ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Pipeline Geohazards: Planning, Design, Construction and Operations

دانلود کتاب خطرات زمینی خط لوله: برنامه ریزی، طراحی، ساخت و ساز و عملیات

Pipeline Geohazards: Planning, Design, Construction and Operations

مشخصات کتاب

Pipeline Geohazards: Planning, Design, Construction and Operations

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 2018034757, 9780791861790 
ناشر:  
سال نشر: 2019 
تعداد صفحات: 824 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 159 مگابایت 

قیمت کتاب (تومان) : 35,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 18


در صورت تبدیل فایل کتاب Pipeline Geohazards: Planning, Design, Construction and Operations به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب خطرات زمینی خط لوله: برنامه ریزی، طراحی، ساخت و ساز و عملیات نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب خطرات زمینی خط لوله: برنامه ریزی، طراحی، ساخت و ساز و عملیات

این ویرایش دوم از انتشارات ASME 2008 در همین موضوع، درمان گسترده و به روز شده طیف وسیع تری از جنبه های مدیریت مخاطرات زمینی خط لوله است تا در خدمت جامعه جهانی خطوط لوله - هم کسانی که دارای پیشینه ژئوتکنیکی هستند و هم همکاران آنها در چند منطقه تیم های انضباطی که عملا با این مسائل برخورد می کنند. این کتاب تعادلی را بین مرور کلی موضوعات خاص و پرداختن تا حدودی دقیق تر به موضوعات دیگر ایجاد می کند. از کارشناسان شناخته شده دعوت شد تا در بخش‌های تخصصی خود در کل فصل‌ها، خلاصه‌های فنی دعوت‌شده کوتاه یا دیدگاه‌های دعوت‌شده طولانی‌تر مشارکت کنند.


توضیحاتی درمورد کتاب به خارجی

This second edition of the 2008 ASME publication on the same topic is an expanded and updated treatment of a broader range of pipeline geohazard management aspects to serve the global community of pipeliners - both those of a geotechnical background as well as their colleagues in the multi-disciplinary teams that deal practically with these issues. The book strikes a balance between overviews of certain topics and somewhat more detailed treatment of other topics. Recognized experts were invited to contribute entire chapters, short Invited Technical Briefs or longer Invited Perspectives in their areas of specialization.



