دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Moness Rizkalla. Rodney S. Read
سری:
ISBN (شابک) : 2018034757, 9780791861790
ناشر:
سال نشر: 2019
تعداد صفحات: 824
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 159 مگابایت
در صورت تبدیل فایل کتاب Pipeline Geohazards: Planning, Design, Construction and Operations به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب خطرات زمینی خط لوله: برنامه ریزی، طراحی، ساخت و ساز و عملیات نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این ویرایش دوم از انتشارات ASME 2008 در همین موضوع، درمان گسترده و به روز شده طیف وسیع تری از جنبه های مدیریت مخاطرات زمینی خط لوله است تا در خدمت جامعه جهانی خطوط لوله - هم کسانی که دارای پیشینه ژئوتکنیکی هستند و هم همکاران آنها در چند منطقه تیم های انضباطی که عملا با این مسائل برخورد می کنند. این کتاب تعادلی را بین مرور کلی موضوعات خاص و پرداختن تا حدودی دقیق تر به موضوعات دیگر ایجاد می کند. از کارشناسان شناخته شده دعوت شد تا در بخشهای تخصصی خود در کل فصلها، خلاصههای فنی دعوتشده کوتاه یا دیدگاههای دعوتشده طولانیتر مشارکت کنند.
This second edition of the 2008 ASME publication on the same topic is an expanded and updated treatment of a broader range of pipeline geohazard management aspects to serve the global community of pipeliners - both those of a geotechnical background as well as their colleagues in the multi-disciplinary teams that deal practically with these issues. The book strikes a balance between overviews of certain topics and somewhat more detailed treatment of other topics. Recognized experts were invited to contribute entire chapters, short Invited Technical Briefs or longer Invited Perspectives in their areas of specialization.
1.861790_fm Title Page Copyright Page Table of Contents IN MEMORIAM MICHAEL C. METZ1943–2017 861790_ch1 1.1 INTRODUCTORY REMARKS 1.1.1 Setting the Context 1.1.2 Structure of the Book REFERENCE 861790_ch2 2.1 INTRODUCTION 2.2 TERRAIN MAPPING AND GEOHAZARD ASSESSMENT 2.2.1 Terrain Analysis Tools 2.2.2 Air Photo Interpretation 2.2.3 Satellite Imagery 2.2.4 Digital Surface Modelling 2.2.5 Existing Maps and Reports 2.2.6 GIS and Geospatial Data Visualization 2.3 TERRAIN FEATURES EVALUATED FOR GEOHAZARD MAPPING AND ASSESSMENT 2.3.1 Surficial Materials and Geotechnical Properties 2.3.2 Topography 2.3.3 Drainage 2.3.4 Groundwater Conditions 2.3.5 Geohazards 2.3.6 Cultural and Environmental Constraints 2.4 APPLICATIONS OF TERRAIN ANALYSIS TO PIPELINE ROUTING, CONSTRUCTION, AND OPERATION 2.4.1 Scales of Terrain Analysis – From the Desktop to the Field 2.4.2 Corridor and Route Selection Process 2.4.3 Design and Construction 2.4.4 Operation 2.5 ASSESSING GEOHAZARDS IN DIFFERENT