دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2 نویسندگان: Julian Soh, Marshall Copeland, Anthony Puca, Micheleen Harris سری: ISBN (شابک) : 9781484259580 ناشر: Apress سال نشر: 2020 تعداد صفحات: 0 زبان: English فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 25 مگابایت
در صورت تبدیل فایل کتاب Planning, Deploying, and Managing the Cloud به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب برنامه ریزی، استقرار و مدیریت ابر نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
بینش فنی و تجاری مورد نیاز برای برنامه ریزی، استقرار و مدیریت خدمات ارائه شده توسط Microsoft Azure را به دست آورید. این نسخه دوم بر بهبود نقاط اوج تصمیم گیری عملیاتی برای متخصصان پیشرو DevOps و تیم های امنیتی تمرکز دارد. این به شما این امکان را می دهد که تصمیم آگاهانه ای در مورد حجم کاری مناسب برای کسب و کار رو به رشد خود در ابر عمومی Azure بگیرید. Microsoft Azure با معرفی Azure همراه با مروری بر خدمات معماری آن مانند IaaS و PaaS شروع می کند. همچنین نگاهی به داده ها، هوش مصنوعی و خدمات یادگیری ماشینی Azure خواهید داشت. در ادامه، برنامهریزی و پذیرش Azure را پوشش میدهید که در آن بودجهبندی، اقتصاد ابری و طراحی یک مرکز داده ترکیبی را طی خواهید کرد. در طول مسیر، شما با برنامه های وب، شبکه PaaS، ماشین های مجازی و بسیاری موارد دیگر کار خواهید کرد. بخش پایانی کتاب با خدمات دادههای Azure و دادههای بزرگ با بحثی عمیق در مورد پایگاه داده Azure SQL، CosmosDB، Azure Data Lakes و MySQL آغاز میشود. در ادامه خواهید دید که چگونه پایگاه داده های داخلی را به Azure منتقل کنید و از مهندسی داده استفاده کنید. در مرحله بعد، خدمات مختلف Azure را برای توسعه دهندگان برنامه، از جمله برنامه های وب Azure DevOps و ASP.NET کشف خواهید کرد. در نهایت، ابزارهای یادگیری ماشین و هوش مصنوعی در Azure، از جمله خدمات شناختی Azure را مرور خواهید کرد. آنچه شما یاد خواهید گرفت برای دستیابی به رشد کسب و کار، راهنمایی های طراحی و بهترین شیوه ها را با استفاده از Microsoft Azure اعمال کنید ماشین های مجازی ایجاد و مدیریت کنید با چارچوب های هوش مصنوعی برای پردازش و تجزیه و تحلیل داده ها برای حمایت از تصمیمات تجاری و افزایش درآمد کار کنید استقرار، انتشار و نظارت بر یک برنامه وب این کتاب برای چه کسی است معماران و متخصصان کسب و کار Azure به دنبال مشاوره استقرار و پیاده سازی Azure هستند.
Gain the technical and business insight needed to plan, deploy, and manage the services provided by the Microsoft Azure cloud. This second edition focuses on improving operational decision tipping points for the professionals leading DevOps and security teams. This will allow you to make an informed decision concerning the workloads appropriate for your growing business in the Azure public cloud. Microsoft Azure starts with an introduction to Azure along with an overview of its architecture services such as IaaS and PaaS. You’ll also take a look into Azure’s data, artificial intelligence, and machine learning services. Moving on, you will cover the planning for and adoption of Azure where you will go through budgeting, cloud economics, and designing a hybrid data center. Along the way, you will work with web apps, network PaaS, virtual machines, and much more. The final section of the book starts with Azure data services and big data with an in-depth discussion of Azure SQL Database, CosmosDB, Azure Data Lakes, and MySQL. You will further see how to migrate on-premises databases to Azure and use data engineering. Next, you will discover the various Azure services for application developers, including Azure DevOps and ASP.NET web apps. Finally, you will go through the machine learning and AI tools in Azure, including Azure Cognitive Services. What You Will Learn Apply design guidance and best practices using Microsoft Azure to achieve business growth Create and manage virtual machines Work with AI frameworks to process and analyze data to support business decisions and increase revenue Deploy, publish, and monitor a web app Who This Book Is For Azure architects and business professionals looking for Azure deployment and implementation advice.