فهرست مطالب

1.861790_fm
	Title Page
	Copyright Page
	Table of Contents
	IN MEMORIAM MICHAEL C. METZ1943–2017
861790_ch1
	1.1 INTRODUCTORY REMARKS
		1.1.1 Setting the Context
		1.1.2 Structure of the Book
	REFERENCE
861790_ch2
	2.1 INTRODUCTION
	2.2 TERRAIN MAPPING AND GEOHAZARD ASSESSMENT
		2.2.1 Terrain Analysis Tools
		2.2.2 Air Photo Interpretation
		2.2.3 Satellite Imagery
		2.2.4 Digital Surface Modelling
		2.2.5 Existing Maps and Reports
		2.2.6 GIS and Geospatial Data Visualization
	2.3 TERRAIN FEATURES EVALUATED FOR GEOHAZARD MAPPING AND ASSESSMENT
		2.3.1 Surficial Materials and Geotechnical Properties
		2.3.2 Topography
		2.3.3 Drainage
		2.3.4 Groundwater Conditions
		2.3.5 Geohazards
		2.3.6 Cultural and Environmental Constraints
	2.4 APPLICATIONS OF TERRAIN ANALYSIS TO PIPELINE ROUTING, CONSTRUCTION, AND OPERATION
		2.4.1 Scales of Terrain Analysis – From the Desktop to the Field
		2.4.2 Corridor and Route Selection Process
		2.4.3 Design and Construction
		2.4.4 Operation
	2.5 ASSESSING GEOHAZARDS IN DIFFERENT REGIONS
		2.5.1 Glaciated Terrain
		2.5.2 Fluvial Terrain
		2.5.3 Permafrost Terrain
		2.5.4 Peatlands and Organic Terrain
		2.5.5 Coastal Terrain
		2.5.6 Karst Terrain
		2.5.7 Mountain Terrain
		2.5.8 Volcanic Terrain
		2.5.9 Desert Terrain
	2.6 SUMMARY
	ACKNOWLEDGMENTS
	REFERENCES
	ADDITIONAL READING
861790_ch3
	3.1 INTRODUCTION
		3.1.1 Geological Model
		3.1.2 Master Database
	3.2 GEOGRAPHIC INFORMATION SYSTEMS (GIS) PLATFORMS
		3.2.1 ArcGIS (ESRI)
		3.2.2 ArcGIS PRO
		3.2.3 QGIS (Open Source)
		3.2.4 MapINFO Professional (Pitney Bowes)
		3.2.5 Global Mapper (Blue Marble Geographics)
		3.2.6 Google Earth Pro
	3.3 DATA
		3.3.1 Vector Data
		3.3.2 Raster Data
		3.3.3 Spatial Reference System
		3.3.4 Linear Referencing
		3.3.5 Scale
		3.3.6 Resolution
		3.3.7 Accuracy
		3.3.8 Temporality
	3.4 DATA FORMATS
		3.4.1 Hard Copy Data
		3.4.2 Digital Hard Copy Data
		3.4.3 Native Files
		3.4.4 Web Services (WMS & WFS)
	3.5 DATA SOURCES
		3.5.1 Government Agencies
		3.5.2 Commercial Data Vendors
		3.5.3 Online Data Communities and Repositories
	3.6 DIGITAL ELEVATION MODELS (DEM)
		3.6.1 Light Detection and Ranging (LiDAR) Data
		3.6.2 DEM derived datasets
			3.6.2.1 Hydrologically correct DEM
			3.6.2.2 Flow direction raster
			3.6.2.3 Flow accumulation raster
			3.6.2.4 Triangulated Irregular Network (TIN)
		3.6.3 No-Cost DEM Products
	3.7 DIGITAL IMAGERY
		3.7.1 Orthoimagery
		3.7.2 Stereo Imagery
		3.7.3 Multispectral and Hyperspectral Imagery
		3.7.4 No-Cost Digital Imagery Products
	3.8 FIELD DATA
	3.9 OPERATIONAL PIPELINE DATA
		3.9.1 Construction Records
		3.9.2 Inspection, Maintenance and Repair Records
		3.9.3 Pipeline Inline Inspection (ILI) data
	3.10 VISUALIZATION TECHNIQUES
		3.10.1 Plan View
		3.10.2 Profile View
		3.10.3 Three-Dimensional Presentation
		3.10.4 Emerging Technologies
	3.11 CONCLUDING REMARKS
	REFERENCES
861790_ch4
	4.1 INTRODUCTION
	4.2 PIPELINE PROJECT STRUCTURE
