دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Harry Y. McSween, Jr., Jeffrey E. Moersch, Devon M. Burr, William M. Dunne, Joshua P. Emery, Linda C. Kah, and Molly C. McCanta سری: ISBN (شابک) : 9781107145382 ناشر: Cambridge University Press سال نشر: 2019 تعداد صفحات: 350 [340] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 22 Mb
در صورت تبدیل فایل کتاب Planetary geoscience به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب زمین شناسی سیاره ای نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
برای سالهای متمادی، علوم سیارهای به عنوان بخشی از برنامه درسی نجوم، از دیدگاهی کاملاً مبتنی بر فیزیک، و از چارچوب یک تور منظومه شمسی - بدن به بدن - تدریس میشود. با این حال، طی دهههای گذشته، اکتشاف فضاپیما و تحقیقات آزمایشگاهی مرتبط بر روی مواد فرازمینی به ما درک جدیدی از سیارات و نحوه شکلگیری آنها توسط فرآیندهای زمینشناسی داده است. بر اساس دوره ای که در دانشگاه تنسی، ناکسویل تدریس می شود، این اولین کتاب درسی است که بر فرآیندهای زمین شناسی تمرکز می کند و رویکرد مقایسه ای را اتخاذ می کند که شباهت ها و تفاوت های بین سیارات و دلایل آن را نشان می دهد. این کتاب با مصور فراوان، و با انبوهی از ویژگیهای آموزشی، یک دوره ایدهآل برای رشتههای علوم زمین فراهم میکند - جنبههای کانیشناسی، سنگشناسی، ژئوشیمی، آتشفشانشناسی، رسوبشناسی، ژئومورفولوژی، زمینشناسی، ژئوفیزیک و سنجش از دور را گرد هم میآورد.
For many years, planetary science has been taught as part of the astronomy curriculum, from a very physics-based perspective, and from the framework of a tour of the Solar System - body by body. Over the past decades, however, spacecraft exploration and related laboratory research on extraterrestrial materials have given us a new understanding of planets and how they are shaped by geological processes. Based on a course taught at the University of Tennessee, Knoxville, this is the first textbook to focus on geologic processes, adopting a comparative approach that demonstrates the similarities and differences between planets, and the reasons for these. Profusely illustrated, and with a wealth of pedagogical features, this book provides an ideal capstone course for geoscience majors - bringing together aspects of mineralogy, petrology, geochemistry, volcanology, sedimentology, geomorphology, tectonics, geophysics and remote sensing.
Contents Preface: Geologic Processes in the Solar System 1. Exploring the Solar System 1.1 Planetary Exploration and Explorers 1.2 Poking Around the Neighborhood: The Terrestrial Planets 1.2.1 Earth’s Moon 1.2.2 Mars 1.2.3 Venus 1.2.4 Mercury 1.3 Xenoplanets: Gas Giants and Ice Giants 1.3.1 Jupiter 1.3.2 Saturn 1.3.3 Uranus 1.3.4 Neptune 1.4 The Most Interesting Moons 1.4.1 Galilean Moons of Jupiter 1.4.2 Titan and Enceladus of Saturn 1.4.3 Triton of Neptune 1.5 Small Bodies, Big Rewards 1.5.1 Dwarf Planets: Ceres and Pluto 1.5.2 Asteroids 1.5.3 Comets 1.6 A Few Notes on Orbital Dynamics Summary Review Questions Suggestion for Further Reading Reference 2 Toolkits for the Planetary Geoscientist: Spectroscopy and Imaging 2.1 Sensing Remotely 2.2 The Electromagnetic Spectrum 2.3 Blackbody Emission 2.4 Emissivity and Reflectance Spectra 2.5 Making Spectra Useful: Information from Different Regions of the Electromagnetic Spectrum 2.5.1 Gamma Rays 2.5.2 X-rays and Ultraviolet Photons 2.5.3 Visible and Near-Infrared Photons 2.5.4 Thermal Infrared Photons 2.5.5 Microwave and Radio Photons 2.6 Example Spectra 2.6.1 Visible/Near-Infrared Reflectance Spectra of Iron-Bearing Minerals 2.6.2 Vibrational Features in Near- Infrared Reflectance Spectra 2.6.3 Vibrational Features in Thermal Infrared Emissivity Spectra 2.6.4 Complicating Factors in Making Spectral Identifications 2.7 Remote Sensing Instrumentation and Observational Considerations 2.7.1 Framing Cameras 