ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Planetary geoscience

دانلود کتاب زمین شناسی سیاره ای

Planetary geoscience

مشخصات کتاب

Planetary geoscience

ویرایش:  
نویسندگان: , , , , , , ,   
سری:  
ISBN (شابک) : 9781107145382 
ناشر: Cambridge University Press 
سال نشر: 2019 
تعداد صفحات: 350
[340] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 22 Mb 

قیمت کتاب (تومان) : 44,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 8


در صورت تبدیل فایل کتاب Planetary geoscience به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب زمین شناسی سیاره ای نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب زمین شناسی سیاره ای

برای سال‌های متمادی، علوم سیاره‌ای به عنوان بخشی از برنامه درسی نجوم، از دیدگاهی کاملاً مبتنی بر فیزیک، و از چارچوب یک تور منظومه شمسی - بدن به بدن - تدریس می‌شود. با این حال، طی دهه‌های گذشته، اکتشاف فضاپیما و تحقیقات آزمایشگاهی مرتبط بر روی مواد فرازمینی به ما درک جدیدی از سیارات و نحوه شکل‌گیری آنها توسط فرآیندهای زمین‌شناسی داده است. بر اساس دوره ای که در دانشگاه تنسی، ناکسویل تدریس می شود، این اولین کتاب درسی است که بر فرآیندهای زمین شناسی تمرکز می کند و رویکرد مقایسه ای را اتخاذ می کند که شباهت ها و تفاوت های بین سیارات و دلایل آن را نشان می دهد. این کتاب با مصور فراوان، و با انبوهی از ویژگی‌های آموزشی، یک دوره ایده‌آل برای رشته‌های علوم زمین فراهم می‌کند - جنبه‌های کانی‌شناسی، سنگ‌شناسی، ژئوشیمی، آتشفشان‌شناسی، رسوب‌شناسی، ژئومورفولوژی، زمین‌شناسی، ژئوفیزیک و سنجش از دور را گرد هم می‌آورد.


توضیحاتی درمورد کتاب به خارجی

For many years, planetary science has been taught as part of the astronomy curriculum, from a very physics-based perspective, and from the framework of a tour of the Solar System - body by body. Over the past decades, however, spacecraft exploration and related laboratory research on extraterrestrial materials have given us a new understanding of planets and how they are shaped by geological processes. Based on a course taught at the University of Tennessee, Knoxville, this is the first textbook to focus on geologic processes, adopting a comparative approach that demonstrates the similarities and differences between planets, and the reasons for these. Profusely illustrated, and with a wealth of pedagogical features, this book provides an ideal capstone course for geoscience majors - bringing together aspects of mineralogy, petrology, geochemistry, volcanology, sedimentology, geomorphology, tectonics, geophysics and remote sensing.



