors Phytochromes Cryptochromes Phototropins Members of the Zeitlupe family UV resistance locus 8 9.2.2 Plant response to light intensity, photoperiod, and daily light integral 9.2.3 Plant response to light quality Red and blue light Red and far-red light Green light UV light 9.3 Conclusion References 10 . LED advancements for plant-factory artificial lighting 10.1 Need for CEA of all kinds 10.2 All-important energy costs 10.3 Pre-LED era 10.4 Enter light-emitting diodes (LEDs) 10.5 History of LED use for plant lighting 10.6 First LED/plant-growth tests 10.7 NASA spinoff 10.8 Sorting out the spectral contributions of LED wavebands 10.9 Red light 10.10 Blue light 10.11 Green light 10.12 Far-red light 10.13 White light from LEDs 10.14 UV radiation from LEDs 10.15 Advances in LEDs for PFAL 10.16 Intrinsic LED efficiency 10.17 Advances in LED utilization 10.18 Distribution of light from LEDs 10.19 Leveraging the unique properties of LEDs 10.20 Phasic co-optimization of LED lighting with the aerial environment 10.21 Multiple light/growth prescriptions simultaneously in a warehouse 10.22 Summary References 11 . Physical environmental factors and their properties 11.1 Introduction 11.2 Temperature, energy, and heat 11.2.1 Energy balance 11.2.2 Radiation 11.2.3 Heat conduction and convection 11.2.4 Latent heat—transpiration 11.2.5 Measurement of temperature 11.3 Water vapor 11.3.1 Humidity 11.3.2 Vapor pressure deficit 11.3.3 Measurement of humidity 11.4 Moist air properties 11.4.1 Composition of air 11.4.2 Psychrometric chart 11.5 CO2 concentration 11.5.1 Nature 11.5.2 Dynamic changes of CO2 concentration in PFALs 11.5.3 Measurement of CO2 concentration 11.6 Air current speed 11.6.1 Nature and definition 11.6.2 Measurement 11.7 Number of air exchanges per hour 11.7.1 Nature and definition 11.7.2 Measurement of air exchange References 12 . Photosynthesis and respiration 12.1 Introduction 12.2 Photosynthesis 12.2.1 Light absorption by photosynthetic pigments 12.2.2 Electron transport and bioenergetics 12.2.3 Carbon fixation and metabolism 12.3 C3, C4, and CAM photosynthesis 12.4 Respiration 12.5 Photorespiration 12.6 Leaf area index (LAI) and light penetration 12.7 Single leaf and canopy References 13 . Growth, development, transpiration, and translocation as affected by abiotic environmental factors 13.1 Introduction 13.2 Shoot and root growth 13.2.1 Growth: definition 13.2.2 Root growth 13.3 Environmental factors affecting plant growth and development 13.3.1 Temperature and plant growth and development 13.3.2 Daily light integral 13.3.3 Light quality 13.3.4 Humidity (VPD) 13.3.5 CO2 concentration 13.3.6 Air current speed 13.3.7 Nutrient and root zone 13.4 Development (photoperiodism and temperature affecting flower development) 13.5 Transpiration 13.6 Translocation References 14 . Nutrition and nutrient uptake in soilless culture systems 14.1 Introduction 14.2 Essential elements 14.3 Beneficial elements 14.4 Nutrient uptake and movement 14.5 Nutrient solution 14.6 Solution pH and nutrient uptake 14.7 Nitrogen form 14.8 New concept: quantitative management 14.9 Can individual ion concentrations be managed automatically? References 15 . Tipburn 15.1 Introduction 15.2 Cause of tipburn 15.2.1 Inhibition of Ca2+ absorption in root 15.2.2 Inhibition of Ca2+ transfer from root to shoot 15.2.3 Competition for Ca2+ distribution 15.3 Countermeasure References 16 . Functional components in leafy vegetables 16.1 Introduction 16.2 Low-potassium vegetables 16.3 Low-nitrate vegetables 16.3.1 Restriction of feeding nitrate fertilizer to plants 16.3.2 Reduction in accumulated nitrate by assimilation of nitrate 16.4 Improving the quality of leafy vegetables by controlling light quality 16.4.1 Leafy vegetables 16.4.2 Herbs 16.5 Conclusion References 17 . Medicinal components 17.1 Introduction 17.2 Growing medicinal plants under controlled environments: medicinal components and environmental factors 17.2.1 CO2 concentration and photosynthetic rates 17.2.2 Temperature stress 17.2.3 Water stress 17.2.4 Spectral quality and UV radiation 17.3 Conclusion References 18 . Production of pharmaceuticals in a specially designed plant factory 18.1 Introduction 18.2 Candidate crops for PMPs 18.3 Construction of GM plant factories 18.4 Optimization of environment conditions for plant growth 18.4.1 Strawberry 18.4.2 Tomato 18.4.3 Rice Part 3: System design, construction, cultivation and management 19 . Plant production process, floor plan, and layout of PFAL 19.1 Introduction 19.2 Motion economy and PDCA cycle 19.2.1 Principles of motion economy 19.2.2 PDCA cycle 19.3 Plant production process 19.4 Layout 19.4.1 Floor plan 19.4.2 Operation room 19.4.3 Cultivation room 19.5 Sanitation control 19.5.1 Biological cleanness 19.5.2 ISO22000 and HACCP for food safety References 20 . Hydroponic systems 20.1 Introduction 20.2 Hydroponic systems 20.3 Sensors and controllers 20.4 Nutrient management systems 20. 