دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Anil Bhardwaj
سری: Advances in Geosciences 19
ISBN (شابک) : 9812838155, 9789812838155
ناشر: World Scientific Publishing Company
سال نشر: 2010
تعداد صفحات: 678
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 14 مگابایت
در صورت تبدیل فایل کتاب Planetary Science (Advances in Geosciences) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب علوم سیاره ای (پیشرفت در علوم زمین) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این مجموعه حجمی ارزشمند از پیشرفتها در علوم زمین، سنت عالی جامعه علمی آسیا-اقیانوسیه را در ارائه بهروزترین نتایج تحقیقاتی در زمینه طیف گستردهای از علوم زمین و علوم زیست محیطی ادامه میدهد. این اطلاعات برای درک تأثیرات تغییرات آب و هوایی، آب و هوای شدید بر پرجمعیت ترین مناطق و سریع ترین اقتصادهای جهان در حال حرکت، حیاتی است. علاوه بر این، این مجلدات همچنین مقالات اصلی بسیاری از مؤسسات تحقیقاتی معتبر را برجسته می کند که در حال انجام مطالعات پیشرفته در فیزیک جو، علم هیدرولوژی و منابع آب، علم اقیانوس و مطالعه سواحل، اکتشاف سیاره و علم منظومه شمسی، لرزه شناسی، سونامی، فیزیک اتمسفر فوقانی و علم فضایی
This invaluable volume set of Advances in Geosciences continues the excellent tradition of the Asia-Oceania scientific community in providing the most up-to-date research results on a wide range of geosciences and environmental science. The information is vital to the understanding of the effects of climate change, extreme weathers on the most populated regions and fastest moving economies in the world. Besides, these volumes also highlight original papers from many prestigious research institutions which are doing cutting edge study in atmospheric physics, hydrological science and water resource, ocean science and coastal study, planetary exploration and solar system science, seismology, tsunamis, upper atmospheric physics and space science.
CONTENTS......Page 14
Editors......Page 6
Reviewers......Page 7
Preface......Page 9
Preface to PS Volume......Page 11
1. Introduction......Page 22
2. Extended Sodium Comas and Tails......Page 24
3. Time Variability......Page 25
4. Magnetic Anomalies......Page 27
References......Page 28
Charged Particle Acceleration in the Hermean Magnetosphere: The Comparison of Contributions of Different Mechanisms Zelenyi Lev, Malova Helmi, Korzhov Alexey, Popov Victor, Dominique Delcourt and Artemyev Anton......Page 30
1. Introduction......Page 31
2. Comparison of Mechanisms of Particle Acceleration......Page 34
3. The Model of Charged Particle Acceleration Due to Multiple Substorm Dipolarizations......Page 38
3.1. The model of electric and magnetic fields during multiple dipolarization......Page 39
3.2. Particle acceleration on “magnetic clouds” in a global model of the Hermean magnetosphere......Page 41
3.3. The model of charged particles acceleration and thermalization in a turbulent plasma of a magnetotail......Page 43
4. Conclusions......Page 47
References......Page 48
1. Introduction......Page 50
2. Measurement Principle and Sensor Design......Page 51
3.1. Nominal operation modes......Page 53
3.2. Procedure of model calculation......Page 55
3.3. Magnetospheric ion measurement......Page 56
3.4. Solar wind ion measurement......Page 58
Acknowledgment......Page 61
References......Page 62