		4.2.1 Phased Project Development Cycle
		4.2.3 Cost and Schedule Implications
		4.2.4 Form of Contract Considerations
	4.3.2 Construction Team
	4.3 RESPECTIVE ROLES OF ENGINEERING AND CONSTRUCTION
		4.3.1 Engineering Team
		4.3.2 Construction Team
		4.3.3 Other Teams
		4.3.4 Complementary Roles
	4.4 INTERFACE DYNAMICS
		4.4.1 Project Setting
		4.4.2 Route Selection
		4.4.3 Construction Right-of-Way Components
		4.4.4 Right-of-Way Configurations
		4.4.5 Lateral Slopes
		4.4.6 LONGITUDINAL SLOPES
		4.4.8 Valleys
		4.4.9 Drainage, Erosion and Sediment Control
		4.4.10 Geotechnical Control Measures
		4.4.11 Geotechnical Verification Program
		4.4.12 Regulatory and Other Considerations
	4.5 CASE HISTORY
	4.6 DISCUSSION
	4.7 CONCLUDING REMARKS
	ACKNOWLEDGMENTS
	REFERENCES
861790_ch5
	5.1 INTRODUCTION
		5.1.1 General
		5.1.2 Use of this Chapter
		5.1.3 Organization
	5.2 DESIGN – TRENCHED CROSSINGS
		5.2.1 General
		5.2.2 Quantitative Analysis Versus Qualitative Assessments
		5.2.3 Integration with Other Disciplines
		5.2.4 River Classification System
		5.2.5 Overview of the Design Steps
		5.2.6 Data Needs
		5.2.7 Design Flood Criteria
		5.2.8 Design Methodologies
	5.3 DESIGN – ELEVATED CROSSINGS
		5.3.1 Reasons for Its Use
		5.3.2 Design Requirements
		5.3.3 Examples
	5.4 CONSTRUCTION - TRENCHED CROSSINGS
		5.4.1 Overview
		5.4.2 Examples
	5.5 OPERATIONAL MONITORING
		5.5.1 Objectives
		5.5.2 Components of Integrity Management Program
		5.5.3 Outline of a Monitoring Program
		5.5.4 Knowing What to Look For
		5.5.5 Response to Major Floods
		5.5.6 Follow Up Mitigative Works
		5.5.7 Monitoring Documentation
		5.5.8 Lessons Learned From Arctic River Crossings
	ACKNOWLEDGMENT
	REFERENCES
861790_ch6
	6.1 INTRODUCTION
	6.2 GEOTECHNICAL CONSIDERATIONS
		6.2.1 Geotechnical Investigation
		6.2.2 Key Geotechnical Issues
	6.3 HORIZONTAL DIRECTIONAL DRILLING
	6.4 HORIZONTAL BORING TECHNIQUES
		6.4.1 Auger Boring
		6.4.2 Pilot Tube Guided Auger Boring
	6.5 PIPE JACKING TECHNIQUES
		6.5.1 Open Face Shields
		6.5.2 Microtunneling
		6.5.3 Direct Pipe®
		6.5.4 Easy PipeTM
	6.6 PERCUSSION TECHNIQUES
		6.6.1 Pipe Ramming
		6.6.2 Horizontal Pipe Driving
	6.7 CONVENTIONAL TUNNELING
		6.7.1 Tunnel Boring Machines
		6.7.2 Hand Tunneling
		6.7.3 Drill-and-Blast Tunneling
		6.7.4 Mechanical Rock Excavation
	6.8 DISCUSSION
	6.9 CONCLUDING REMARKS
	ACKNOWLEDGMENTS
	REFERENCES
	ADDITIONAL READING
861790_ch7
	7.1 INTRODUCTION
	7.2 THE HDD PROCESS
		7.2.1 Pilot Hole
		7.2.2 Prereaming
		7.2.3 Pullback
	7.3 SITE INVESTIGATION
		7.3.1 Surface Survey
		7.3.2 Subsurface Survey
	7.4 DRILLED PATH DESIGN
		7.4.1 Entry and Exit Points
		7.4.2 Entry and Exit Angles
		7.4.3 P.I. Elevation
		7.4.4 Radius of Curvature
	7.5 WORKSPACE REQUIREMENTS
		7.5.1 Rig Side
		7.5.2 Pipe Side
	7.6 DRILLING FLUIDS
		7.6.1 Drilling Fluid Flow Schematic
		7.6.2 Functions of Drilling Fluid
		7.6.3 Composition of HDD Drilling Fluid
		7.6.4 Material Descriptions
		7.6.5 Inadvertent Returns