REGIONS 2.5.1 Glaciated Terrain 2.5.2 Fluvial Terrain 2.5.3 Permafrost Terrain 2.5.4 Peatlands and Organic Terrain 2.5.5 Coastal Terrain 2.5.6 Karst Terrain 2.5.7 Mountain Terrain 2.5.8 Volcanic Terrain 2.5.9 Desert Terrain 2.6 SUMMARY ACKNOWLEDGMENTS REFERENCES ADDITIONAL READING 861790_ch3 3.1 INTRODUCTION 3.1.1 Geological Model 3.1.2 Master Database 3.2 GEOGRAPHIC INFORMATION SYSTEMS (GIS) PLATFORMS 3.2.1 ArcGIS (ESRI) 3.2.2 ArcGIS PRO 3.2.3 QGIS (Open Source) 3.2.4 MapINFO Professional (Pitney Bowes) 3.2.5 Global Mapper (Blue Marble Geographics) 3.2.6 Google Earth Pro 3.3 DATA 3.3.1 Vector Data 3.3.2 Raster Data 3.3.3 Spatial Reference System 3.3.4 Linear Referencing 3.3.5 Scale 3.3.6 Resolution 3.3.7 Accuracy 3.3.8 Temporality 3.4 DATA FORMATS 3.4.1 Hard Copy Data 3.4.2 Digital Hard Copy Data 3.4.3 Native Files 3.4.4 Web Services (WMS & WFS) 3.5 DATA SOURCES 3.5.1 Government Agencies 3.5.2 Commercial Data Vendors 3.5.3 Online Data Communities and Repositories 3.6 DIGITAL ELEVATION MODELS (DEM) 3.6.1 Light Detection and Ranging (LiDAR) Data 3.6.2 DEM derived datasets 3.6.2.1 Hydrologically correct DEM 3.6.2.2 Flow direction raster 3.6.2.3 Flow accumulation raster 3.6.2.4 Triangulated Irregular Network (TIN) 3.6.3 No-Cost DEM Products 3.7 DIGITAL IMAGERY 3.7.1 Orthoimagery 3.7.2 Stereo Imagery 3.7.3 Multispectral and Hyperspectral Imagery 3.7.4 No-Cost Digital Imagery Products 3.8 FIELD DATA 3.9 OPERATIONAL PIPELINE DATA 3.9.1 Construction Records 3.9.2 Inspection, Maintenance and Repair Records 3.9.3 Pipeline Inline Inspection (ILI) data 3.10 VISUALIZATION TECHNIQUES 3.10.1 Plan View 3.10.2 Profile View 3.10.3 Three-Dimensional Presentation 3.10.4 Emerging Technologies 3.11 CONCLUDING REMARKS REFERENCES 861790_ch4 4.1 INTRODUCTION 4.2 PIPELINE PROJECT STRUCTURE 4.2.1 Phased Project Development Cycle 4.2.3 Cost and Schedule Implications 4.2.4 Form of Contract Considerations 4.3.2 Construction Team 4.3 RESPECTIVE ROLES OF ENGINEERING AND CONSTRUCTION 4.3.1 Engineering Team 4.3.2 Construction Team 4.3.3 Other Teams 4.3.4 Complementary Roles 4.4 INTERFACE DYNAMICS 4.4.1 Project Setting 4.4.2 Route Selection 4.4.3 Construction Right-of-Way Components 4.4.4 Right-of-Way Configurations 4.4.5 Lateral Slopes 4.4.6 LONGITUDINAL SLOPES 4.4.8 Valleys 4.4.9 Drainage, Erosion and Sediment Control 4.4.10 Geotechnical Control Measures 4.4.11 Geotechnical Verification Program 4.4.12 Regulatory and Other Considerations 4.5 CASE HISTORY 4.6 DISCUSSION 4.7 CONCLUDING REMARKS ACKNOWLEDGMENTS REFERENCES 861790_ch5 5.1 INTRODUCTION 5.1.1 General 5.1.2 Use of this Chapter 5.1.3 Organization 5.2 DESIGN – TRENCHED