Distributions of K and Th on the Moon: The Initial Results from Observations by Selene GRS Yuzuru Karouji, Nobuyuki Hasebe, Osamu Okudaira, Naoyuki Yamashita, Shingo Kobayashi, Makoto Hareyama, Takashi Miyachi, Satoshi, Kodaira, Kazuya Iwabuchi, Kanako Hayatsu, Shinpei Nemoto, Yuko Takeda, Koichi Tsukada, Hiroshi Nagaoka, Masanori Kobayasi, Eido Shibamura, Mitsuru Ebihara, Takeshi Hihara, Tomoko Arai, Takamitsu Sugihara, Hiroshi Takeda, Claude D’uston, Sylvestre Maurice, Olivier Gasnault, Olivier Forni, Benedicte Diez, Robert C. Reedy, Kyeong J. Kim, Takeshi Takashima, Yuichi Iijima and Hisashi Otake......Page 64
1. Introduction......Page 65
2. Observation......Page 66
3. Results and Discussion......Page 69
4. Conclusions......Page 74
References......Page 75
Lunar Gamma-Ray Observation by Kaguya GRS N. Hasebe, N. Yamashita, Y. Karouji, S. Kobayashi, M. Hareyama, S. Komatsu, K. Hayatsu, K. Nemoto, K. Iwabuchi, Y. Takeda, H. Nagaoka, K. Tsukada, J. Machida, O. Okudaira, S. Sakurai, E. Shibamura, M.-N. Kobayashi, M. Ebihara, T. Hihara, T. Arai, T. Sugihara, H. Takeda, C. d’uston, O. Gasnault, B. Diez, O. Forni, S. Maurice, R. C. Reedy and K. J. Kim......Page 78
1. Introduction......Page 79
2. The Gamma-Ray Spectrometer......Page 80
3.1. Regular operation......Page 81
3.3. Annealing of the germanium detector......Page 82
4. Global Mapping of Natural Radioactive Nuclides......Page 85
5. Summary......Page 87
References......Page 88
1. Introduction......Page 90
2. KAGUYA GRS......Page 91
3. Derivation Scheme of the Ambient Dose Equivalent......Page 92
4. Results and Discussion......Page 93
References......Page 96
Computational Geology for Lunar Data Analysis from LISM on KAGUYA Noriaki Asada, Naru Hirata, Hirohide Demura, Naoto Harada, Yuto Shibata, Shota Kikuchi, Tomoki Hodokuma, Junichi Haruyama, Makiko Ohtake, Yasuhiro Yokota, Tomokatsu Morota, Chikatoshi Honda, Tsuneo Matsunaga, Yoshiko Ogawa, Masaya Torii, Tokuhiro Nimura, Hiroshi Araki and Seiichi Tazawa......Page 98
1. Introduction......Page 99
2.1. Overview......Page 100
2.2. Edge detection......Page 101
2.3. Crater recognition......Page 102
2.4. Evaluation of this method......Page 103
3.1. Overview......Page 104
3.3. Classification procedures for geological mapping......Page 105
References......Page 109
Modeling of the Radiation Environment on the Moon Giovanni De Angelis, Francis F. Badavi, John M. Clem, Steve R. Blattnig, Martha S. Clowdsley, Ram K. Tripathi and John W. Wilson......Page 110
1. Introduction......Page 111
2. Particle Environments Models......Page 112
2.2. Solar particle events......Page 113
3.1. Planetary surface and subsurface environments......Page 115
3.2. The lunar physico-chemical model......Page 116
4. Radiation Transport Computing Tools......Page 117
5. Results......Page 118
6. Comparison with Modeling Results by Other Authors......Page 120
7. Comparison with Experimental Results......Page 121
8. Conclusions......Page 122
References......Page 125
Telescope of Extreme Ultraviolet Boarded on KAGUYA: Science from the Moon Ichiro Yoshikawa, Go Murakami, Fukuhiro Ezawa, Kazuo Yoshioka, Yuki Obana, Makoto Taguchi, Atsushi Yamazaki, Shingo Kameda, Masato Nakamura, Masayuki Kikuchi, Masato Kagitani, Shoichi Okano, Kazuo Shiokawa and Wataru Miyake......Page 130
1. Introduction......Page 131
2. Observation Window......Page 132
3. The First Light......Page 133
4. Signal-to-Noise Ratio Based on In-flight Background Measurement......Page 138
5. Summary......Page 140
References......Page 141
1. Introduction......Page 144
2. Spacecraft Description and Tracking......Page 145
3. Orbit Determination Modeling and Estimated Parameters......Page 147
4. Result......Page 148
5. Conclusion......Page 156
References......Page 157
