ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Pipe Flow: A Practical and Comprehensive Guide

دانلود کتاب جریان لوله: راهنمای عملی و جامع

Pipe Flow: A Practical and Comprehensive Guide

مشخصات کتاب

Pipe Flow: A Practical and Comprehensive Guide

ویرایش: [2 ed.] 
نویسندگان:   
سری:  
ISBN (شابک) : 9781119756446, 1119756448 
ناشر: Wiley-Blackwell 
سال نشر: 2022 
تعداد صفحات: [387] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 19 Mb 

قیمت کتاب (تومان) : 44,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 1


در صورت تبدیل فایل کتاب Pipe Flow: A Practical and Comprehensive Guide به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب جریان لوله: راهنمای عملی و جامع نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Cover
Title Page
Copyright
Contents
Preface To The First Edition
Preface To The Second Edition
Nomenclature
Part I Methodology
	Chapter 1 Fundamentals
		1.1 System Of Units
		1.2 Fluid Properties
			1.2.1 Pressure
			1.2.2 Temperature
			1.2.3 Density
			1.2.4 Viscosity
			1.2.5 Energy
			1.2.6 Heat
		1.3 Velocity
		1.4 Important Dimensionless Ratios
			1.4.1 Reynolds Number
			1.4.2 Relative Roughness
			1.4.3 Loss Coefficient
			1.4.4 Mach Number
			1.4.5 Froude Number
			1.4.6 Reduced Pressure
			1.4.7 Reduced Temperature
			1.4.8 Ratio Of Specific Heats
		1.5 Equations Of State
			1.5.1 Equation Of State Of Liquids
			1.5.2 Equation Of State Of Gases
			1.5.3 Two‐Phase Mixtures
		1.6 Flow Regimes
		1.7 Similarity
			1.7.1 The Principle Of Similarity
			1.7.2 Limitations
		References
		Further Reading
	Chapter 2 Conservation Equations
		2.1 Conservation Of Mass
		2.2 Conservation Of Momentum
		2.3 The Momentum Flux Correction Factor
		2.4 Conservation Of Energy
			2.4.1 Potential Energy
			2.4.2 Pressure Energy
			2.4.3 Kinetic Energy
			2.4.4 Heat Energy
			2.4.5 Mechanical Work Energy
		2.5 General Energy Equation
		2.6 Head Loss
		2.7 The Kinetic Energy Correction Factor
		2.8 Conventional Head Loss
		2.9 Grade Lines
		References
		Further Reading
	Chapter 3 Incompressible Flow
		3.1 Conventional Head Loss
		3.2 Sources Of Head Loss
			3.2.1 Surface Friction Loss
			3.2.2 Induced Turbulence
			3.2.3 Summing Loss Coefficients
		References
		Further Reading
	Chapter 4 Compressible Flow
		4.1 Introduction
		4.2 Problem Solution Methods
		4.3 Approximate Compressible Flow Using Incompressible Flow Equations
			4.3.1 Using Inlet Or Outlet Properties
			4.3.2 Using Average Of Inlet And Outlet Properties
			4.3.3 Using Expansion Factors
		4.4 Adiabatic Compressible Flow With Friction: Ideal Equations
			4.4.1 Shapiro'S Adiabatic Flow Equation
			4.4.2 Turton'S Adiabatic Flow Equation
			4.4.3 Binder'S Adiabatic Flow Equation
		4.5 Isothermal Compressible Flow With Friction: Ideal Equation
		4.6 Isentropic Flow: Treating Changes In Flow Area
		4.7 Pressure Drop In Valves
		4.8 Two‐Phase Flow
		4.9 Example Problems: Adiabatic Flow With Friction Using Guess Work