فهرست مطالب

Contents
Preface: Geologic Processes in the Solar System
1. Exploring the Solar System
	1.1 Planetary Exploration and Explorers
	1.2 Poking Around the Neighborhood: The Terrestrial Planets
		1.2.1 Earth’s Moon
		1.2.2 Mars
		1.2.3 Venus
		1.2.4 Mercury
	1.3 Xenoplanets: Gas Giants and Ice Giants
		1.3.1 Jupiter
		1.3.2 Saturn
		1.3.3 Uranus
		1.3.4 Neptune
	1.4 The Most Interesting Moons
		1.4.1 Galilean Moons of Jupiter
		1.4.2 Titan and Enceladus of Saturn
		1.4.3 Triton of Neptune
	1.5 Small Bodies, Big Rewards
		1.5.1 Dwarf Planets: Ceres and Pluto
		1.5.2 Asteroids
		1.5.3 Comets
	1.6 A Few Notes on Orbital Dynamics
	Summary
	Review Questions
	Suggestion for Further Reading
	Reference
2 Toolkits for the Planetary Geoscientist: Spectroscopy and Imaging
	2.1 Sensing Remotely
	2.2 The Electromagnetic Spectrum
	2.3 Blackbody Emission
	2.4 Emissivity and Reflectance Spectra
	2.5 Making Spectra Useful: Information from Different Regions of the Electromagnetic Spectrum
		2.5.1 Gamma Rays
		2.5.2 X-rays and Ultraviolet Photons
		2.5.3 Visible and Near-Infrared Photons
		2.5.4 Thermal Infrared Photons
		2.5.5 Microwave and Radio Photons
	2.6 Example Spectra
		2.6.1 Visible/Near-Infrared Reflectance Spectra of Iron-Bearing Minerals
		2.6.2 Vibrational Features in Near- Infrared Reflectance Spectra
		2.6.3 Vibrational Features in Thermal Infrared Emissivity Spectra
		2.6.4 Complicating Factors in Making Spectral Identifications
	2.7 Remote Sensing Instrumentation and Observational Considerations
		2.7.1 Framing Cameras
		2.7.2 Scanning Systems
		2.7.3 Hyperspectral Push-Broom Imagers
		2.7.4 Band Placement and Atmospheric Transmission
		2.7.5 Other Instrumental/Experimental Considerations
	2.8 Analysis of Multi- and Hyperspectral Image Cubes
	2.9 Ground Truthing
	2.10 Nuclear Remote Sensing
		2.10.1 Gamma Rays
		2.10.2 Neutrons
		2.10.3 Observational Considerations in Nuclear Remote Sensing
	2.11 Radar Remote Sensing
	Summary
	Review Questions
	Suggestions for Further Reading
	References
3. More Toolkits for the Planetary Geoscientist: Chronology, Mapping, Geophysics, and Laboratory Analysis
	3.1 Geochronology
		3.1.1 Planetary Stratigraphy
			3.1.2 Crater Size–Frequency Distribution as a Chronometer
			3.1.3 Radioactive Isotopes as a Chronometer
	3.2 Geologic Mapping
		3.2.1 Imagery
		3.2.2 Definition of Map Units
		3.2.3 Relative Age Determination of Units
		3.2.4 Rock (or Ice) Units and Rock (or Ice)-Time Units
		3.2.5 Mapping Tectonic Structures
	3.3 Geophysical Methods
		3.3.1 Topography
		3.3.2 Gravity
		3.3.3 Magnetics
		3.3.4 Seismicity
		3.3.5 Radiometry
	3.4 Analysis of Planetary Materials
		3.4.1 Available Extraterrestrial Samples
		3.4.2 Laboratory Analysis Techniques
		3.4.3 Geochemical, Mineralogical, and Geophysical Instruments Adapted for Landed Operations
	Summary
	Review Questions
	Suggestions for Further Reading
	References
4. Solar System Raw Materials
	4.1 Adding Cosmo to Chemistry
	4.2 Origin of the Elements
		4.2.1 Stellar (and Solar) Formation and Evolution
		4.2.2 Nucleosynthesis, Slow and Fast
	4.3 Composition of the Solar System
	4.4 Minerals, Ices, and Organic Matter
		4.4.1 Condensation of Minerals
		4.4.2 Making Organic Molecules
		4.4.3 Condensation of Ices: The Only Stuff Left
	4.5 Chemical Fractionations in the Solar Nebula