		7.6.6 Hydrofracture Evaluation
		7.6.7 Drilling Fluid and Spoil Disposal
	7.7 PIPE SPECIFICATION
		7.7.1 Installation Loads
		7.7.2 Installation Stresses
		7.7.3 Operating Loads
		7.7.4 Operating Stresses
		7.7.5 Pulling Load Calculation
		7.7.6 External Coating
	7.8 CONTRACTUAL CONSIDERATIONS
		7.8.1 Lump Sum Contracts
		7.8.2 Specifications and Drawings
		7.8.3 Daywork Contracts
	7.9 CONSTRUCTION MONITORING
		7.9.1 Directional Performance
		7.9.2 Drilling Fluid
		7.9.3 Additional Concerns
	REFERENCES
861790_ch8
	8.1 INTRODUCTION
	8.2 PIPELINE CODES
	8.3 BUOYANCY DESIGN PHILOSOPHY
	8.4 BUOYANCY CONTROL OPTIONS
		8.4.1 Concrete Weights
		8.4.2 Concrete Weight Dimensions
		8.4.3 Concrete Reinforcement
		8.4.4 Soil Weights
		8.4.5 Anchors
		8.4.6 Buoyancy Control Applications Summary
	8.5 BUOYANCY DESIGN FORCES
		8.5.1 Buoyancy Calculation Input Values
		8.5.2 Mineral Soil Density
		8.5.3 Organic Soil Density
		8.5.4 Backfill Shear Resistance
		8.5.5 Density Values for Water and Other Items
		8.5.6 Safety Factor
		8.5.7 Soil Liquefaction
		8.5.8 Pipe Stress
		8.5.9 Operational Temperature
	8.6 BUOYANCY CONTROL SPACING AND LOCATIONS
		8.6.1 Concrete Weighting Spacing
		8.6.2 Soil Weighting
		8.6.3 Anchor Weighting Spacing
		8.6.4 Concrete and Anchor Spacing Comparison
		8.6.5 Buoyancy Control Item Locations Work Process
	ACKNOWLEDGMENTS
	REFERENCES
861790_ch9
	9.1 INTRODUCTION
	9.2 NEED FOR EROSION CONTROL AND SEDIMENT CONTAINMENT
	9.3 FACTORS INFLUENCING OVERLAND EROSION
		9.3.1 Climate
		9.3.2 Soil Properties
		9.3.3 Topography
		9.3.4 Ground Cover
	9.4 EROSION POTENTIAL EVALUATION
	9.5 PIPELINE SPECIFIC EROSION AND SEDIMENT CONTROL STRATEGY
	9.6 SURFACE EROSION CONTROL MEASURES AND TECHNIQUES
		9.6.1 Strategies for Preventing or Reducing the Opportunity for Erosion
		9.6.2 Erosion Control and Sediment Management Measures and Techniques
		9.6.3 Tool Box Approach to Erosion Control and Sediment Containment
	9.7 SELECTED EROSION CONTROL AND SEDIMENT CONTAINMENT MEASURES FOR PIPELINE PROJECTS
		9.7.1 Silt Fences
		9.7.2 Diversion Berms/Slope Breakers
		9.7.3 Wattles, Bio-Rolls and Related Barriers
		9.7.4 Revegetation
		9.7.5 Surface Blankets. Mulching and Soil Covers
		9.7.6 Interception Ditches and Check Dams
		9.7.7 Ditch Plugs/Trench Breakers
	9.8 SEDIMENT CONTAINMENT
	9.9 INSPECTION AND CONTINGENCY MEASURES
	9.10 SUMMARY OF GENERAL EROSION CONTROL AND SEDIMENT CONTAINMENT SELECTION GUIDELINES
	REFERENCES
861790_ch10
	10.1 INTRODUCTION
		10.1.1 Oil and Gas Pipelines
		10.1.2 Geotechnical Design Process
	10.2 BRIEF INTRODUCTION TO PERMAFROST
		10.2.1 Permafrost Definition and Distribution
		10.2.2 Properties of Permafrost
	10.3 SITE INVESTIGATIONS
		10.3.1 Field Drilling, Testing and Sampling
		10.3.2 Geophysical Investigations
	10.4 GEOTHERMAL MODELING
		10.4.1 Geothermal Model Configurations
		10.4.2 Geothermal Parameters
		10.4.3 Geothermal Effects on a Pipeline Right-of-Way
	10.5 THAW SETTLEMENT AND FROST HEAVE