CROSSINGS 5.2.1 General 5.2.2 Quantitative Analysis Versus Qualitative Assessments 5.2.3 Integration with Other Disciplines 5.2.4 River Classification System 5.2.5 Overview of the Design Steps 5.2.6 Data Needs 5.2.7 Design Flood Criteria 5.2.8 Design Methodologies 5.3 DESIGN – ELEVATED CROSSINGS 5.3.1 Reasons for Its Use 5.3.2 Design Requirements 5.3.3 Examples 5.4 CONSTRUCTION - TRENCHED CROSSINGS 5.4.1 Overview 5.4.2 Examples 5.5 OPERATIONAL MONITORING 5.5.1 Objectives 5.5.2 Components of Integrity Management Program 5.5.3 Outline of a Monitoring Program 5.5.4 Knowing What to Look For 5.5.5 Response to Major Floods 5.5.6 Follow Up Mitigative Works 5.5.7 Monitoring Documentation 5.5.8 Lessons Learned From Arctic River Crossings ACKNOWLEDGMENT REFERENCES 861790_ch6 6.1 INTRODUCTION 6.2 GEOTECHNICAL CONSIDERATIONS 6.2.1 Geotechnical Investigation 6.2.2 Key Geotechnical Issues 6.3 HORIZONTAL DIRECTIONAL DRILLING 6.4 HORIZONTAL BORING TECHNIQUES 6.4.1 Auger Boring 6.4.2 Pilot Tube Guided Auger Boring 6.5 PIPE JACKING TECHNIQUES 6.5.1 Open Face Shields 6.5.2 Microtunneling 6.5.3 Direct Pipe® 6.5.4 Easy PipeTM 6.6 PERCUSSION TECHNIQUES 6.6.1 Pipe Ramming 6.6.2 Horizontal Pipe Driving 6.7 CONVENTIONAL TUNNELING 6.7.1 Tunnel Boring Machines 6.7.2 Hand Tunneling 6.7.3 Drill-and-Blast Tunneling 6.7.4 Mechanical Rock Excavation 6.8 DISCUSSION 6.9 CONCLUDING REMARKS ACKNOWLEDGMENTS REFERENCES ADDITIONAL READING 861790_ch7 7.1 INTRODUCTION 7.2 THE HDD PROCESS 7.2.1 Pilot Hole 7.2.2 Prereaming 7.2.3 Pullback 7.3 SITE INVESTIGATION 7.3.1 Surface Survey 7.3.2 Subsurface Survey 7.4 DRILLED PATH DESIGN 7.4.1 Entry and Exit Points 7.4.2 Entry and Exit Angles 7.4.3 P.I. Elevation 7.4.4 Radius of Curvature 7.5 WORKSPACE REQUIREMENTS 7.5.1 Rig Side 7.5.2 Pipe Side 7.6 DRILLING FLUIDS 7.6.1 Drilling Fluid Flow Schematic 7.6.2 Functions of Drilling Fluid 7.6.3 Composition of HDD Drilling Fluid 7.6.4 Material Descriptions 7.6.5 Inadvertent Returns 7.6.6 Hydrofracture Evaluation 7.6.7 Drilling Fluid and Spoil Disposal 7.7 PIPE SPECIFICATION 7.7.1 Installation Loads 7.7.2 Installation Stresses 7.7.3 Operating Loads 7.7.4 Operating Stresses 7.7.5 Pulling Load Calculation 7.7.6 External Coating 7.8 CONTRACTUAL CONSIDERATIONS 7.8.1 Lump Sum Contracts 7.8.2 Specifications and Drawings 7.8.3 Daywork Contracts 7.9 CONSTRUCTION MONITORING 7.9.1 Directional Performance 7.9.2 Drilling Fluid 7.9.3 Additional Concerns REFERENCES 861790_ch8 8.1 INTRODUCTION 8.2 PIPELINE CODES 8.3 BUOYANCY DESIGN PHILOSOPHY 8.4 BUOYANCY CONTROL OPTIONS 8.4.1 Concrete Weights 8.4.2 Concrete Weight Dimensions 8.4.3 Concrete Reinforcement 8.4.4 