Table of Contents About the Authors About the Technical Reviewers Acknowledgments Introduction Part I: Introducing Microsoft Azure Chapter 1: Microsoft Azure and Cloud Computing Where Is Microsoft Azure Today? Azure Availability Azure Compliance Microsoft Azure Subscriptions Azure Cost Management Azure Resource Manager Microsoft Azure Identity Azure Security Azure Sentinel Previewing New Security Features IaaS and PaaS Security Summary Chapter 2: Overview of Azure Infrastructure as a Service (IaaS) Services Azure Virtual Machines Azure Batch Azure Service Fabric Azure CycleCloud Azure VMware Solutions Azure Storage Services Blob Storage Hot Access Tier Cool Access Tier Archive Access Tier Storage Explorer Data Lake Storage Gen2 Managed Disks Queue Storage Azure Files Data Box Ephemeral OS Disks Azure Networking Services Azure Virtual Network Azure Application Gateway and Web Application Firewall Azure DDoS Protection ExpressRoute Azure Firewall Azure Front Door Azure Internet Analyzer Azure CDN Azure Load Balancer Traffic Manager VPN Gateway Summary Chapter 3: Overview of Azure Platform as a Service Azure Web Apps Azure Database Services Azure DNS Azure Traffic Manager Content Delivery Network Azure Batch Azure Private Link Summary Chapter 4: Azure AppDev Services Overview Azure Development and GitHub Azure Infrastructure as Code Azure App Service Summary Chapter 5: Ethical AI, Azure AI, and Machine Learning Ethical AI Science Fiction and Reality: A Social Convergence What Is Ethical AI? Microsoft AI Principles Microsoft Cognitive Services Object Recognition Use Case Scenarios Face AI Face Detection vs. Face Recognition Use Case Scenarios Speech Services Speech to Text Text to Speech Speaker Recognition Machine Reading Comprehension Machine Translation Use Case Scenarios Text Analytics: Sentiment Bots Use Case Scenarios Azure Machine Learning Azure Machine Learning Machine Learning Studio (Classic) Azure Databricks Use Cases for Azure Databricks Azure Data Science Virtual Machines Summary Part II: Planning and Adopting Azure Chapter 6: Budgeting and Cloud Economics Understanding Cloud Economics: CapEx vs. OpEx Using Assessment Tools Forecasting and Other Cost-Saving Features Autoscaling Azure Hybrid Benefit AHB for Windows Server AHB for SQL Server Reserved Instances Azure Cost Management + Billing Summary Chapter 7: Designing a Hybrid Datacenter Networking Considerations PaaS Considerations Azure Private Link Azure Virtual Network Service Endpoints Identity and Access Management Security and Monitoring Summary Chapter 8: Tools and Training to Up-Skill Existing IT Teams Available Training Cloud Engineer Toolkit Azure Storage Explorer Azure Resource Manager (ARM) and HashiCorp Terraform Version Control Summary Part III: Using Azure for Infrastructure as a Service (IaaS) Chapter 9: Implementing Azure Networking Internet Connectivity Azure VPN ExpressRoute Layer 2 ExpressRoute Layer 3 ExpressRoute ExpressRoute Premium ExpressRoute Direct ExpressRoute Global Reach Implementing ExpressRoute Azure Virtual WAN Implementing Network Security Groups Implementing Security and Monitoring for networks Network Watcher Network Performance Monitor Summary Chapter 10: Virtual Machines Creating and Managing Virtual Machines Operating Systems (Windows, Linux) Shared Image Gallery Uploading Custom Images Virtual Machine Disks Image Builder Monitoring the Health of Virtual Machines Securing Virtual Machines Troubleshooting Improving VM Availability Availability Zones Availability Sets Disaster Recovery Azure Site Recovery Scale Sets Dedicated Hosts Proximity Placement Groups Spot Virtual Machines Summary Chapter 11: Infrastructure as Code (IaC) Overview of IaC in Microsoft Azure Infrastructure as Code Example ARM Templates HashiCorp Terraform on Azure Deploy VNets with Code Deploy VMs with Code IaC Enhancement Considerations Troubleshooting IaC Azure Blueprints Summary Part IV: Adopting Platform as a Service (PaaS) Chapter 12: Azure Web Apps What Are Web Apps? Hands-on: Deploying a Web App Self-Guided Exercise Content Management Systems on Web Apps Using Azure Web Apps Hands-on: Publishing to a Web App Hands-on: Adding a Custom Domain to a Web App Hands-on: Monitoring a Web App Hands-on: Self-Guided Exercises Summary Chapter 13: Network Platform as a Service Azure DDoS Protection Web Application Firewall Application Gateway Load Balancers Azure Front Door Service Azure Firewall Summary Chapter 14: Azure Storage The Difference Between Azure Storage and Azure Databases Cloud Storage and Storage Accounts Azure Blob Storage