		10.5.1 Introduction
		10.5.2 Thaw Settlement
		10.5.3 Frost Heave
		10.5.4 Mitigation for Thaw Settlement and Frost Heave Conditions
	10.6 LIMIT STATE DESIGN
	10.7 SLOPES DESIGN
		10.7.1 Slope Design Process
		10.7.2 Characterization of Failure Modes
		10.7.3 Static Slope Stability Assessment and Design
		10.7.4 Thawing Slope Instability Mitigation
	10.8 CONSTRUCTION ISSUES
		10.8.1 Ditching
		10.8.2 Buoyancy and Uplift of Pipelines in Thawing Permafrost
		10.8.3 Impact of Ice-Rich Permafrost on Backfill
		10.8.4 Restraint from Delta-T Effects
		10.8.5 Horizontal Directional Drilling in Permafrost
	10.9 MONITORING AND MITIGATION
	10.10 CONCLUDING REMARKS
	REFERENCES
	ADDITIONAL READING
861790_ch11
	11.1 INTRODUCTION
	11.2 FAULT RUPTURE DISPLACEMENT
		11.2.1 Pipeline Crossings of Active Tectonic Faults
			11.2.1.1 Pipeline-fault intersection angle
			11.2.1.2 Soil restraint
			11.2.1.3 Pipe wall thickness
			11.2.1.4 Pipe ductility and overmatching weld strength
			11.2.1.5 Aboveground pipelines
		11.2.2 Fault Identification and Characterization
			11.2.2.1 Preliminary assessment of pipeline route
			11.2.2.2 Field investigation
			11.2.2.3 Fault displacement
		11.2.3 Fault Crossing Design
	11.3 LIQUEFACTION
		11.3.1 Liquefaction Hazards
			11.3.1.1 Lateral spread
			11.3.1.2 Flow failure
			11.3.1.3 Buoyant rise
			11.3.1.4 Ground settlement
			11.3.1.5 Ground oscillation
		11.3.2 Preliminary Screening of Potential Liquefaction Hazards
			11.3.2.1 Screening of potential liquefaction hazard zones
		11.3.3 Site-Specific Subsurface Investigation
		11.3.4 Mitigation of Potential Lateral Spread Hazard at Watercourse Crossings
		11.3.5 Mitigation Strategy for Buoyant Rise of Pipelines in Floodplains
			11.3.5.1 Factor of safety against liquefaction-inducedbuoyancy
			11.3.5.2 Liquefaction-induced uplift displacements
			11.3.5.3 Commentary on buoyancy factor of safety and displacement
	11.4 SEISMIC WAVE PROPAGATION
		11.4.1 Idealization of Wave Propagation
			11.4.1.1 Shear waves
			11.4.1.2 Surface waves
			11.4.1.3 Effects of non-linear soil response
		11.4.2 Past Performance of Pipelines Subjected to Wave Propagation
		11.4.3 Wave Propagation Strains in Straight Pipelines
		11.4.4 Computation of Stresses in Pipe Bends
	11.5 FINITE ELEMENT ANALYSISMETHODOLOGY FOR PGD
		11.5.1 FEA Design Validation Process
		11.5.2 Finite Element Model Characteristics
		11.5.3 Soil-Pipeline Interaction
		11.5.4 Stress-Strain Curve
		11.5.5 Extent of Pipeline Model
	11.6 PIPE STRAIN LIMITS FOR SEISMIC PGD DESIGN
		11.6.1 Tensile Strain Limits
		11.6.2 Compressive Strain Limits
	11.7 PIPE SELECTION AND WELDING
		11.7.1 Pipe Selection for High-Strain Design
	11.8 SEISMIC GEOHAZARD MONITORING
		11.8.1 Ground Motion Monitoring Network
			11.8.1.1 Virtual seismic monitoring system
			11.8.1.2 Earthquake detection and assessment
			11.8.1.3 Response to seismic alarms
		11.8.2 Post-Earthquake Reconnaissance of Liquefaction