Soil Weights 8.4.5 Anchors 8.4.6 Buoyancy Control Applications Summary 8.5 BUOYANCY DESIGN FORCES 8.5.1 Buoyancy Calculation Input Values 8.5.2 Mineral Soil Density 8.5.3 Organic Soil Density 8.5.4 Backfill Shear Resistance 8.5.5 Density Values for Water and Other Items 8.5.6 Safety Factor 8.5.7 Soil Liquefaction 8.5.8 Pipe Stress 8.5.9 Operational Temperature 8.6 BUOYANCY CONTROL SPACING AND LOCATIONS 8.6.1 Concrete Weighting Spacing 8.6.2 Soil Weighting 8.6.3 Anchor Weighting Spacing 8.6.4 Concrete and Anchor Spacing Comparison 8.6.5 Buoyancy Control Item Locations Work Process ACKNOWLEDGMENTS REFERENCES 861790_ch9 9.1 INTRODUCTION 9.2 NEED FOR EROSION CONTROL AND SEDIMENT CONTAINMENT 9.3 FACTORS INFLUENCING OVERLAND EROSION 9.3.1 Climate 9.3.2 Soil Properties 9.3.3 Topography 9.3.4 Ground Cover 9.4 EROSION POTENTIAL EVALUATION 9.5 PIPELINE SPECIFIC EROSION AND SEDIMENT CONTROL STRATEGY 9.6 SURFACE EROSION CONTROL MEASURES AND TECHNIQUES 9.6.1 Strategies for Preventing or Reducing the Opportunity for Erosion 9.6.2 Erosion Control and Sediment Management Measures and Techniques 9.6.3 Tool Box Approach to Erosion Control and Sediment Containment 9.7 SELECTED EROSION CONTROL AND SEDIMENT CONTAINMENT MEASURES FOR PIPELINE PROJECTS 9.7.1 Silt Fences 9.7.2 Diversion Berms/Slope Breakers 9.7.3 Wattles, Bio-Rolls and Related Barriers 9.7.4 Revegetation 9.7.5 Surface Blankets. Mulching and Soil Covers 9.7.6 Interception Ditches and Check Dams 9.7.7 Ditch Plugs/Trench Breakers 9.8 SEDIMENT CONTAINMENT 9.9 INSPECTION AND CONTINGENCY MEASURES 9.10 SUMMARY OF GENERAL EROSION CONTROL AND SEDIMENT CONTAINMENT SELECTION GUIDELINES REFERENCES 861790_ch10 10.1 INTRODUCTION 10.1.1 Oil and Gas Pipelines 10.1.2 Geotechnical Design Process 10.2 BRIEF INTRODUCTION TO PERMAFROST 10.2.1 Permafrost Definition and Distribution 10.2.2 Properties of Permafrost 10.3 SITE INVESTIGATIONS 10.3.1 Field Drilling, Testing and Sampling 10.3.2 Geophysical Investigations 10.4 GEOTHERMAL MODELING 10.4.1 Geothermal Model Configurations 10.4.2 Geothermal Parameters 10.4.3 Geothermal Effects on a Pipeline Right-of-Way 10.5 THAW SETTLEMENT AND FROST HEAVE 10.5.1 Introduction 10.5.2 Thaw Settlement 10.5.3 Frost Heave 10.5.4 Mitigation for Thaw Settlement and Frost Heave Conditions 10.6 LIMIT STATE DESIGN 10.7 SLOPES DESIGN 10.7.1 Slope Design Process 10.7.2 Characterization of Failure Modes 10.7.3 Static Slope Stability Assessment and Design 10.7.4 Thawing Slope Instability Mitigation 10.8 CONSTRUCTION ISSUES 10.8.1 Ditching 10.8.2 Buoyancy and Uplift of Pipelines in Thawing Permafrost 10.8.3 Impact of Ice-Rich Permafrost on Backfill 