Chang’E-1 Laser Altimetry Data Processing Qian Huang, Jingsong Ping, Jianguo Yan, Jianfeng Cao, Geshi Tang and Rong Shu......Page 158
2. The LAM System and its Present Status......Page 159
3.1. Orbit determination and attitude control......Page 161
3.2. LAM data processing......Page 162
3.3. Lunar topographic model CLTM-s01......Page 163
4. Summary......Page 168
References......Page 169
1. Introduction......Page 172
2. Instrumentation......Page 173
3. First Observations and Results......Page 177
4. Discussion......Page 180
References......Page 181
The Doppler-Sonnemann Effect (DSE) on the Photochemistry on Mars M. Grygalashvyly, P. Hartogh, G. R. Sonnemann and A. S. Medvedev......Page 184
1.2. The basic model description......Page 185
2. The Photochemical Doppler Effect......Page 187
3. Sunset Conditions......Page 188
4. Results and Discussion......Page 190
5. Summary and Conclusion......Page 194
References......Page 195
1. Introduction......Page 198
2.1. Chemistry-transport model......Page 200
2.2. Dynamical model......Page 202
3. Results......Page 203
4. Discussion......Page 208
5. Summary and Outlook......Page 210
References......Page 211
1. Introduction......Page 216
2. Model and Experiments......Page 217
3. Results......Page 219
4. Discussion and Conclusion......Page 222
References......Page 225
Modeling of the Radiation Environment on Mars Giovanni De Angelis, Francis F. Badavi, Steve R. Blattnig, Martha S. Clowdsley, Garry D. Qualls, Robert C. Singleterry Jr., Ram K. Tripathi and John W. Wilson......Page 228
1. Introduction......Page 229
2.1. Galactic cosmic rays (GCR)......Page 230
2.2. Solar particle events......Page 231
3.1. Planetary surface and subsurface environments......Page 232
3.2. The mars physico-chemical model......Page 234
4. Radiation Transport Computing Tools......Page 235
5. Results......Page 236
6. Conclusions......Page 240
References......Page 241
1. Introduction......Page 246
2. Energy Loss Model......Page 248
3. Results and Discussions......Page 250
4. Conclusions......Page 252
References......Page 254
1. Introduction......Page 256
2.1. Interior and dynamics......Page 258
2.2. Rotation......Page 259
2.3.2. Meteorology, physical chemistry and climate......Page 260
2.3.3. Volatile history and climate evolution......Page 262
2.4. Geomorphology, geology & geochemistry......Page 263
2.4.1. Geology and geomorphology of the landing site......Page 264
3. Mission Outline......Page 266
5. Concluding Remarks......Page 268
References......Page 269
1. Introduction......Page 272
2. Basic Method and Computational Formulation......Page 274
3. Results and Discussion......Page 275
References......Page 280
1. Introduction......Page 282
2. Description of the MGCMs......Page 283
3. Results......Page 284
4. Discussions......Page 288
References......Page 290
Retrieval Simulations of the Vertical Profiles of Water Vapour and Other Chemical Species in the Martian Atmosphere using PACS G. Portyankina, N. Thomas, P. Hartogh and H. Sagawa......Page 292
1. Introduction: Martian Atmosphere and PACS......Page 293
2. Proposed PACS Observations for the Martian Atmosphere......Page 295
3. Description of the Techniques Used......Page 296
4.1. Possibility of detection of minor species in the Martian atmosphere with PACS......Page 297
4.2. Vertical temperature profile retrievals......Page 299
4.3. Water vapour vertical distribution retrievals......Page 300
5. Conclusions......Page 303
References......Page 304
1. Introduction......Page 306
2. Observation Method......Page 307
3. Observation Results......Page 309