			11.8.2.1 Assess pipeline deformation as applicable
		11.8.3 Fault Monitoring
			11.8.3.1 Fault monitoring arrays
			11.8.3.2 Fault surveys following an earthquake
	11.9 PROJECT MANAGEMENT FOR EFFECTIVE MITIGATION OF SEISMIC GEOHAZARDS
		11.9.1 Project Execution
		11.9.2 Mitigation of Seismic-Induced PGD
		11.9.3 Lessons Learned
	ACKNOWLEDGEMENT
	REFERENCES
861790_ch12
	12.1 A TOPIC OF CONTINUINGLY INCREASING IMPORTANCE
	12.2 MAPPING CONTENTS OF THE INTERRELATED CHAPTERS 13, 14 AND 15
	12.3 KEY PHILOSOPHICAL STARTING POINTS
	12.4 FITNESS FOR SERVICE
	12.5 KEY TOPICS IN RELATED CHAPTERS
	ACKNOWLEDGMENTS
	REFERENCES
	ADDITIONAL READING
861790_ch13
	13.1 INTRODUCTION
	13.2 REGULATORY FRAMEWORK
		13.2.1 49 CFR 192 Subpart–O Gas Transmission Pipeline Integrity Management
		13.2.2 ASME B31.8S Managing System Integrityof Gas Pipelines
		13.2.3 49 CFR 195 Subpart–F Operation and Maintenance
		13.2.4 API RP 1160 Managing System Integrity for Hazardous Liquid Pipelines
		13.2.5 CAN/CSA-Z662 Oil and Gas Pipeline Systems
		13.2.6 ALA Guideline – Oil and Natural Gas Pipeline Systems
	13.3 CREDIBLE GEOHAZARDS
		13.3.1 Geohazard Assessment Philosophy
		13.3.2 Geohazard Triggers
		13.3.3 Note on Literature Review
	13.4 SLOPE INSTABILITY HAZARDS
		13.4.1 Landslide
		13.4.2 Debris Flow
		13.4.3 Creep and Earthflow
		13.4.4 Rock Fall
		13.4.5 Rock Avalanche
		13.4.6 Snow Avalanche
	13.5 SEISMIC/TECTONIC HAZARDS
		13.5.1 Fault Displacement
		13.5.2 Soil Liquefaction
		13.5.3 Seismic Wave Propagation
	13.6 HYDROTECHNICAL HAZARDS
		13.6.1 Flooding
		13.6.2 Vertical Scour or Accretion
		13.6.3 Lateral Scour or Accretion
		13.6.4 Avulsion
		13.6.5 Buoyancy
		13.6.6 Rapid Lake Drainage (Outburst Flooding)
		13.6.7 Coastal Inundation (Tsunami)
	13.7 OVERLAND EROSION AND RELATED HAZARDS
		13.7.1 Water Erosion
		13.7.2 Wind Erosion and Dune Migration
	13.8 GROUND SUBSIDENCE HAZARDS
		13.8.1 Soil Settlement
		13.8.2 Underground Cavity Deformation
		13.8.3 Sensitive Soil Collapse
	13.9 EXPOSED ROCK, GEOCHEMICAL, AND RELATED HAZARDS
		13.9.1 Rock Indentation
		13.9.2 Acid Rock Drainage
		13.9.3 Saline Ground Corrosion
	13.10 PERMAFROST AND THERMAL HAZARDS
		13.10.1 Frost He
		13.10.2 Thaw Settlement
		13.10.3 Thermokarsting of Massive Ice
		13.10.4 Upheaval Displacement
		13.10.5 Thaw-Induced Flow Mass Movement
	13.11 VOLCANIC HAZARDS
		13.11.1 Lahar
		13.11.2 Ash Fall
		13.11.3 Pyroclastic Flow
		13.11.4 Lava Flow
		13.11.5 Lava Tube Collapse
	13.12 DISCUSSION
	13.13 CONCLUDING REMARKS
	ACKNOWLEDGMENTS
	REFERENCES
861790_ch14
	14.1 INTRODUCTION
	14.2 RISK ASSESSMENT
		14.2.1 Key Concepts
		14.2.2 A Range of Typical Approaches
		14.2.3 Advances in Pipeline Risk Assessment
	14.3 PIPELINE GEOHAZARD ASSESSMENT
		14.3.1 Role of Geohazard Assessment
		14.3.2 Geohazard Assessment Concepts
		14.3.3 Methodology Development Overview
		14.3.4 Geohazard Assessment Framework
		14.3.5 Reconciliation with Pipeline Risk Assessment
		14.3.6 Uncertainty in Geohazard Assessment