			4.9.1 Solve For P2 And T2 − K, P1, T1, And &Lwx01E87; Are Known
			4.9.2 Solve For &Lwx01E87; And T2 − K, P1, T1, And P2 Are Known
			4.9.3 Observations
		4.10 Example Problem: Natural Gas Pipeline Flow
			4.10.1 Ground Rules And Assumptions
			4.10.2 Input Data
			4.10.3 Initial Calculations
			4.10.4 Solution
			4.10.5 Comparison With Crane'S Solutions
		References
		Further Reading
	Chapter 5 Network Analysis
		5.1 Coupling Effects
		5.2 Series Flow
		5.3 Parallel Flow
		5.4 Branching Flow
		5.5 Example Problem: Ring Sparger
			5.5.1 Ground Rules And Assumptions
			5.5.2 Input Parameters
			5.5.3 Initial Calculations
			5.5.4 Network Flow Equations
			5.5.5 Solution
		5.6 Example Problem: Core Spray System
			5.6.1 New, Clean Steel Pipe
			5.6.2 Moderately Corroded Steel Pipe
		5.7 Example Problem: Main Steam Line Pressure Drop
			5.7.1 Ground Rules And Assumptions
			5.7.2 Input Data
			5.7.3 Initial Calculations
			5.7.4 Loss Coefficient Calculations
			5.7.5 Pressure Drop Calculations
			5.7.6 Predicted Pressure At Turbine Stop Valves
		References
		Further Reading
	Chapter 6 Transient Analysis
		6.1 Methodology
		6.2 Example Problem: Vessel Drain Times
			6.2.1 Upright Cylindrical Vessel With Flat Heads
			6.2.2 Spherical Vessel
			6.2.3 Upright Cylindrical Vessel With Elliptical Heads
		6.3 Example Problem: Positive Displacement Pump
			6.3.1 No Heat Transfer
			6.3.2 Heat Transfer
		6.4 Example Problem: Time Step Integration
			6.4.1 Upright Cylindrical Vessel Drain
		References
		Further Reading
	Chapter 7 Uncertainty
		7.1 Error Sources
		7.2 Pressure Drop Uncertainty
		7.3 Flow Rate Uncertainty
		7.4 Example Problem: Pressure Drop
			7.4.1 Input Data
			7.4.2 Solution
		7.5 Example Problem: Flow Rate
			7.5.1 Input Data
			7.5.2 Solution
		Further Reading
Part II Loss Coefficients
	Chapter 8 Surface Friction
		8.1 Reynolds Number And Surface Roughness
		8.2 Friction Factor
			8.2.1 Laminar Flow Region
			8.2.2 Critical Zone
			8.2.3 Turbulent Flow Region
		8.3 The Colebrook–White Equation
		8.4 The Moody Chart
		8.5 Explicit Friction Factor Formulations
			8.5.1 Moody'S Approximate Formula
			8.5.2 Wood'S Approximate Formula
			8.5.3 The Churchill 1973 And Swamee And Jain Formulas
			8.5.4 Chen'S Formula
			8.5.5 Shacham'S Formula
			8.5.6 Barr'S Formula
			8.5.7 Haaland'S Formulas
			8.5.8 Manadilli'S Formula
			8.5.9 Romeo'S Formula
			8.5.10 Evaluation Of Explicit Alternatives To The Colebrook–White Equation
		8.6 All‐Regime Friction Factor Formulas
			8.6.1 Churchill'S 1977 Formula
			8.6.2 Modifications To Churchill'S 1977 Formula
		8.7 Absolute Roughness Of Flow Surfaces
		8.8 Age And Usage Of Pipe
			8.8.1 Corrosion And Encrustation
			8.8.2 The Relationship Between Absolute Roughness And Friction Factor
			8.8.3 Inherent Margin
		8.9 Noncircular Passages
		References
		Further Reading
	Chapter 9 Entrances
		9.1 Sharp‐Edged Entrance
			9.1.1 Flush Mounted
			9.1.2 Mounted At A Distance