2.7.2 Scanning Systems 2.7.3 Hyperspectral Push-Broom Imagers 2.7.4 Band Placement and Atmospheric Transmission 2.7.5 Other Instrumental/Experimental Considerations 2.8 Analysis of Multi- and Hyperspectral Image Cubes 2.9 Ground Truthing 2.10 Nuclear Remote Sensing 2.10.1 Gamma Rays 2.10.2 Neutrons 2.10.3 Observational Considerations in Nuclear Remote Sensing 2.11 Radar Remote Sensing Summary Review Questions Suggestions for Further Reading References 3. More Toolkits for the Planetary Geoscientist: Chronology, Mapping, Geophysics, and Laboratory Analysis 3.1 Geochronology 3.1.1 Planetary Stratigraphy 3.1.2 Crater Size–Frequency Distribution as a Chronometer 3.1.3 Radioactive Isotopes as a Chronometer 3.2 Geologic Mapping 3.2.1 Imagery 3.2.2 Definition of Map Units 3.2.3 Relative Age Determination of Units 3.2.4 Rock (or Ice) Units and Rock (or Ice)-Time Units 3.2.5 Mapping Tectonic Structures 3.3 Geophysical Methods 3.3.1 Topography 3.3.2 Gravity 3.3.3 Magnetics 3.3.4 Seismicity 3.3.5 Radiometry 3.4 Analysis of Planetary Materials 3.4.1 Available Extraterrestrial Samples 3.4.2 Laboratory Analysis Techniques 3.4.3 Geochemical, Mineralogical, and Geophysical Instruments Adapted for Landed Operations Summary Review Questions Suggestions for Further Reading References 4. Solar System Raw Materials 4.1 Adding Cosmo to Chemistry 4.2 Origin of the Elements 4.2.1 Stellar (and Solar) Formation and Evolution 4.2.2 Nucleosynthesis, Slow and Fast 4.3 Composition of the Solar System 4.4 Minerals, Ices, and Organic Matter 4.4.1 Condensation of Minerals 4.4.2 Making Organic Molecules 4.4.3 Condensation of Ices: The Only Stuff Left 4.5 Chemical Fractionations in the Solar Nebula 4.5.1 Element Fractionations 4.5.2 Isotope Fractionations Summary Review Questions Suggestions for Further Reading References 5. Assembling Planetesimals and Planets 5.1 Dust to Disk 5.2 Stages of Accretion 5.2.1 Evolution of Stellar Objects 5.2.2 Planet Formation 5.3 Solar System Chronology, by the Numbers 5.4 Recipes for Planets 5.4.1 The Terrestrial Planets 5.4.2 The Giant Planets 5.5 The Leftovers: Asteroids and Comets 5.5.1 Asteroids 5.5.2 Comets 5.5.3 A Hole in the Solar Nebula? 5.6 Whence Earth’s Moon? 5.6.1 Origin of the Moon 5.6.2 Orbital Scrambling Summary Review Questions Suggestions for Further Reading References 6. Planetary Heating and Differentiation 6.1 Too Hot to Handle 6.2 Heat Sources 6.2.1 Accretion and Impacts 6.2.2 Radioactive Decay 6.2.3 Core Segregation and Core Crystallization 6.2.4 Tidal Forces 6.3 Magma Oceanography 6.4 Differentiation of Rocky Planets and Planetesimals 6.4.1 Getting to the Heart of the Matter: Cores 6.4.2 Going Up: Crusts 6.4.3 What’s Left: Mantles 6.4.4 Another View: Partial Differentiation 6.5 Differentiation of the Giant Planets 6.6 Hot, and Then It’s Not Summary Review Questions Suggestions for Further Reading References 7. Unseen Planetary Interiors 7.1 Hardened Hearts 7.2 Inside the Planet We Know Best 7.2.1 Seismology 7.2.2 Samples from the Mantle 7.2.3 High-Pressure Experiments 7.2.4 Seismic Tomography and Convection 7.3 Inside Other Rocky Planets 7.3.1 Seismology 7.3.2 Mean Density 7.3.3 Moment of Inertia 7.3.4 Gravity and Tides 7.3.5 Models of Planetary Interiors 7.3.6 Timing of Planetary Differentiation 7.4 Interiors of the Giant Planets and Icy Moons 7.4.1 Jupiter and Saturn 7.4.2 Uranus and Neptune 7.4.3 Icy Moons 7.5 Evolution of Planetary Interiors Summary Review Questions Suggestions for Further Reading References 8. Planetary Geodynamics 8.1 Motions in Planetary Interiors 8.2 Geologic Stresses and Deformations 8.2.1 Balancing Act: Stress Equilibrium 8.2.2 What Exactly Is Strain? 