Hands-on: Deploying Azure Blob Storage Hands-on: Using Azure Blob Storage Self-Guided Exercises Next Steps: Azure Blob Storage Azure Data Lake Store (ADLS) Azure Tables Anatomy of Azure Tables Hands-on: Using Azure Tables Self-Guided Exercises Next Steps: Azure Tables Azure Files Hands-on: Using Azure Files Next Steps: Azure Files Azure Queues Hands-on: Using Azure Queues Next Steps: Azure Queues Summary Part V: Azure Data Services and Big Data Chapter 15: Azure Cognitive (COG) Services Azure Cognitive Services Quick Hands-on Introduction Hands-on Exercise Scenario Final Product Exercise Other Real-World Uses Bots QnA Maker Hands-on Exercise Part 1: QnA Maker Hands-on Exercise Part 2: Deploying Bots to a Website Summary Chapter 16: Machine Learning and Deep Learning Introduction to Machine Learning and Deep Learning Data Discussion Traditional ML Neural Networks Transfer Learning The Data Science Process Prerequisites for Becoming a Successful Data Scientist Overview of the Data Science Virtual Machine A Jupyter Notebook Overview Hands-on with the Data Science Virtual Machine Overview of Azure Machine Learning Hands-on with Azure Machine Learning: Training a Model Hands-on with Azure Machine Learning: Deploying a Model Use Case: Image Classification with a Deep Neural Network and Azure Machine Learning Hands-on with Azure Machine Learning and PyTorch IoT Devices and the Intelligent Edge Overview of Spark and Databricks Auto ML with Azure Databricks and Azure Machine Learning Hands-on with Azure Databricks and Auto ML Use Case: Azure Databricks for Data Scientists Summary Chapter 17: Azure Data Services Data Trends Data Types and Volume Data Analysis Trends Modern Data Roles Data Platform as a Service Azure Data Services Azure SQL Database Hands-on with Azure SQL Database Azure SQL Managed Instance Elastic Pools Hands-on with Elastic Pools Hands-on Tuning and Monitoring Azure SQL Databases Setting up the Test Environment Performance Monitoring and Automatic Tuning Load testing Azure SQL Database Server Analyzing Performance Next Steps: Self-Guided Assignment Azure Cosmos DB Use Cases for Azure Cosmos DB Internet of Things (IoT) Retail Web and Social Hands-on: Deploying Azure Cosmos DB Hands-on: Using Azure Cosmos DB to Store Bot Conversation History Summary Part VI: Azure Services for Application Developers Chapter 18: Migrating On-Premises Databases to Azure Data Migration Assistant (DMA) Hands-on: Setting up a Lab Hands-on: Using the Data Migration Assistant for Assessment Hands-on: Reading the Assessment Reports from the Data Migration Assistant Hands-on: Azure Migrate Hands-on: Uploading an Assessment Report to Azure Migrate Hands-on: Migrate Database Using Data Migration Assistant Azure Database Migration Service (DMS) Hands-on: Deploying Azure Database Migration Service Hands-on: Using Azure Database Migration Service Summary Chapter 19: Data Engineering and the Modern Data Estate Terminology Data Estate Modern Data Warehouse: ELT vs. ETL Modern Storage and Big Data Modern Data Platform Strategies Azure Data Factory (ADF) Hands-on: Installing Azure Data Factory Hands-on: Exploring Azure Data Factory Triggers Data Pipeline or Data Flow Datasets Linked Services Datasets and Link Services Cloning Next Steps: Self-Guided Assignment Hands-on: Creating a Copy Data Pipeline Saving Your Work Hands-on: Multiple Activities in a Pipeline Accessing On-Premises Data Sources The Architecture of the Self-Hosted Integration Runtime Installing and Configuring the Self-Hosted Integration Runtime Summary Part VII: Intelligent Cloud, Machine Learning, and Artificial Intelligence Chapter 20: Developing and Deploying Azure-based Applications Introduction Trends in Cloud-based Application Development Platform as a Service (PaaS) Slots on Azure Web Apps Hands-on with Slots on Azure Web Apps Containers Containers in Azure Hands-on with Docker Images and the Azure Container Registry Hands-on with Azure Kubernetes Service (AKS) Troubleshooting and Monitoring AKS Hands-on Monitoring and Troubleshooting AKS Summary Chapter 21: Continuous Integration/Continuous Delivery with Azure DevOps What Is Azure DevOps? Why Azure DevOps Predictability and Repeatability Agile Deployment and Continuous Improvement Planning, Collaboration, and Workflow Provisioning Azure DevOps Azure Repos Hands-on with Azure Repos Importing a Git Repo Repository Operations Azure Repo Goal Commits Branches Hands-on with Azure Repos: Adding an Existing Project to Azure Repos Azure Pipelines Key Concepts Hands-on with Azure Pipelines: CI/CD Summary Index