دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [2 ed.]
نویسندگان: Donald C. Rennels
سری:
ISBN (شابک) : 9781119756446, 1119756448
ناشر: Wiley-Blackwell
سال نشر: 2022
تعداد صفحات: [387]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 19 Mb
در صورت تبدیل فایل کتاب Pipe Flow: A Practical and Comprehensive Guide به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب جریان لوله: راهنمای عملی و جامع نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Title Page Copyright Contents Preface To The First Edition Preface To The Second Edition Nomenclature Part I Methodology Chapter 1 Fundamentals 1.1 System Of Units 1.2 Fluid Properties 1.2.1 Pressure 1.2.2 Temperature 1.2.3 Density 1.2.4 Viscosity 1.2.5 Energy 1.2.6 Heat 1.3 Velocity 1.4 Important Dimensionless Ratios 1.4.1 Reynolds Number 1.4.2 Relative Roughness 1.4.3 Loss Coefficient 1.4.4 Mach Number 1.4.5 Froude Number 1.4.6 Reduced Pressure 1.4.7 Reduced Temperature 1.4.8 Ratio Of Specific Heats 1.5 Equations Of State 1.5.1 Equation Of State Of Liquids 1.5.2 Equation Of State Of Gases 1.5.3 Two‐Phase Mixtures 1.6 Flow Regimes 1.7 Similarity 1.7.1 The Principle Of Similarity 1.7.2 Limitations References Further Reading Chapter 2 Conservation Equations 2.1 Conservation Of Mass 2.2 Conservation Of Momentum 2.3 The Momentum Flux Correction Factor 2.4 Conservation Of Energy 2.4.1 Potential Energy 2.4.2 Pressure Energy 2.4.3 Kinetic Energy 2.4.4 Heat Energy 2.4.5 Mechanical Work Energy 2.5 General Energy Equation 2.6 Head Loss 2.7 The Kinetic Energy Correction Factor 2.8 Conventional Head Loss 2.9 Grade Lines References Further Reading Chapter 3 Incompressible Flow 3.1 Conventional Head Loss 3.2 Sources Of Head Loss 3.2.1 Surface Friction Loss 3.2.2 Induced Turbulence 3.2.3 Summing Loss Coefficients References Further Reading Chapter 4 Compressible Flow 4.1 Introduction 4.2 Problem Solution Methods 4.3 Approximate Compressible Flow Using Incompressible Flow Equations 4.3.1 Using Inlet Or Outlet Properties 4.3.2 Using Average Of Inlet And Outlet Properties 4.3.3 Using Expansion Factors 4.4 Adiabatic Compressible Flow With Friction: Ideal Equations 4.4.1 Shapiro'S Adiabatic Flow Equation 4.4.2 Turton'S Adiabatic Flow Equation 4.4.3 Binder'S Adiabatic Flow Equation 4.5 Isothermal Compressible Flow With Friction: Ideal Equation 4.6 Isentropic Flow: Treating Changes In Flow Area 4.7 Pressure Drop In Valves 4.8 Two‐Phase Flow 4.9 Example Problems: Adiabatic Flow With Friction Using Guess Work 4.9.1 Solve For P2 And T2 − K, P1, T1, And &Lwx01E87; Are Known 4.9.2 Solve For &Lwx01E87; And T2 − K, P1, T1, And P2 Are Known 4.9.3 Observations 4.10 Example Problem: Natural Gas Pipeline Flow 4.10.1 Ground Rules And Assumptions 4.10.2 Input Data 4.10.3 Initial Calculations 4.10.4 Solution 4.10.5 Comparison With Crane'S Solutions References Further Reading Chapter 5 Network Analysis 5.1 Coupling Effects 5.2 Series Flow 5.3 Parallel Flow 5.4 Branching Flow 5.5 Example Problem: Ring Sparger 5.5.1 Ground Rules And Assumptions 5.5.2 Input Parameters 5.5.3 Initial Calculations 5.5.4 Network Flow Equations 5.5.5 Solution 5.6 Example Problem: Core Spray System 5.6.1 New, Clean Steel Pipe 5.6.2 Moderately Corroded Steel Pipe 5.7 Example Problem: Main Steam Line Pressure Drop 5.7.1 Ground Rules And Assumptions 5.7.2 Input Data 5.7.3 Initial Calculations 5.7.4 Loss Coefficient Calculations 5.7.5 Pressure Drop Calculations 5.7.6 Predicted Pressure At Turbine Stop Valves References Further Reading Chapter 6 Transient Analysis 6.1 Methodology 6.2 Example Problem: Vessel Drain Times 6.2.1 Upright Cylindrical Vessel With Flat Heads 6.2.2 