4. Discussion......Page 312
References......Page 314
Development of a Light-Weight and Large-Area Parallel-Plate Impact Ionization Detector for In Situ Measurement of Dust/Debris Takayuki Hirai, Hideo Ohashi, Sho Sasaki, Hiromi Shibata, Ken-Ichi Nogami, Takeo Iwai and Ralf Srama......Page 316
1. Introduction......Page 317
2. Principle of Impact Ionization Detector......Page 318
3. Experiments......Page 319
4.1. The 3rd IID......Page 321
4.2. The 4th IID......Page 324
5. Summary......Page 326
References......Page 327
Application of Penetrators Within the Solar System Alan Smith, Robert A. Gowen, Kerrin Rees, Craig Theobald, Patrick Brown, William T. Pike, Toby Hopf, Sunil Kumar, Philip Church, Yang Gao, Adrian Jones, Katherine H. Joy, Ian A. Crawford, Simon Sheridan, Axel Hagermann, Simeon J. Barber, Andrew J. Ball and Nigel Wells......Page 328
1. Introduction......Page 329
2. Applications......Page 330
3. Technology......Page 331
3.2. Penetrator bays, subsystems and payload......Page 332
4. Pendine Trials......Page 333
4.1. Impact modelling......Page 335
4.2. Target materials......Page 336
4.4. Magnetometer......Page 338
4.5. Mass spectrometer......Page 339
References......Page 340
Duty Cycle Weighting using e-Beam Lithography in RACs for Chirp Transform Spectrometers Xianyi Li, Paul Hartogh, Leonhard Reindl, Thomas Weimann and Victor Plessky......Page 342
1. Introduction......Page 343
2. Loss Modelling of the RAC Device......Page 345
2.2. Propagation loss......Page 346
2.3. Transmission loss......Page 347
3. Duty Cycle Weighting......Page 348
4. E-beam Lithography for Duty Cycle Weighting......Page 350
5. Discussion and Conclusions......Page 351
References......Page 353
1. Introduction......Page 356
3. Retrieving Vertical Profiles of Species......Page 358
4.1. Retrieval simulations with the spectral resolution of HIFI......Page 361
4.2. Temperature and mixing ratio profiles of H2O, HCN, and CO with PACS......Page 364
5. Conclusion......Page 367
References......Page 368
1. Introduction......Page 370
2. Geophysical and Geochemical Similarity Assumptions......Page 371
3. Formulation of the Problem, Input Data, and Method of Solution......Page 374
4. The Internal Structure of the Satellites Under Isochemical Conditions......Page 378
4.2. Europa......Page 379
4.4. Geochemical parameters......Page 380
5. Discussion......Page 381
6. Conclusion......Page 383
References......Page 384
1. Introduction......Page 386
2.2. Geochemical constraints......Page 387
2.4. Model of a core......Page 388
3. Europa......Page 389
4. Ganymede......Page 391
5.2. A model for the interior structure of Callisto with an internal ocean......Page 392
6. H2O Content in the Galilean satellites......Page 395
7. Conclusion......Page 396
References......Page 397
Jupiter Thermospheric General Circulation Model (JTGCM): Global Thermal Balances and Thermospheric Wind — A Review Tariq Majeed, J. Hunter Waite, Jr., G. Randall Gladstone and Stephen W. Bougher......Page 398
1. Introduction......Page 399
2. Description of the JTGCM......Page 400
2.1.2. Specification of the ionosphere......Page 401
2.1.3. Specification of hydrocarbon cooling......Page 402
2.1.5. Ion drag and joule heating formulations......Page 404
2.1.7. Auroral morphology......Page 406
2.1.8. Specification of the ionospheric electric field......Page 407
2.2. Lower boundary conditions......Page 408
2.3. Upper boundary conditions......Page 409
3. JTGCM Temperature and Wind Simulations......Page 410
3.1. Wind processes......Page 412
