دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Praveen Kumar Malik (editor)
سری:
ISBN (شابک) : 9781032034461, 1032034467
ناشر: CRC Press
سال نشر: 2021
تعداد صفحات: 365
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 35 مگابایت
در صورت تبدیل فایل کتاب Planar Antennas: Design and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب آنتن های مسطح: طراحی و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover\nHalf Title\nTitle Page\nCopyright Page\nDedication\nContents\nPreface\nAbout the Editor\nList of Contributors\nPart I: Overview and Introduction\n1. Antenna Design for Wireless Application\n 1.1 Introduction\n 1.2 Related Literature\n 1.3 Broadband Antenna Technology\n 1.3.1 Stacked Multi Resonator Microstrip Patch Antennas\n 1.3.2 Planar Multi Resonator Broadband Microstrip Antennas\n 1.3.3 Regularly Shaped Broadband Microstrip Antennas\n 1.3.4 Broadband Planar Monopole Radiator\n 1.4 UWB Technology\n 1.4.1 Antenna for UWB Systems\n 1.4.2 UWB Antenna Parameters\n 1.4.3 Bandwidth Enhancement of the Antenna\n 1.4.4 Need for Bandwidth Enhancement\n 1.4.5 Bandwidth Enhancement and Its Use in UWB Application\n 1.5 Antenna Design\n 1.5.1 Design of UWB Microstrip Antenna\n 1.5.2 Design of UWB Microstrip Fractal Antenna\n 1.6 Conclusion\n References\nPart II: Performance Analysis of Microstrip Antenna\n2. Design and Development of a Printed Circuit Microstrip Patch Antenna at C-Band for Wireless Applications with Coaxial Coupled Feed Method\n 2.1 Introduction\n 2.1.1 Radiation Pattern and HPBW\n 2.1.2 Voltage Standing Wave Ratio (VSWR)\n 2.1.3 Return Loss\n 2.1.4 Gain\n 2.2 Methodology\n 2.2.1 Coaxial Feeding\n 2.2.2 MSPA Design Calculations\n 2.2.3 Patch Design Procedure\n 2.3 Simulation of MSA Using Coaxial Coupled Feed Method Using HFSS\n 2.3.1 Design of Patch Antenna Using HFSS:\n 2.3.2 Optimization Using HFSS\n 2.3.3 Simulation\n 2.3.4 Return Loss Plot\n 2.3.5 VSWR Plot\n 2.3.6 Graph of 2D Radiation Pattern\n 2.3.7 3D Polar Radiation Pattern Graph\n 2.3.8 Graph of 2D Radiation Pattern\n 2.4 Antenna Testing and Fabrication\n 2.4.1 Dielectric Substrate Choice\n 2.4.2 Fabrication\n 2.4.3 Photolithographic Process\n 2.4.4 Assembly of Antenna\n 2.5 Fabrication Results\n 2.5.1 Radiation Pattern Plot\n 2.5.2 Return Loss plot\n 2.5.3 VSWR Plot\n 2.5.4 Gain Calculation\n 2.5.5 Comparison of Simulated and Measured\n 2.5.6 Comparison Between Simulated and Fabricated VSWR and Return Loss Graphs\n Conclusion\n References\n3. Study of Performance Parameters of Stub Loaded Oval-Shaped Patch Antenna Using Metamaterials, Electromagnetic Bandgap Structures, and DGS of Dumbbell Shape\n 3.1 Introduction\n 3.2 Oval Shaped Patch Antenna Loaded With Stubs\n 3.2.1 Proposed High Impedance Surfaces\n 3.2.2 Parametric Analysis of the Proposed High Impedance Structures\n 3.2.3 Performance Analysis of the Proposed Antenna Structures\n 3.3 Conclusion\n References\n4. Transparent Dielectric Resonator Antenna for Smart Wireless Applications\n 4.1 Introduction\n 4.2 Antenna Geometry and Design Principle\n 4.3 Results and Discussion\n 4.4 Conclusion\n References\nPart III: Multiple Input Multiple Output (MIMO) Antenna Design and Uses\n5. Design and Analysis of 2 × 2/4 × 4 MIMO Antenna Configurations for High Data Rate Transmission\n 5.1 Introduction\n 5.2 UWB MIMO Antenna\n 5.3 Multiband/Dual Polarization/UWB 2 × 2 MIMO Antenna With Notched Band Characteristics\n 5.4 4 × 4 MIMO Antenna Configuration\n 5.5 Far-Field Discussion of Results\n 5.6 Conclusions\n References\n6. Four Port MIMO Antenna with Swastika Slot for 5G Environment\n 6.1 