Spherical Vessel 6.2.3 Upright Cylindrical Vessel With Elliptical Heads 6.3 Example Problem: Positive Displacement Pump 6.3.1 No Heat Transfer 6.3.2 Heat Transfer 6.4 Example Problem: Time Step Integration 6.4.1 Upright Cylindrical Vessel Drain References Further Reading Chapter 7 Uncertainty 7.1 Error Sources 7.2 Pressure Drop Uncertainty 7.3 Flow Rate Uncertainty 7.4 Example Problem: Pressure Drop 7.4.1 Input Data 7.4.2 Solution 7.5 Example Problem: Flow Rate 7.5.1 Input Data 7.5.2 Solution Further Reading Part II Loss Coefficients Chapter 8 Surface Friction 8.1 Reynolds Number And Surface Roughness 8.2 Friction Factor 8.2.1 Laminar Flow Region 8.2.2 Critical Zone 8.2.3 Turbulent Flow Region 8.3 The Colebrook–White Equation 8.4 The Moody Chart 8.5 Explicit Friction Factor Formulations 8.5.1 Moody'S Approximate Formula 8.5.2 Wood'S Approximate Formula 8.5.3 The Churchill 1973 And Swamee And Jain Formulas 8.5.4 Chen'S Formula 8.5.5 Shacham'S Formula 8.5.6 Barr'S Formula 8.5.7 Haaland'S Formulas 8.5.8 Manadilli'S Formula 8.5.9 Romeo'S Formula 8.5.10 Evaluation Of Explicit Alternatives To The Colebrook–White Equation 8.6 All‐Regime Friction Factor Formulas 8.6.1 Churchill'S 1977 Formula 8.6.2 Modifications To Churchill'S 1977 Formula 8.7 Absolute Roughness Of Flow Surfaces 8.8 Age And Usage Of Pipe 8.8.1 Corrosion And Encrustation 8.8.2 The Relationship Between Absolute Roughness And Friction Factor 8.8.3 Inherent Margin 8.9 Noncircular Passages References Further Reading Chapter 9 Entrances 9.1 Sharp‐Edged Entrance 9.1.1 Flush Mounted 9.1.2 Mounted At A Distance 9.1.3 Mounted At An Angle 9.2 Rounded Entrance 9.3 Beveled Entrance 9.4 Entrance Through An Orifice 9.4.1 Sharp‐Edged Orifice 9.4.2 Round‐Edged Orifice 9.4.3 Thick‐Edged Orifice 9.4.4 Beveled Orifice References Further Reading Chapter 10 Contractions 10.1 Flow Model 10.2 Sharp‐Edged Contraction 10.3 Rounded Contraction 10.4 Conical Contraction 10.4.1 Surface Friction Loss 10.4.2 Local Loss 10.5 Beveled Contraction 10.6 Smooth Contraction 10.7 Pipe Reducer – Contracting References Further Reading Chapter 11 Expansions 11.1 Sudden Expansion 11.2 Straight Conical Diffuser 11.3 Multi‐Stage Conical Diffusers 11.3.1 Stepped Conical Diffuser 11.3.2 Two‐Stage Conical Diffuser 11.4 Curved Wall Diffuser 11.5 Pipe Reducer – Expanding References Further Reading Chapter 12 Exits 12.1 Discharge From A Straight Pipe 12.2 Discharge From A Conical Diffuser 12.3 Discharge From An Orifice 12.3.1 Sharp‐Edged Orifice 12.3.2 Round‐Edged Orifice 12.3.3 Thick‐Edged Orifice 12.3.4 Bevel‐Edged Orifice 12.4 Discharge From A Smooth Nozzle Chapter 13 Orifices 13.1 Generalized Flow Model 13.2 Sharp‐Edged Orifice 13.2.1 In A Straight Pipe 13.2.2 In A Transition Section 13.2.3 In A Wall 13.3 Round‐Edged Orifice 13.3.1 In A Straight Pipe 13.3.2 In A Transition Section 13.3.3 In A Wall 13.4 Bevel‐Edged Orifice 13.4.1 In A Straight Pipe 13.4.2 In A Transition Section 13.4.3 In A Wall 13.5 Thick‐Edged Orifice 13.5.1 In A Straight Pipe 13.5.2 In A Transition Section 13.5.3 In A Wall 13.6 Multi‐Hole Orifices 13.7 Non‐Circular Orifices References Further Reading Chapter 14 Flow Meters 14.1 Flow Nozzle 14.2 Venturi Tube 14.3 Nozzle/Venturi References Further Reading Chapter 15 Bends 15.1 Overview 15.2 Bend Losses 15.2.1 Smooth‐Walled Bends 15.2.2 Welded Elbows And Pipe Bends 15.3 Coils 15.3.1 Constant Pitch Helix 15.3.2 Constant Pitch Spiral 15.4 Miter Bends 15.5 Coupled Bends 15.6 Bend Economy References Further Reading Chapter 16 Tees 16.1 Overview 16.1.1 Previous Endeavors 16.1.2 ObservationsThese Observations Are For The Most Part Shared With Miller . 