8.2.3 Relating Stress and Strain 8.3 The Weight of the World: Isostasy and Flexure 8.3.1 Isostasy 8.3.2 Flexure 8.4 The Pull of Gravity 8.4.1 The Geoid 8.4.2 Gravity Anomalies 8.4.3 Assessing the Compensation State 8.5 Conductive Heat Flow 8.5.1 Fourier’s Law and Heat Diffusion 8.5.2 Surface Heat Flux and Temperature Profiles 8.5.3 Solar Heating 8.5.4 Thermal Stresses 8.6 Going with the Flow: Fluid Mechanics 8.6.1 Conservation Laws 8.6.2 Relaxing Topography 8.6.3 Convection 8.7 Rheology 8.7.1 Visco-Elastic Rheology 8.7.2 Non-Newtonian Rheology Summary Review Questions Suggestions for Further Reading References 9. Planetary Structures and Tectonics 9.1 Active-Lid versus Stagnant-Lid Planets and Satellites 9.2 Lithospheric Materials, Deformation Behaviors, and Strengths 9.2.1 Materials 9.2.2 Deformation Behaviors 9.2.3 Lithospheric Strength as a Function of Depth 9.3 Energy Sources and Driving Stresses 9.3.1 Thermal Sources 9.3.2 Density Inversion Sources 9.3.3 Tidal Sources 9.3.4 True Polar Wander as a Source 9.4 Structures and Tectonics for Stagnant Lids 9.4.1 Simple Stagnant Lids (Mercury, Callisto) 9.4.2 A Loaded Stagnant Lid (Mars) 9.5 Structures and Tectonics for Active Lids 9.5.1 Active Lid with Plate Tectonics (Earth) 9.5.2 Active Lid without Plate Tectonics (Europa) 9.5.3 Partially Active Lid without Plate Tectonics (Enceladus) 9.6 Stagnant Lid Possibly Active in the Past? (Venus) Summary Review Questions Suggestion for Further Reading References 10. Planetary Igneous Activity 10.1 Magmas, Everywhere You Look 10.2 Magmatic Activity on the Planet We Know Best 10.3 Planetary Volcanism and Eruptive Styles 10.3.1 Moon 10.3.2 Mercury 10.3.3 Venus 10.3.4 Mars 10.3.5 Io 10.3.6 Comparisons of Eruptive Style 10.4 Planetary Igneous Petrology and Geochemistry 10.4.1 Moon 10.4.2 Mars 10.4.3 Asteroid Vesta 10.4.4 Bodies without Samples 10.5 Petrologic Comparisons and Magmatic Evolution 10.5.1 Planetary Igneous Rocks 10.5.2 Planetary Magmatic Evolution through Time Summary Review Questions Suggestions for Further Reading References 11. Impact Cratering as a Geologic Process 11.1 Terrestrial Craters: A Little History 11.2 Crater Morphologies: Simple and Complex 11.3 Cratering Mechanics 11.3.1 Energy and Shock Waves 11.3.2 Stages of Crater Formation 11.4 Geology of Impact Craters 11.4.1 Shatter Cones Formed at the Contact/Compression Stage 11.4.2 Breccias Formed at the Excavation Stage 11.4.3 Structures Formed at the Excavation Stage 11.4.4 Structures Formed at the Modification Stage 11.5 Shock Metamorphism 11.5.1 Changes in Shocked Terrestrial Rocks 11.5.2 Shock in Extraterrestrial Rocks 11.6 Role of Craters in Planetary and Terrestrial Geology 11.7 A Threat to Life and Civilization Summary Review Questions Suggestions for Further Reading References 12. Planetary Atmospheres, Oceans, and Ices 12.1 Planetary Volatile Reservoirs and Dynamics 12.2 Chemistry of Planetary Atmospheres 12.2.1 Atmospheric Pressures and Molecular Abundances 12.2.2 A Special Role for Noble Gases 12.3 Physics of Planetary Atmospheres 12.3.1 Atmospheric Structures 12.3.2 Cloud Formation 12.3.3 Atmospheres in Motion 12.4 Sloshing Oceans, Seas, and Lakes 12.4.1 Oceans on Earth and Perhaps Ancient Mars 12.4.2 Titan’s Hydrocarbon Lakes 12.4.3 Subsurface Seas on Other Worlds 12.5 Frozen Volatiles 12.5.1 Surface Ice: Polar Ice Caps 12.5.2 Surface Ice: Glaciers 12.5.3 Subsurface Ice: Permafrost 12.5.4 Worlds with Icy Crusts 12.6 Origin and Evolution of Planetary Volatiles 12.6.1 Sources of Volatiles 12.6.2 Liquid Condensation 12.6.3 How Atmospheres Evolve 12.7 Geochemical Cycles and Their Consequences 12.7.1 Earth’s Carbon Cycle 12.7.2 Greenhouse Warming: Now and Then, Here and There Summary Review Questions Suggestions for Further Reading References 13. Planetary