Introduction\n 6.2 MIMO\n 6.2.1 Swastika Slot\n 6.2.2 Four Port Antenna\n 6.2.3 Coaxial Feed\n 6.2.4 H Shaped Patch\n 6.3 Literature Survey\n 6.4 Designed Parameters\n 6.5 Antenna Design Equations\n 6.6 Simulation Environment\n 6.7 Results and Discussions\n 6.8 Conclusion\n References\nPart IV: Fractal and Defected Ground Structure Microstrip Antenna\n7. Multiband Circular Disc Monopole Metamaterial Antenna with Improved Gain for Wireless Application\n 7.1 Introduction\n 7.2 Literature Review\n 7.3 Design of ESSR Inspired Circular Monopole Antenna\n 7.4 Parametric Analysis\n 7.5 Discussion of Results\n 7.6 Conclusion\n References\n8. Fractal Based Ultra-Wideband Antenna Design: A Review\n 8.1 Introduction\n 8.1.1 Bandwidth Definitions\n 8.1.2 UWB Definition\n 8.1.3 UWB Applications\n 8.1.4 Band Notch Creation\n 8.2 Fractal Antennas\n 8.2.1 Fractal Geometry in Antennas\n 8.2.2 Iterative Function System\n 8.3 Sierpinski Fractal Structure Characterized for UWB Antenna\n 8.3.1 Sierpinski Gasket Construction\n 8.3.2 Sierpinski Carpet Construction\n 8.3.3 SierpinskiKnopp Fractal Construction\n 8.4 Koch Fractal Structure Characterized for UWB Antenna\n 8.4.1 Koch Curve Construction\n 8.4.2 Koch Snowflake Construction\n 8.5 Hilbert Fractal Structure Characterized for UWB Antenna\n 8.5.1 Hilbert Curve Construction\n 8.6 Fractal Tree Structure Characterized for UWB Antenna\n 8.6.1 Fractal Tree Construction\n 8.7 Apollonian Fractal Structures Characterized for UWB Antenna\n 8.7.1 Apollonian Fractal Gasket Construction\n 8.8 Conventional Shape Fractal Monopole for UWB Antenna\n 8.9 Hybrid Fractal Structure Characterized for UWB Antenna\n 8.10 Conclusion\n References\n9. Advanced Microstrip Antennas for Vehicular Communication\n 9.1 Introduction to Vehicular Communication\n 9.2 Application Bands Used in Vehicular Communication\n 9.3 Designed Models for Various Vehicular Communication Applications\n 9.3.1 Design of a Planar Wheel-Shaped Fractal Antenna for Roof-Top Vehicular Applications\n 9.3.2 Transparent and Conformal Wheel-Shaped Fractal Antenna for Vehicular Communication Applications\n 9.3.3 Flexible LCP Based Conformal Fractal Antenna for Internet of Vehicles (IoV) Applications\n 9.3.4 Bandwidth Reconfigurable Antenna on LCP Substrate for Automotive Communication Applications\n 9.4 Conclusion\n References\nPart V: Importance and Uses of Microstrip Antenna in IoT\n10. Importance and Uses of Microstrip Antenna in IoT\n 10.1 Introduction to IoT\n 10.2 Design Challenges of Antennas for IoT Applications\n 10.3 Antenna Design Consideration for IoT Systems\n 10.4 Design of Microstrip Antenna for IoT Applications\n 10.4.1 PCB Antenna\n 10.4.2 External Microstrip Antenna\n 10.4.3 Chip Antenna\n 10.4.4 Wire Antenna\n 10.4.5 Radio Frequency Identification Tag (RFID) Antenna\n 10.5 Comparison of Various Antenna Topologies\n 10.6 Current Trends in the Design of Antennas for IoT Applications\n 10.6.1 Low Profile PCB Multi-Band Antenna\n 10.6.2 CPW-Fed Circular Polarized External IoT Antenna\n 10.6.3 Wearable Antenna for Wireless Body Area Networks\n References\n11. Importance and Uses of Microstrip Antenna in IoT\n 11.1 Introduction to IOT\n Antenna Selection\n 11.2 Design of Microstrip Antenna for Iot Applications\n 11.2.1 Patch Antenna Designing Having Circular Polarization\n 11.2.2 Microstrip Patch Antenna With High Directivity and Diversity for IoT Devices\n 11.2.3 Multiband Microstrip Patch Antenna for IoT Devices\n 11.2.4 Miniaturized Antennas\n 11.2.5 Reconfigurable Antenna\n 11.3 Design Challenges of Antenna for Iot Applications\n 11.4 