		4.5.1 Element Fractionations
		4.5.2 Isotope Fractionations
	Summary
	Review Questions
	Suggestions for Further Reading
	References
5. Assembling Planetesimals and Planets
	5.1 Dust to Disk
	5.2 Stages of Accretion
		5.2.1 Evolution of Stellar Objects
		5.2.2 Planet Formation
	5.3 Solar System Chronology, by the Numbers
	5.4 Recipes for Planets
		5.4.1 The Terrestrial Planets
		5.4.2 The Giant Planets
	5.5 The Leftovers: Asteroids and Comets
		5.5.1 Asteroids
		5.5.2 Comets
		5.5.3 A Hole in the Solar Nebula?
	5.6 Whence Earth’s Moon?
		5.6.1 Origin of the Moon
		5.6.2 Orbital Scrambling
	Summary
	Review Questions
	Suggestions for Further Reading
	References
6. Planetary Heating and Differentiation
	6.1 Too Hot to Handle
	6.2 Heat Sources
		6.2.1 Accretion and Impacts
		6.2.2 Radioactive Decay
		6.2.3 Core Segregation and Core Crystallization
		6.2.4 Tidal Forces
	6.3 Magma Oceanography
	6.4 Differentiation of Rocky Planets and Planetesimals
		6.4.1 Getting to the Heart of the Matter: Cores
		6.4.2 Going Up: Crusts
		6.4.3 What’s Left: Mantles
		6.4.4 Another View: Partial Differentiation
	6.5 Differentiation of the Giant Planets
	6.6 Hot, and Then It’s Not
	Summary
	Review Questions
	Suggestions for Further Reading
	References
7. Unseen Planetary Interiors
	7.1 Hardened Hearts
	7.2 Inside the Planet We Know Best
		7.2.1 Seismology
		7.2.2 Samples from the Mantle
		7.2.3 High-Pressure Experiments
		7.2.4 Seismic Tomography and Convection
	7.3 Inside Other Rocky Planets
		7.3.1 Seismology
		7.3.2 Mean Density
		7.3.3 Moment of Inertia
		7.3.4 Gravity and Tides
		7.3.5 Models of Planetary Interiors
		7.3.6 Timing of Planetary Differentiation
	7.4 Interiors of the Giant Planets and Icy Moons
		7.4.1 Jupiter and Saturn
		7.4.2 Uranus and Neptune
		7.4.3 Icy Moons
	7.5 Evolution of Planetary Interiors
	Summary
	Review Questions
	Suggestions for Further Reading
	References
8. Planetary Geodynamics
	8.1 Motions in Planetary Interiors
	8.2 Geologic Stresses and Deformations
		8.2.1 Balancing Act: Stress Equilibrium
		8.2.2 What Exactly Is Strain?
		8.2.3 Relating Stress and Strain
	8.3 The Weight of the World: Isostasy and Flexure
		8.3.1 Isostasy
		8.3.2 Flexure
	8.4 The Pull of Gravity
		8.4.1 The Geoid
		8.4.2 Gravity Anomalies
		8.4.3 Assessing the Compensation State
	8.5 Conductive Heat Flow
		8.5.1 Fourier’s Law and Heat Diffusion
		8.5.2 Surface Heat Flux and Temperature Profiles
		8.5.3 Solar Heating
		8.5.4 Thermal Stresses
	8.6 Going with the Flow: Fluid Mechanics
		8.6.1 Conservation Laws
		8.6.2 Relaxing Topography
		8.6.3 Convection
	8.7 Rheology
		8.7.1 Visco-Elastic Rheology
		8.7.2 Non-Newtonian Rheology
	Summary
	Review Questions
	Suggestions for Further Reading
	References
9. Planetary Structures and Tectonics
	9.1 Active-Lid versus Stagnant-Lid Planets and Satellites
	9.2 Lithospheric Materials, Deformation Behaviors, and Strengths
		9.2.1 Materials
		9.2.2 Deformation Behaviors
		9.2.3 Lithospheric Strength as a Function of Depth
	9.3 Energy Sources and Driving Stresses
		9.3.1 Thermal Sources
		9.3.2 Density Inversion Sources
		9.3.3 Tidal Sources
		9.3.4 True Polar Wander as a Source
	9.4 Structures and Tectonics for Stagnant Lids
		9.4.1 Simple Stagnant Lids (Mercury, Callisto)
		9.4.2 A Loaded Stagnant Lid (Mars)