10.8.4 Restraint from Delta-T Effects 10.8.5 Horizontal Directional Drilling in Permafrost 10.9 MONITORING AND MITIGATION 10.10 CONCLUDING REMARKS REFERENCES ADDITIONAL READING 861790_ch11 11.1 INTRODUCTION 11.2 FAULT RUPTURE DISPLACEMENT 11.2.1 Pipeline Crossings of Active Tectonic Faults 11.2.1.1 Pipeline-fault intersection angle 11.2.1.2 Soil restraint 11.2.1.3 Pipe wall thickness 11.2.1.4 Pipe ductility and overmatching weld strength 11.2.1.5 Aboveground pipelines 11.2.2 Fault Identification and Characterization 11.2.2.1 Preliminary assessment of pipeline route 11.2.2.2 Field investigation 11.2.2.3 Fault displacement 11.2.3 Fault Crossing Design 11.3 LIQUEFACTION 11.3.1 Liquefaction Hazards 11.3.1.1 Lateral spread 11.3.1.2 Flow failure 11.3.1.3 Buoyant rise 11.3.1.4 Ground settlement 11.3.1.5 Ground oscillation 11.3.2 Preliminary Screening of Potential Liquefaction Hazards 11.3.2.1 Screening of potential liquefaction hazard zones 11.3.3 Site-Specific Subsurface Investigation 11.3.4 Mitigation of Potential Lateral Spread Hazard at Watercourse Crossings 11.3.5 Mitigation Strategy for Buoyant Rise of Pipelines in Floodplains 11.3.5.1 Factor of safety against liquefaction-inducedbuoyancy 11.3.5.2 Liquefaction-induced uplift displacements 11.3.5.3 Commentary on buoyancy factor of safety and displacement 11.4 SEISMIC WAVE PROPAGATION 11.4.1 Idealization of Wave Propagation 11.4.1.1 Shear waves 11.4.1.2 Surface waves 11.4.1.3 Effects of non-linear soil response 11.4.2 Past Performance of Pipelines Subjected to Wave Propagation 11.4.3 Wave Propagation Strains in Straight Pipelines 11.4.4 Computation of Stresses in Pipe Bends 11.5 FINITE ELEMENT ANALYSISMETHODOLOGY FOR PGD 11.5.1 FEA Design Validation Process 11.5.2 Finite Element Model Characteristics 11.5.3 Soil-Pipeline Interaction 11.5.4 Stress-Strain Curve 11.5.5 Extent of Pipeline Model 11.6 PIPE STRAIN LIMITS FOR SEISMIC PGD DESIGN 11.6.1 Tensile Strain Limits 11.6.2 Compressive Strain Limits 11.7 PIPE SELECTION AND WELDING 11.7.1 Pipe Selection for High-Strain Design 11.8 SEISMIC GEOHAZARD MONITORING 11.8.1 Ground Motion Monitoring Network 11.8.1.1 Virtual seismic monitoring system 11.8.1.2 Earthquake detection and assessment 11.8.1.3 Response to seismic alarms 11.8.2 Post-Earthquake Reconnaissance of Liquefaction 11.8.2.1 Assess pipeline deformation as applicable 11.8.3 Fault Monitoring 11.8.3.1 Fault monitoring arrays 11.8.3.2 Fault surveys following an earthquake 11.9 PROJECT MANAGEMENT FOR EFFECTIVE MITIGATION OF SEISMIC GEOHAZARDS 11.9.1 Project Execution 11.9.2 Mitigation of Seismic-Induced PGD 11.9.3 Lessons Learned ACKNOWLEDGEMENT