Current Trends in the Design of Antennas for IoT Applications\n References\nPart VI: Ultra-Wide-Band Antenna Design for Wearable Applications\n12. Design of an Edge-Fed Rectangular Patch Antenna for WBAN Applications and Analysis of Its Performance for M-ary Modulation Schemes\n 12.1 Introduction\n 12.2 System and Antenna Design\n 12.2.1 System Design\n 12.2.2 Antenna Design\n 12.3 Results\n 12.3.1 S11 Parameter\n 12.3.2 Voltage Standing Wave Ratio (VSWR)\n 12.3.3 Antenna Gain\n 12.3.4 Radiation Pattern\n 12.4 Performance Investigation for WBAN Modulation Schemes:\n 12.4.1 Specific Absorption Rate\n References\n13. UWB Planar Microstrip Fed Antennas for Various Wireless Communication and Imaging Applications with Mitigation of Interference\n 13.1 Introduction\n 13.2 UWB Technology\n 13.3 Microstrip Fed UWB Antenna\n 13.4 Microstrip Fed UWB Single Notched Band Antenna\n 13.5 Microstrip Fed UWB Dual and Triple Notched Band Antennas\n 13.6 Conclusions\n References\n14. Spline Based Ultra Wideband Antenna and Design\n 14.1 Spline Based Printed Monopole UWB Antenna and Design\n 14.2 Miniaturized Spline Based UWB Antenna and Design\n 14.3 H-embedded Spline Based Antenna Ultra Wideband Antenna\n 14.4 Reshaped Spline-Based Ultra Wideband Antenna\n References\n15. Design Strategy of Wearable Textile Antenna\n 15.1 Introduction\n 15.2 Literature Survey\n 15.3 Design Procedure of Textile Antenna\n 15.4 Performance Analysis of Proposed Antenna\n 15.5 Design Aspect of WTA\n 15.5.1 Material Selection Criteria\n 15.5.2 Association of Conducting Plane\n 15.5.3 Interconnection of SMA Connector\n 15.6 Design Procedure and Specifications\n 15.7 Test and Measurements\n 15.7.1 Preparation of Sweat Solution\n 15.7.2 Measurement of Textile Dielectric Properties\n 15.7.3 Sweat Regain Test for Fabric\n 15.7.4 Substrate Material Thickness Measurement\n 15.7.5 Preshrink Process\n 15.8 Result and Performance Analysis\n 15.9 Conclusion and Future Aspects\n References\nPart VII: Case Studies\n16. UWB Deterministic Channel Modeling\n 16.1 UWB Concepts and Signals\n 16.2 UWB Regulations\n 16.3 UWB Advantages\n 16.4 UWB Propagation Channel and Advantages of TD Analysis\n 16.4.1 UWB Propagation Channel\n 16.5 Advantages of TD Analysis\n 16.6 TD Solutions for UWB Diffraction\n 16.7 Edge Diffraction of UWB Signals\n 16.8 Corner Diffraction of UWB Signals\n References\n17. Adopting Artificial Neural Network Modelling Technique to Analyze and Design Microstrip Patch Antenna for C-Band Applications\n 17.1 Introduction\n 17.2 Methods\n 17.2.1 Microstrip Antenna\n 17.2.2 Artificial Neural Network\n 17.2.3 ANN Characteristics\n 17.2.4 ANN Learning Methods\n 17.2.5 Backpropagation Learning Algorithm\n 17.2.6 The Levenberg-Marquardt (LM)\n 17.3 Database Generation\n 17.4 ANN Model and Results\n 17.4.1 Network Analysis Results\n 17.4.2 Networks Best Results\n 17.5 Antenna Design and Results\n 17.5.1 Gain\n 17.5.2 Return Loss\n 17.5.3 Radiation Pattern\n 17.5.4 Current Distribution Plot\n 17.6 Conclusions\n References\n18. Microstrip Antenna in IoT : From Basic to Applications\n 18.1 Introduction\n 18.2 What Is an IoT Solution and Platform\n 18.3 Different Antenna Needs for Low Bandwidth Applications\n 18.4 Antenna Design and Configuration\n 18.5 Antennas Parameters\n 18.6 Antennas Used in IoT Devices\n 18.6 Conclusion\n References\n19. UWB-MIMO Antenna with Band-Notched Characteristic\n 19.1 Introduction\n 19.2 Single Band-Notched UWB-MIMO Antenna\n 19.2.1 Antenna Design\n 19.2.2 Study of MIMO Antenna\n 19.3 Results and Discussion\n 19.4 Conclusion\n References\nIndex