	9.5 Structures and Tectonics for Active Lids
		9.5.1 Active Lid with Plate Tectonics (Earth)
		9.5.2 Active Lid without Plate Tectonics (Europa)
		9.5.3 Partially Active Lid without Plate Tectonics (Enceladus)
	9.6 Stagnant Lid Possibly Active in the Past? (Venus)
	Summary
	Review Questions
	Suggestion for Further Reading
	References
10. Planetary Igneous Activity
	10.1 Magmas, Everywhere You Look
	10.2 Magmatic Activity on the Planet We Know Best
	10.3 Planetary Volcanism and Eruptive Styles
		10.3.1 Moon
		10.3.2 Mercury
		10.3.3 Venus
		10.3.4 Mars
		10.3.5 Io
		10.3.6 Comparisons of Eruptive Style
	10.4 Planetary Igneous Petrology and Geochemistry
		10.4.1 Moon
		10.4.2 Mars
		10.4.3 Asteroid Vesta
		10.4.4 Bodies without Samples
	10.5 Petrologic Comparisons and Magmatic Evolution
	10.5.1 Planetary Igneous Rocks
	10.5.2 Planetary Magmatic Evolution through Time
	Summary
	Review Questions
	Suggestions for Further Reading
	References
11. Impact Cratering as a Geologic Process
	11.1 Terrestrial Craters: A Little History
	11.2 Crater Morphologies: Simple and Complex
	11.3 Cratering Mechanics
		11.3.1 Energy and Shock Waves
		11.3.2 Stages of Crater Formation
	11.4 Geology of Impact Craters
		11.4.1 Shatter Cones Formed at the Contact/Compression Stage
		11.4.2 Breccias Formed at the Excavation Stage
		11.4.3 Structures Formed at the Excavation Stage
		11.4.4 Structures Formed at the Modification Stage
	11.5 Shock Metamorphism
		11.5.1 Changes in Shocked Terrestrial Rocks
		11.5.2 Shock in Extraterrestrial Rocks
		11.6 Role of Craters in Planetary and Terrestrial Geology
	11.7 A Threat to Life and Civilization
	Summary
	Review Questions
	Suggestions for Further Reading
	References
12. Planetary Atmospheres, Oceans, and Ices
	12.1 Planetary Volatile Reservoirs and Dynamics
	12.2 Chemistry of Planetary Atmospheres
		12.2.1 Atmospheric Pressures and Molecular Abundances
		12.2.2 A Special Role for Noble Gases
	12.3 Physics of Planetary Atmospheres
		12.3.1 Atmospheric Structures
		12.3.2 Cloud Formation
		12.3.3 Atmospheres in Motion
	12.4 Sloshing Oceans, Seas, and Lakes
		12.4.1 Oceans on Earth and Perhaps Ancient Mars
		12.4.2 Titan’s Hydrocarbon Lakes
		12.4.3 Subsurface Seas on Other Worlds
	12.5 Frozen Volatiles
		12.5.1 Surface Ice: Polar Ice Caps
		12.5.2 Surface Ice: Glaciers
		12.5.3 Subsurface Ice: Permafrost
		12.5.4 Worlds with Icy Crusts
	12.6 Origin and Evolution of Planetary Volatiles
		12.6.1 Sources of Volatiles
		12.6.2 Liquid Condensation
		12.6.3 How Atmospheres Evolve
	12.7 Geochemical Cycles and Their Consequences
		12.7.1 Earth’s Carbon Cycle
		12.7.2 Greenhouse Warming: Now and Then, Here and There
	Summary
	Review Questions
	Suggestions for Further Reading
	References
13. Planetary Aeolian Processes and Landforms
	13.1 Bringing the Atmosphere Down to the Surface (and Why We Care)
	13.2 The Near-Surface Wind Profile
	13.3 The Physics of Particle Entrainment
		13.3.1 Force (Torque) Balance: The Conditions for Entrainment
		13.3.2 Entrainment by Fluid and by Impact
	13.4 Aeolian Transport of Sediment
		13.4.1 Terminal Velocities for Sand versus Dust
		13.4.2 Transport Mechanisms
	13.5 Aeolian Deposition and Planetary Landforms
		13.5.1 Depositional Landforms for Sand
		13.5.2 Depositional Landforms for Dust
	13.6 Planetary Erosional Landforms
		13.6.1 Yardangs