REFERENCES 861790_ch12 12.1 A TOPIC OF CONTINUINGLY INCREASING IMPORTANCE 12.2 MAPPING CONTENTS OF THE INTERRELATED CHAPTERS 13, 14 AND 15 12.3 KEY PHILOSOPHICAL STARTING POINTS 12.4 FITNESS FOR SERVICE 12.5 KEY TOPICS IN RELATED CHAPTERS ACKNOWLEDGMENTS REFERENCES ADDITIONAL READING 861790_ch13 13.1 INTRODUCTION 13.2 REGULATORY FRAMEWORK 13.2.1 49 CFR 192 Subpart–O Gas Transmission Pipeline Integrity Management 13.2.2 ASME B31.8S Managing System Integrityof Gas Pipelines 13.2.3 49 CFR 195 Subpart–F Operation and Maintenance 13.2.4 API RP 1160 Managing System Integrity for Hazardous Liquid Pipelines 13.2.5 CAN/CSA-Z662 Oil and Gas Pipeline Systems 13.2.6 ALA Guideline – Oil and Natural Gas Pipeline Systems 13.3 CREDIBLE GEOHAZARDS 13.3.1 Geohazard Assessment Philosophy 13.3.2 Geohazard Triggers 13.3.3 Note on Literature Review 13.4 SLOPE INSTABILITY HAZARDS 13.4.1 Landslide 13.4.2 Debris Flow 13.4.3 Creep and Earthflow 13.4.4 Rock Fall 13.4.5 Rock Avalanche 13.4.6 Snow Avalanche 13.5 SEISMIC/TECTONIC HAZARDS 13.5.1 Fault Displacement 13.5.2 Soil Liquefaction 13.5.3 Seismic Wave Propagation 13.6 HYDROTECHNICAL HAZARDS 13.6.1 Flooding 13.6.2 Vertical Scour or Accretion 13.6.3 Lateral Scour or Accretion 13.6.4 Avulsion 13.6.5 Buoyancy 13.6.6 Rapid Lake Drainage (Outburst Flooding) 13.6.7 Coastal Inundation (Tsunami) 13.7 OVERLAND EROSION AND RELATED HAZARDS 13.7.1 Water Erosion 13.7.2 Wind Erosion and Dune Migration 13.8 GROUND SUBSIDENCE HAZARDS 13.8.1 Soil Settlement 13.8.2 Underground Cavity Deformation 13.8.3 Sensitive Soil Collapse 13.9 EXPOSED ROCK, GEOCHEMICAL, AND RELATED HAZARDS 13.9.1 Rock Indentation 13.9.2 Acid Rock Drainage 13.9.3 Saline Ground Corrosion 13.10 PERMAFROST AND THERMAL HAZARDS 13.10.1 Frost He 13.10.2 Thaw Settlement 13.10.3 Thermokarsting of Massive Ice 13.10.4 Upheaval Displacement 13.10.5 Thaw-Induced Flow Mass Movement 13.11 VOLCANIC HAZARDS 13.11.1 Lahar 13.11.2 Ash Fall 13.11.3 Pyroclastic Flow 13.11.4 Lava Flow 13.11.5 Lava Tube Collapse 13.12 DISCUSSION 13.13 CONCLUDING REMARKS ACKNOWLEDGMENTS REFERENCES 861790_ch14 14.1 INTRODUCTION 14.2 RISK ASSESSMENT 14.2.1 Key Concepts 14.2.2 A Range of Typical Approaches 14.2.3 Advances in Pipeline Risk Assessment 14.3 PIPELINE GEOHAZARD ASSESSMENT 14.3.1 Role of Geohazard Assessment 14.3.2 Geohazard Assessment Concepts 14.3.3 Methodology Development Overview 14.3.4 Geohazard Assessment Framework 14.3.5 Reconciliation with Pipeline Risk Assessment 14.3.6 Uncertainty in Geohazard Assessment 14.4 PIPE-SOIL INTERACTION MODELING 14.4.1 Interaction Factors 14.4.2 Practical Pipe-Soil Interaction Considerations 14.5 OPERATIONAL