16.2 Diverging Tees 16.2.1 Diverging Flow Through Run 16.2.2 Diverging Flow Through Branch 16.2.3 Diverging Flow From Branch 16.3 Converging Tees 16.3.1 Converging Flow Through Run 16.3.2 Converging Flow Through Branch 16.3.3 Converging Flow Into Branch 16.4 Full‐Flow Through Run References Further Reading Chapter 17 Pipe Joints 17.1 Weld Protrusion 17.2 Backing Rings 17.3 Misalignment 17.3.1 Misaligned Pipe 17.3.2 Misaligned Gasket Chapter 18 Valves 18.1 Multiturn Valves 18.1.1 Diaphragm Valve 18.1.2 Gate Valve 18.1.3 Globe Valve 18.1.4 Pinch Valve 18.1.5 Needle Valve 18.2 Quarter‐Turn Valves 18.2.1 Ball Valve 18.2.2 Butterfly Valve 18.2.3 Plug Valve 18.3 Self‐Actuated Valves 18.3.1 Check Valve 18.3.2 Relief Valve 18.4 Control Valves 18.5 Valve Loss Coefficients References Further Reading Chapter 19 Threaded Fittings 19.1 Reducers: Contracting 19.2 Reducers: Expanding 19.3 Elbows 19.4 Tees 19.5 Couplings 19.6 Valves Reference Further Reading Part III Flow Phenomena Chapter 20 Cavitation 20.1 The Nature Of Cavitation 20.2 Pipeline Design 20.3 Net Positive Suction Head 20.4 Example Problem: Core Spray Pump Npsh 20.4.1 New, Clean Steel Pipe 20.4.2 Moderately Corroded Steel Pipe 20.5 Example Problem: Pipe Entrance Cavitation 20.5.1 Input Parameters 20.5.2 Calculations And Results Reference Further Reading Chapter 21 Flow‐Induced Vibration 21.1 Steady Internal Flow 21.2 Steady External Flow 21.3 Water Hammer\Sf \Textrm 4 21.4 Column Separation References Further Reading Chapter 22 Temperature Rise 22.1 Head Loss 22.2 Pump Temperature Rise 22.3 Example Problem: Reactor Heat Balance 22.4 Example Problem: Vessel Heat‐Up 22.5 Example Problem: Pumping System Temperature References Chapter 23 Flow To Run Full 23.1 Open Flow 23.2 Full Flow 23.3 Submerged Flow 23.4 Example Problem: Reactor Application Further Reading Chapter 24 Jet Pump Performance 24.1 Performance Characteristics 24.2 Mixing Section Model 24.2.1 Momentum Balance 24.2.2 Drive Flow Mixing Coefficient 24.2.3 Suction Flow Mixing Coefficient 24.2.4 Discharge Flow Density 24.2.5 Discharge Flow Viscosity 24.3 Component Flow Losses 24.3.1 Surface Friction 24.3.2 Loss Coefficients 24.4 Hydraulic Performance Flow Paths 24.4.1 Drive Flow Path 24.4.2 Suction Flow Path 24.5 Flow Model Validation 24.6 Example Problem: Water–Water Jet Pump 24.6.1 Flow Conditions 24.6.2 Jet Pump Geometry 24.6.3 Preliminary Calculations 24.6.4 Loss Coefficients 24.6.5 Predicted Performance 24.7 Parametric Studies 24.7.1 Surface Finish Differences 24.7.2 Nozzle To Throat Area Ratio Variation 24.7.3 Density Differences 24.7.4 Viscosity Differences 24.7.5 Straight Line And Parabolic Performance Representations 24.8 Epilogue References Further Reading Appendix A Physical Properties Of Water At 1 Atmosphere Appendix B Pipe Size Data Appendix C Physical Constants And Unit Conversions Appendix D Compressibility Factor Equations D.1 The Redlich–Kwong Equation D.2 The Lee–Kesler Equation D.3 Important Constants For Selected Gases D.4 Compressibility Chart Appendix E Adiabatic Compressible Flow With Friction Using Mach Number As A Parameter E.1 Solution When Static Pressure And Static Temperature Are Known E.2 Solution When Static Pressure And Total Temperature Are Known E.3 Solution When Total Pressure And Total Temperature Are Known E.4 Solution When Total Pressure And Static Temperature Are Known References Appendix F Velocity Profile Equations F.1 Benedict Velocity Profile Derivation F.2 Street, Watters, And Vennard Velocity Profile Derivation References Appendix G Speed Of Sound In Water Appendix H Jet Pump Performance Program INDEX Eula