		13.6.2 Ventifacts
	13.7 Combined or Ambiguous Planetary Landforms
		13.7.1 Stone Pavements
		13.7.2 Wind Streaks
	Summary
	Review Questions
	Suggestions for Further Reading
	References
14. Planetary Fluvial and Lacustrine Landforms: Products of Liquid Flow
	14.1 Volatile Landscapes
	14.2 Liquid: Falling Down, Soaking In, Flowing Over, Flowing Through, Coming Out
		14.2.1 How Liquids Interact with Landscapes
		14.2.2 The Drainage Basin as the Fundamental Unit in Hydrology
	14.3 Processes that Channelize the Flow of Liquid
		14.3.1 Flow Velocity Profile
		14.3.2 Entrainment
		14.3.3 Transport Mechanisms of Fluvial Sediment: Three Regimes
		14.3.4 Fluvial Bedforms
		14.3.5 Fluvial Erosion
	14.4 Channelized Flow of Liquid: Landscape Results
		14.4.1 Fluvial Channels
		14.4.2 Channel Drainage Networks
	14.5 Deposition from Channelized Flow
		14.5.1 Subaerial Deposition: Fans and Bajadas
		14.5.2 Subaqueous Deposition: Deltas
	14.6 Large Bodies of Standing Liquids
		14.6.1 Marine and Lacustrine Morphologies on Mars
		14.6.2 Hydrocarbon Lakes and Seas on Titan
	Summary
	Review Questions
	Suggestions for Further Reading
	References
15. Physical and Chemical Changes: Weathering, Sedimentology, Metamorphism, and Mass Wasting
	15.1 Petrologic Changes and the Rock Cycle
	15.2 Regoliths: Physical Weathering
		15.2.1 The Lunar Regolith
		15.2.2 Asteroid Regoliths
		15.2.3 The Martian Regolith
	15.3 Chemical Weathering and Aqueous Alteration
		15.3.1 Chemical Weathering on Mars
		15.3.2 Asteroids: Cosmic or Cosmuck?
	15.4 Sedimentary Petrology on Other Worlds
	15.5 Metamorphism
		15.5.1 Thermal Metamorphism on the Surface of Venus
		15.5.2 Thermal Metamorphism in the Interiors of Asteroids
		15.5.3 Hydrothermal Metamorphism on Mars
	15.6 Mass Wasting
	Summary
	Review Questions
	Suggestions for Further Reading
	References
16. Astrobiology: A Planetary Perspective on Life
	16.1 The Diversity of Life
		16.1.1 Reconstructing the Tree of Life
		16.1.2 Complexities in the Tree of Life
		16.1.3 The Last Universal Common Ancestor
	16.2 The Chemistry of Life
		16.2.1 CHNOPS and the Cosmos
		16.2.2 Water, the Elixir of Life
	16.3 Emergence of Life on Earth
	16.4 Earth’s Early Biosphere
		16.4.1 Recognizing Early Life
		16.4.2 The Chemical Record of Life
	16.5 Life Beyond Earth
		16.5.1 Habitable Zones
		16.5.2 Life in a Martian Meteorite?
		16.5.3 The Ongoing Search for Organic Matter on Mars
	Summary
	Review Questions
	Suggestions for Further Reading
	References
17. Integrated Planetary Geoscience: A Case Study (Mars)
	17.1 Geologic Exploration of a Planet
	17.2 Planetary Reconnaissance and a Global Geologic Map
		17.2.1 Global Physiography and Structure
		17.2.2 Global Remote Sensing
		17.2.3 Global Stratigraphic Timescale and Geologic Map
	17.3 Regional Geology from Orbit and Surface Exploration by Rovers
		17.3.1 Gusev Crater
		17.3.2 Meridiani Planum
		17.3.3 Gale Crater
	17.4 Martian Meteorites: An Added Dimension
	17.5 Integration and Synthesis
		17.5.1 Pre-Noachian Period
		17.5.2 Noachian Period/System
		17.5.3 Hesperian Period/System
		17.5.4 Amazonian Period/System
	Summary
	Review Questions
	Suggestions for Further Reading
	References
Epilogue: Geologic Processes in Other Solar Systems?
	Suggestion for Further Reading
	References
Glossary
Index




نظرات کاربران