Aeolian Processes and Landforms 13.1 Bringing the Atmosphere Down to the Surface (and Why We Care) 13.2 The Near-Surface Wind Profile 13.3 The Physics of Particle Entrainment 13.3.1 Force (Torque) Balance: The Conditions for Entrainment 13.3.2 Entrainment by Fluid and by Impact 13.4 Aeolian Transport of Sediment 13.4.1 Terminal Velocities for Sand versus Dust 13.4.2 Transport Mechanisms 13.5 Aeolian Deposition and Planetary Landforms 13.5.1 Depositional Landforms for Sand 13.5.2 Depositional Landforms for Dust 13.6 Planetary Erosional Landforms 13.6.1 Yardangs 13.6.2 Ventifacts 13.7 Combined or Ambiguous Planetary Landforms 13.7.1 Stone Pavements 13.7.2 Wind Streaks Summary Review Questions Suggestions for Further Reading References 14. Planetary Fluvial and Lacustrine Landforms: Products of Liquid Flow 14.1 Volatile Landscapes 14.2 Liquid: Falling Down, Soaking In, Flowing Over, Flowing Through, Coming Out 14.2.1 How Liquids Interact with Landscapes 14.2.2 The Drainage Basin as the Fundamental Unit in Hydrology 14.3 Processes that Channelize the Flow of Liquid 14.3.1 Flow Velocity Profile 14.3.2 Entrainment 14.3.3 Transport Mechanisms of Fluvial Sediment: Three Regimes 14.3.4 Fluvial Bedforms 14.3.5 Fluvial Erosion 14.4 Channelized Flow of Liquid: Landscape Results 14.4.1 Fluvial Channels 14.4.2 Channel Drainage Networks 14.5 Deposition from Channelized Flow 14.5.1 Subaerial Deposition: Fans and Bajadas 14.5.2 Subaqueous Deposition: Deltas 14.6 Large Bodies of Standing Liquids 14.6.1 Marine and Lacustrine Morphologies on Mars 14.6.2 Hydrocarbon Lakes and Seas on Titan Summary Review Questions Suggestions for Further Reading References 15. Physical and Chemical Changes: Weathering, Sedimentology, Metamorphism, and Mass Wasting 15.1 Petrologic Changes and the Rock Cycle 15.2 Regoliths: Physical Weathering 15.2.1 The Lunar Regolith 15.2.2 Asteroid Regoliths 15.2.3 The Martian Regolith 15.3 Chemical Weathering and Aqueous Alteration 15.3.1 Chemical Weathering on Mars 15.3.2 Asteroids: Cosmic or Cosmuck? 15.4 Sedimentary Petrology on Other Worlds 15.5 Metamorphism 15.5.1 Thermal Metamorphism on the Surface of Venus 15.5.2 Thermal Metamorphism in the Interiors of Asteroids 15.5.3 Hydrothermal Metamorphism on Mars 15.6 Mass Wasting Summary Review Questions Suggestions for Further Reading References 16. Astrobiology: A Planetary Perspective on Life 16.1 The Diversity of Life 16.1.1 Reconstructing the Tree of Life 16.1.2 Complexities in the Tree of Life 16.1.3 The Last Universal Common Ancestor 16.2 The Chemistry of Life 16.2.1 CHNOPS and the Cosmos 16.2.2 Water, the Elixir of Life 16.3 Emergence of Life on Earth 16.4 Earth’s Early Biosphere 16.4.1 Recognizing Early Life 16.4.2 The Chemical Record of Life 16.5 Life Beyond Earth 16.5.1 Habitable Zones 16.5.2 Life in a Martian Meteorite? 16.5.3 The Ongoing Search for Organic Matter on Mars Summary Review Questions Suggestions for Further Reading References 17. Integrated Planetary Geoscience: A Case Study (Mars) 17.1 Geologic Exploration of a Planet 17.2 Planetary Reconnaissance and a Global Geologic Map 17.2.1 Global Physiography and Structure 17.2.2 Global Remote Sensing 17.2.3 Global Stratigraphic Timescale and Geologic Map 17.3 Regional Geology from Orbit and Surface Exploration by Rovers 17.3.1 Gusev Crater 17.3.2 Meridiani Planum 17.3.3 Gale Crater 17.4 Martian Meteorites: An Added Dimension 17.5 Integration and Synthesis 17.5.1 Pre-Noachian Period 17.5.2 Noachian Period/System 17.5.3 Hesperian Period/System 17.5.4 Amazonian Period/System Summary Review Questions Suggestions for Further Reading References Epilogue: Geologic Processes in Other Solar Systems? Suggestion for Further Reading References Glossary Index