CONSIDERATIONS 14.5.1 Pipeline Separation 14.5.2 Surface Loading on Buried Pipelines 14.5.3 Evaluating Blasting Effects on Buried Pipelines 14.6 OVERARCHING DESIGN TOPICS 14.6.1 Invited Technical Briefs 14.6.2 Test-of-Reasonableness Process 14.7 CONCLUDING REMARKS ACKNOWLEDGMENTS REFERENCES Additional Reading Selected References Related to PIPLIN 861790_ch15 15.1 INTRODUCTION 15.1.1 Summary of Credible Geohazards 15.1.2 Approach to Current Chapter 15.2 GEOHAZARD MANAGEMENT DECISIONPROCESS 15.3 MONITORING THE GEOHAZARDS 15.3.1 Geohazard Monitoring Methods 15.3.2 Pipeline Monitoring Methods 15.4 IDENTIFICATION AND MONITORING OF COMMON GEOHAZARDS 15.4.1 Slope Instability 15.4.2 Tectonics/Seismicity 15.4.3 Hydrotechnical Geohazards 15.4.4 Erosion 15.5 MONITORING THE PIPE TO DETECT GEOHAZARD IMPACT 15.5.1 In-line Inspection Methods 15.5.2 ILI for Geohazard Effects 15.5.3 Summary of Monitoring Options 15.6 MITIGATION OF GEOHAZARDS 15.6.1 Mitigation of the Geohazard 15.6.2 Pipeline Mitigation 15.6.3 Summary of Mitigation Options 15.7 2016 ASME GLOBAL PIPELINE AWARD REFERENCES 861790_ch16 16.1 COST-EFFECTIVE RISK REDUCTION APPROACH (CERRA): PIPELINE GEOHAZARD CASE STUDY BIOGRAPHY INTRODUCTION ISORISK AND RISK SEVERITY PIPELINE INTEGRITY RISK SCENARIOS ISORISK REDUCTION BY SELECTED MEASURES COST EFFECTIVENESS AND SAFE TIME OF MITIGATION MEASURES CERRA INDICATOR CONCLUSIONS REFERENCES 16.2 DEVELOPMENT OF AN INTERNATIONAL STANDARD FOR GEOHAZARD ASSESSMENTAND MANAGEMENT OF ONSHORE PIPELINES BIOGRAPHY 16.3 GEOTECHNICAL CHALLENGES FOR ONSHORE PIPELINES BIOGRAPHY A PERSPECTIVE ON GEOTECHNICAL CHALLENGES FOR ONSHORE PIPELINES RISK MANAGEMENT GEOTEAMS GROUND MODELS IN CONCLUSION REFERENCES 16.4 MANAGING PIPELINE GEOTECHNICAL ISSUES FROM A REGULATORY PERSPECTIVE BIOGRAPHY 16.5 PIPELINE RISK ASSESSMENT - A NEW ERA BIOGRAPHY INTRODUCTION GEOHAZARDS MEASURING POF GEOHAZARD EXPOSURES GEOHAZARD MITIGATION GEOHAZARD RESISTANCE GEOHAZARD COF GEOHAZARD EL KEY TAKE-AWAYS REFERENCES 16.6 PRACTICAL EXAMPLES OF VALUE-ADDED ENGINEERING GEOLOGICAL MODELS FOR PIPELINE PROJECTS BIOGRAPHY INTRODUCTION PLANNING AND ALIGNMENT SELECTION DESIGN AND PERMITTING CONSTRUCTION AND COMPLIANCE OPERATIONS AND COMPLIANCE REFERENCES ANNEX 16.7 RISK ASSESSMENT OF GEOHAZARDS IN PRACTICE BIOGRAPHY INTRODUCTION LEVEL 1 – GLOBAL IDENTIFICATION OF LANDSLIDE HAZARD LEVEL 2 – REGIONAL ZONATION OF LANDSLIDE HAZARD LEVEL 3 – SITE SPECIFIC EVALUATION OF LANDSLIDE HAZARD SITE SPECIFIC RISK ASSESSMENT IN PRACTICE REFERENCES z.861790_bm BIBLIOGRAPHY INDEX AUTHOR BIOGRAPHIES CO-EDITOR CLOSING THOUGHTS (MONESS RIZKALLA) CO-EDITOR CLOSING THOUGHTS (ROD READ)