	14.4 PIPE-SOIL INTERACTION MODELING
		14.4.1 Interaction Factors
		14.4.2 Practical Pipe-Soil Interaction Considerations
	14.5 OPERATIONAL CONSIDERATIONS
		14.5.1 Pipeline Separation
		14.5.2 Surface Loading on Buried Pipelines
		14.5.3 Evaluating Blasting Effects on Buried Pipelines
	14.6 OVERARCHING DESIGN TOPICS
		14.6.1 Invited Technical Briefs
		14.6.2 Test-of-Reasonableness Process
	14.7 CONCLUDING REMARKS
	ACKNOWLEDGMENTS
	REFERENCES
	Additional Reading
	Selected References Related to PIPLIN
861790_ch15
	15.1 INTRODUCTION
		15.1.1 Summary of Credible Geohazards
		15.1.2 Approach to Current Chapter
	15.2 GEOHAZARD MANAGEMENT DECISIONPROCESS
	15.3 MONITORING THE GEOHAZARDS
		15.3.1 Geohazard Monitoring Methods
		15.3.2 Pipeline Monitoring Methods
	15.4 IDENTIFICATION AND MONITORING OF COMMON GEOHAZARDS
		15.4.1 Slope Instability
		15.4.2 Tectonics/Seismicity
		15.4.3 Hydrotechnical Geohazards
		15.4.4 Erosion
	15.5 MONITORING THE PIPE TO DETECT GEOHAZARD IMPACT
		15.5.1 In-line Inspection Methods
		15.5.2 ILI for Geohazard Effects
		15.5.3 Summary of Monitoring Options
	15.6 MITIGATION OF GEOHAZARDS
		15.6.1 Mitigation of the Geohazard
		15.6.2 Pipeline Mitigation
		15.6.3 Summary of Mitigation Options
	15.7 2016 ASME GLOBAL PIPELINE AWARD
	REFERENCES
861790_ch16
	16.1 COST-EFFECTIVE RISK REDUCTION APPROACH (CERRA): PIPELINE GEOHAZARD CASE STUDY
		BIOGRAPHY
		INTRODUCTION
		ISORISK AND RISK SEVERITY
		PIPELINE INTEGRITY RISK SCENARIOS
		ISORISK REDUCTION BY SELECTED MEASURES
		COST EFFECTIVENESS AND SAFE TIME OF MITIGATION MEASURES
		CERRA INDICATOR
		CONCLUSIONS
		REFERENCES
	16.2 DEVELOPMENT OF AN INTERNATIONAL STANDARD FOR GEOHAZARD ASSESSMENTAND MANAGEMENT OF ONSHORE PIPELINES
		BIOGRAPHY
	16.3 GEOTECHNICAL CHALLENGES FOR ONSHORE PIPELINES
		BIOGRAPHY
		A PERSPECTIVE ON GEOTECHNICAL CHALLENGES FOR ONSHORE PIPELINES
		RISK MANAGEMENT
		GEOTEAMS
		GROUND MODELS
		IN CONCLUSION
		REFERENCES
	16.4 MANAGING PIPELINE GEOTECHNICAL ISSUES FROM A REGULATORY PERSPECTIVE
		BIOGRAPHY
	16.5 PIPELINE RISK ASSESSMENT - A NEW ERA
		BIOGRAPHY
		INTRODUCTION
		GEOHAZARDS
		MEASURING POF
		GEOHAZARD EXPOSURES
		GEOHAZARD MITIGATION
		GEOHAZARD RESISTANCE
		GEOHAZARD COF
		GEOHAZARD EL
		KEY TAKE-AWAYS
		REFERENCES
	16.6 PRACTICAL EXAMPLES OF VALUE-ADDED ENGINEERING GEOLOGICAL MODELS FOR PIPELINE PROJECTS
		BIOGRAPHY
		INTRODUCTION
		PLANNING AND ALIGNMENT SELECTION
		DESIGN AND PERMITTING
		CONSTRUCTION AND COMPLIANCE
		OPERATIONS AND COMPLIANCE
		REFERENCES
		ANNEX
	16.7 RISK ASSESSMENT OF GEOHAZARDS IN PRACTICE
		BIOGRAPHY
		INTRODUCTION
		LEVEL 1 – GLOBAL IDENTIFICATION OF LANDSLIDE HAZARD
		LEVEL 2 – REGIONAL ZONATION OF LANDSLIDE HAZARD
		LEVEL 3 – SITE SPECIFIC EVALUATION OF LANDSLIDE HAZARD
		SITE SPECIFIC RISK ASSESSMENT IN PRACTICE
		REFERENCES
z.861790_bm
	BIBLIOGRAPHY
	INDEX
	AUTHOR BIOGRAPHIES
	CO-EDITOR CLOSING THOUGHTS (MONESS RIZKALLA)
	CO-EDITOR CLOSING THOUGHTS (ROD READ)




نظرات کاربران