4.1 Open and closed hydroponic systems 20.4.2 Changes in nutrient balance under EC-based hydroponic systems 20.5 Ion-specific nutrient management 20.6 Sterilization systems References 21 . Seeding, seedling production and transplanting 21.1 Introduction 21.2 Preparation 21.3 Seeding 21.4 Seedling production and transplanting 22 . Transplant production in closed systems 22.1 Introduction 22.2 Main components and their functions 22.2.1 Main components 22.2.2 Light source, air conditioners, and small fans 22.2.3 Electricity costs 22.2.4 Nutrient solution supply 22.3 Ecophysiology of transplant production 22.3.1 Introduction 22.3.2 Effects of light quality on photosynthetic performance in transplants 22.3.3 Effects of the physical environment on biotic stress resistance in transplants 22.3.4 Effects of plant–plant interactions on gas exchange within transplant canopy 22.3.5 Effects of light quality on light competition between neighboring plants and consequent equality of plant growth 22.3.6 Conclusions 22.4 Photosynthetic characteristics of vegetable and medicinal transplants as affected by the light environment 22.4.1 Introduction 22.4.2 Influence of the light environment on vegetable transplant production 22.4.3 Effects of PPFD and photoperiod on the growth of vegetable transplants 22.4.4 Effects of light quality on growth of vegetable transplants 22.4.5 Photosynthetic characteristics of medicinal D. officinale 22.5 Blueberry 22.6 Propagation and production of strawberry transplants 22.6.1 Vegetative propagation of strawberry 22.6.2 Licensing and certification 22.6.3 Plug transplants 22.6.4 Transplant production in a PFAL Configuration of S-PFAL Environmental control Small propagules with high planting density Fixing of runner tips Separation of runner plants Simultaneous growth of propagules LED lighting for S-PFAL Productivity of S-PFAL 22.6.5 Application of S-PFAL in Korea References 23 . Photoautotrophic micropropagation 23.1 Introduction 23.2 Development of PAM 23.3 Advantages and disadvantages of PAM for growth enhancement of in vitro plants 23.4 Natural ventilation system using different types of small culture vessels 23.5 Forced ventilation system for large culture vessels 23.6 Potential for secondary metabolite production of in vitro medicinal plants using photoautotrophic micropropagation 23.6.1 Introduction 23.6.2 Scaling up a photoautotrophic micropropagation system to an aseptic culture room—a closed plant production system (CPPS) 23.7 Conclusion References 24 . Biological factor management 24.1 Introduction 24.2 Controlling algae 24.2.1 Hydrogen peroxide 24.2.2 Ozonated water 24.2.3 Chlorine 24.2.4 Substrates 24.3 Microorganism management 24.3.1 Microbiological testing 24.3.2 Environmental testing—airborne microorganisms 24.3.3 Measurement of fallen bacteria using the plate method 24.3.4 Measurement of airborne microorganisms 24.3.5 Quality testing—testing for bacteria and fungi 24.3.6 Examples of reports of microbiological testing in PFALs 24.4 Concluding remarks References 25 . Design and management of PFALs 25.1 Introduction 25.2 Structure and function of the PFAL-D&M system 25.3 PFAL-D (design) subsystem 25.3.1 Lighting system (LS) 25.4 PFAL-M subsystem 25.4.1 Structure of software 25.4.2 Logical structure of equations 25.5 Design of the lighting system 25.5.1 PPFD distribution 25.5.2 Scheduling the lighting cycles to minimize the electricity charge 25.6 Electricity consumption and its reduction 25.6.1 Daily changes in electricity consumption 25.6.2 COP as affected by the temperature difference between inside and outside 25.6.3 COP as affected by the actual cooling load 25.6.4 Monthly changes in electricity consumption 25.6.5 Visualization of power consumption by components on the display screen 25.6.6 Rates of net photosynthesis, dark respiration, and water uptake by plants 25.7 Three-dimensional distribution of air temperature 25.8 Plant growth measurement, analysis, and control 25.8.1 Determination of parameter values for the plant growth curve 25.8.2 Determination of dates for transplanting 25.8.3 Determination of the number of culture panels for different growth stages 25.9 Conclusions References 26 . Automated technology in plant factories with artificial