4.1. Equatorial temperature......Page 413
4.2. Auroral oval temperatures......Page 416
5. Conclusions......Page 421
References......Page 422
The Saturn Hot Atomic Hydrogen Plume: Quantum Mechanical Investigation of H2 Dissociation Mechanisms Xianming Liu, D. E. Shemansky, P. V. Johnson, C. P. Malone, H. Melin, J. A. Young and I. Kanik......Page 426
1. Introduction......Page 427
2.1. Photodissociation cross section......Page 430
2.3. Potential energy curves and transition moments......Page 431
3.1.1. Singlet-ungerade excitation......Page 432
3.1.2. Singlet-gerade excitation......Page 435
3.1.3. Triplet excitation......Page 436
3.2. Excitation to doubly excited and ionic states......Page 438
4. Discussion......Page 440
Acknowledgments......Page 444
References......Page 445
VUV Absorption Properties of Gaseous and Solid C2H2: Relevance to Outer Planetary Atmospheres Research C. Y. Robert Wu, F. Z. Chen, D. L. Judge and B. M. Cheng......Page 448
1. Introduction......Page 449
2. Experimental Setup and Experimental Procedures......Page 450
3. Results and Discussion......Page 452
3.1. Temperature effects on the absorption properties of C2H2 Gas......Page 453
3.2. Pressure-Broadening of C2H2 by H2, N2, and Ar......Page 455
3.3. Isolated matrix and solid thin film of C2H2 ices......Page 457
4. Concluding Remarks......Page 461
Acknowledgment......Page 462
References......Page 463
1. Introduction......Page 466
2. Experimental......Page 467
3.1. The absorption and fluorescence excitation of Tanaka and LBH system......Page 468
3.2. Excited states in 90–100 nm wavelength region......Page 471
References......Page 472
1. Introduction......Page 474
2. Experiments......Page 475
3. Results and Discussion......Page 476
4. Conclusion......Page 483
References......Page 484
1. Introduction......Page 486
2. Experimental......Page 487
3.1. C2H4......Page 488
3.2.1. Allene......Page 489
3.2.2. Methylacetylene (Propyne)......Page 491
3.4. Alcohols: CH3OH, C2H5OH, 1-C3H7OH, and 2-C3H7OH......Page 492
References......Page 494
1. Introduction......Page 496
2. Experimental Setup and Experimental Procedures......Page 498
3.1. Procedures for data reduction and analysis......Page 500
3.2. Determination of the e.ective path length......Page 501
3.3. Determination of cross-section values at low temperatures......Page 502
3.4. Deduction of C2H2 sticking coe.cient at 150K......Page 503
4. Concluding Remarks......Page 505
References......Page 506
1. Introduction......Page 510
3.1. Experimental observations......Page 512
3.1.1. Irradiation of C2H4/Ne=1/1000 at 170 nm......Page 513
3.1.2. Irradiation of C2H4/Ne=1/1000 at 157 nm......Page 514
3.2. Photoproducts in relation to photolysis wavelength......Page 515
References......Page 517
1. Introduction......Page 520
2. Linear Irreversible Thermodynamics and the Gas-Flux Problem......Page 521
3. Measuring the Onsager Heat of Transport......Page 523
4. Representative Results......Page 525
References......Page 529
1. Introduction......Page 532
2. Laboratory Set-up......Page 533
3. Theoretical Background......Page 534
4.1. Ices of carbon dioxide and water......Page 535
4.2. Ices of carbon dioxide and methanol......Page 540
Acknowledgments......Page 545
References......Page 546
1. Introduction......Page 548
2. Experimental Setup......Page 549
3.1. Density and refractive index......Page 551
3.2. Porosity......Page 554
4.1. Desorption temperature......Page 555
4.2. Desorption energy......Page 557
4.3. Retention capacity......Page 558
5. Conclusions......Page 559