lighting 26.1 Introduction 26.2 Seeding device 26.3 Seedling selection robot system 26.4 Shuttle-type transfer robot 26.5 Cultivation panel washer Reference 27 . Life cycle assessment 27.1 Standard of life cycle assessment (LCA) 27.1.1 Introduction 27.1.2 Goal and scope definition 27.1.3 Life cycle inventory analysis 27.1.4 Life cycle impact assessment 27.1.5 Interpretation 27.2 General remarks for the assessment of PFALs 27.2.1 Inventory data collection/impact assessment 27.2.2 Functional unit 27.2.3 Interpretation 27.3 A case study of LCA on plant factories (Kikuchi et al., 2018) 27.3.1 Settings: indicators 27.3.2 Settings: life cycle boundary and functional unit 27.3.3 Settings: data for assessments 27.3.4 Settings: applied energy technology options 27.3.5 Results and discussion 27.4 Summary and outlook References Further reading 28 . Education, training, and business workshops and forums on plant factories 28.1 Introduction 28.2 JPFA business workshops 28.3 Business forums 28.3.1 Basic course on PFALs 28.3.2 Advanced course on PFALs Part 4: PFALs in operation and its perspectives 29 . Selected PFALs in the United States, the Netherlands, and China 29.1 Introduction 29.2 AeroFarms in the United States 29.2.1 Company outline and vision and mission 29.2.2 Technical characteristics of the company 29.2.3 Business features and business model 29.2.4 Main crops and product brand name 29.2.5 Outline of PFAL of AeroFarms 29.2.6 Challenges 29.2.7 Research and development 29.2.8 Future plans 29.3 Signify facility in the Netherlands—GrowWise center 29.3.1 Company outline, vision, and mission 29.3.2 Business features and business model 29.3.3 Technical characteristics and outline of GrowWise center 29.3.4 Targeted market, challenges, and future plans 29.4 BrightBox in the Netherlands 29.4.1 Company outline, vision, and mission 29.4.2 History and technical background of the company 29.4.3 Features of the business 29.4.4 Outline of PFAL and technical characteristics 29.4.5 Challenges and future plans 29.5 Fujian Sanan Sino-Science photobiotech in China 29.5.1 Company outline, vision, and mission 29.5.2 Business features and business model 29.5.3 Outline of PFALs of Sanan Sino-Science 29.5.4 Technical characteristics and research and development 29.5.5 Future plans Acknowledgments References 30 . Selected PFALs in Japan 30.1 Introduction 30.2 New PFAL built in 2017 in Japan—808 factory 30.2.1 Company outline, vision, and mission 30.2.2 History and technical background of the company 30.2.3 Business features and business model 30.2.4 Main crops and product brand name 30.2.5 Outline of PFALs: first and second facilities of the 808 Factory 30.2.6 Technical characteristics 30.2.7 Future plans 30.3 New PFAL built in 2018 in Japan—Spread 30.3.1 Company outline, vision, and mission 30.3.2 History and technical background of the company 30.3.3 Business features and business model 30.3.4 Main crops and product brand name 30.3.5 Outline of PFALs of Spread 30.3.6 Technical characteristics 30.3.7 Challenges 30.3.8 Future plans 30.4 New PFAL system developed in Japan—PlantX 30.4.1 Company outline, vision, and mission 30.4.2 History and technical background of the company 30.4.3 Technical characteristics 30.4.4 Future plans 30.5 Conclusion Acknowledgments References 31 . Representative plant factories in Taiwan 31.1 Introduction 31.2 Representative PFALs in Taiwan 31.2.1 Cal-Com Bio Corp. of the New Kinpo Group 31.2.2 Glonacal Green Technology Corp 31.2.3 Tingmao agricultural biotechnology 31.2.4 PFAL building inside a greenhouse 31.3 The largest PF in Taiwan 32 . Challenges for the next-generation PFALs 32.1 Introduction 32.2 Lighting system 32.2.1 Upward lighting 32.2.2 Using green LEDs 32.2.3 Layouts of LEDs 32.3 Breeding and seed propagation 32.3.1 Vegetables suited to PFALs 32.3.2 Seed propagation and breeding using PFALs 32.3.3 Medicinal plants 32.4 Cultivation 32.4.1 Culture system with restricted root mass 32.4.2 Ever-flowering berry and fruit vegetable production in PFALs 32.5 PFALs with solar cells References 33 . Conclusions: resource-saving and resource-consuming characteristics of PFALs 33.1 Roles of PFALs in urban areas 33.2 Benefits of producing fresh vegetables using PFALs in urban areas 33.3 Resource-saving characteristics of PFALs 33.4 Possible reductions in electricity consumption and initial investment 33.5 Electricity consumption 33.6 Initial resource investment 33.7 Increasing the productivity and quality 33.8 Dealing with power cuts 33.9 Challenges References Index A B C D E F G H I J K L M N O P Q R S T U V W Y Z Back Cover