References......Page 560
The Interstellar Astrochemistry Chamber (ISAC) G. M. Munoz Caro, J. A. Martın-Gago, C. Rogero, A. Jimenez-Escobar, J. M. Sobrado, C. Atienza and S. Puertas......Page 562
1. Introduction......Page 563
2. Technical Description of ISAC......Page 565
3. Experimental Protocol......Page 570
4. Calibration Experiments......Page 571
References......Page 576
1. Introduction......Page 578
2. Experimental Setup......Page 579
3. Parameters to Control......Page 580
4. Deposition......Page 582
5. TPD Experiments......Page 585
Acknowledgments......Page 587
References......Page 588
1. Introduction......Page 590
2. Instrument Overview......Page 592
2.1. Instrument dewar......Page 593
2.2. CTS......Page 594
2.3. House-keeping and redundancy......Page 595
3. Calibration and Retrieval Method......Page 596
4. Initial Results and Outlook......Page 597
References......Page 598
Extreme Ultraviolet Spectroscope for Exospheric Dynamics Explore (Exceed) Ichiro Yoshikawa, Kazuo Yoshioka, Go Murakami, Atsushi Yamazaki, Shingo Kameda, Munetaka Ueno, Naoki Terada, Fuminori Tsuchiya, Masato Kagitani and Yasumasa Kasaba......Page 600
2. Science Objectives......Page 601
4. Instrumental Overview......Page 602
5. Contamination from the Terrestrial Airglow......Page 605
6. Estimate of Signal-to-Noise Ratio......Page 607
Acknowledgments......Page 609
References......Page 610
1. Introduction......Page 614
2. The Heliosphere......Page 615
3. The Geomagnetic Field......Page 616
4. In the Atmosphere......Page 617
References......Page 619
Multi-Frequency Total flux Measurements of Jupiter’s Synchrotron Radiation in 2007 F. Tsuchiya, H. Misawa, K. Imai, A. Morioka and T. Kondo......Page 622
1. Introduction......Page 623
2. Observation System......Page 624
3. Observations and Analysis......Page 625
4. Results and Discussion......Page 628
5. Summary......Page 630
References......Page 631
1. Introduction......Page 634
2. Simultaneous Extraction of Static and Time-Dependent Topography of Mercury from Synthetic BELA Data......Page 637
3. Tidal Elevation Measurement at Orbit Crossing Points......Page 640
3.1. Uncertainty due to small-scale topography......Page 641
4. Prospects for Missions in the Frame of ESA’s Cosmic Vision Programme......Page 644
5. Conclusions......Page 647
Appendix A. Uncertainty due to small-scale topography......Page 649
References......Page 650
1. Background......Page 654
2. Centre for Space Science and Technology Education in Asia and the Pacific (CSSTEAP)......Page 656
4. African Regional Centre for Space Science and Technology Education — in English Language (ARCSSTE-E)......Page 657
6. Future Development......Page 658
References......Page 659
Asia-Pacific Region Water Boosted Rocket Events K.-I. Oyama, A. Hidayat, E. Sofyan, H. S. S. Sinha, K. Herudi, T. Kubota, S. Sukkarieh, J. L. Arban, D. M. Chung, I. Medagangoda, Z. B. Mohd, S. Pitan, C. Chin and F. R. Sarkar......Page 660
1. Introduction......Page 661
2.1. Structure of SEA WG......Page 662
2.2. Items to be awared among SEA WG......Page 663
3. Water Boosted Rocket Event......Page 664
3.1. Various applications of the water boosted rockets......Page 665
3.2. First water boosted rocket event in Japan......Page 666
3.2.1. Schedule for 1st water boosted rocket in Japan......Page 667
3.2.2. Lessons learned from the 1st event......Page 669
3.3. Second water boosted rocket in Indonesia......Page 670
3.4. 3rd water boosted rocket event in India......Page 673
4. Concluding Remarks......Page 676
References......Page 677