			9.1.3 Mounted At An Angle
		9.2 Rounded Entrance
		9.3 Beveled Entrance
		9.4 Entrance Through An Orifice
			9.4.1 Sharp‐Edged Orifice
			9.4.2 Round‐Edged Orifice
			9.4.3 Thick‐Edged Orifice
			9.4.4 Beveled Orifice
		References
		Further Reading
	Chapter 10 Contractions
		10.1 Flow Model
		10.2 Sharp‐Edged Contraction
		10.3 Rounded Contraction
		10.4 Conical Contraction
			10.4.1 Surface Friction Loss
			10.4.2 Local Loss
		10.5 Beveled Contraction
		10.6 Smooth Contraction
		10.7 Pipe Reducer – Contracting
		References
		Further Reading
	Chapter 11 Expansions
		11.1 Sudden Expansion
		11.2 Straight Conical Diffuser
		11.3 Multi‐Stage Conical Diffusers
			11.3.1 Stepped Conical Diffuser
			11.3.2 Two‐Stage Conical Diffuser
		11.4 Curved Wall Diffuser
		11.5 Pipe Reducer – Expanding
		References
		Further Reading
	Chapter 12 Exits
		12.1 Discharge From A Straight Pipe
		12.2 Discharge From A Conical Diffuser
		12.3 Discharge From An Orifice
			12.3.1 Sharp‐Edged Orifice
			12.3.2 Round‐Edged Orifice
			12.3.3 Thick‐Edged Orifice
			12.3.4 Bevel‐Edged Orifice
		12.4 Discharge From A Smooth Nozzle
	Chapter 13 Orifices
		13.1 Generalized Flow Model
		13.2 Sharp‐Edged Orifice
			13.2.1 In A Straight Pipe
			13.2.2 In A Transition Section
			13.2.3 In A Wall
		13.3 Round‐Edged Orifice
			13.3.1 In A Straight Pipe
			13.3.2 In A Transition Section
			13.3.3 In A Wall
		13.4 Bevel‐Edged Orifice
			13.4.1 In A Straight Pipe
			13.4.2 In A Transition Section
			13.4.3 In A Wall
		13.5 Thick‐Edged Orifice
			13.5.1 In A Straight Pipe
			13.5.2 In A Transition Section
			13.5.3 In A Wall
		13.6 Multi‐Hole Orifices
		13.7 Non‐Circular Orifices
		References
		Further Reading
	Chapter 14 Flow Meters
		14.1 Flow Nozzle
		14.2 Venturi Tube
		14.3 Nozzle/Venturi
		References
		Further Reading
	Chapter 15 Bends
		15.1 Overview
		15.2 Bend Losses
			15.2.1 Smooth‐Walled Bends
			15.2.2 Welded Elbows And Pipe Bends
		15.3 Coils
			15.3.1 Constant Pitch Helix
			15.3.2 Constant Pitch Spiral
		15.4 Miter Bends
		15.5 Coupled Bends
		15.6 Bend Economy
		References
		Further Reading
	Chapter 16 Tees
		16.1 Overview
			16.1.1 Previous Endeavors
				16.1.2 ObservationsThese Observations Are For The Most Part Shared With Miller .
		16.2 Diverging Tees
			16.2.1 Diverging Flow Through Run
			16.2.2 Diverging Flow Through Branch
			16.2.3 Diverging Flow From Branch
		16.3 Converging Tees
			16.3.1 Converging Flow Through Run
			16.3.2 Converging Flow Through Branch
			16.3.3 Converging Flow Into Branch
		16.4 Full‐Flow Through Run
		References
		Further Reading
	Chapter 17 Pipe Joints
		17.1 Weld Protrusion
		17.2 Backing Rings
		17.3 Misalignment
			17.3.1 Misaligned Pipe
			17.3.2 Misaligned Gasket
	Chapter 18 Valves
		18.1 Multiturn Valves
			18.1.1 Diaphragm Valve
			18.1.2 Gate Valve
			18.1.3 Globe Valve
			18.1.4 Pinch Valve
			18.1.5 Needle Valve
		18.2 Quarter‐Turn Valves
			18.2.1 Ball Valve
			18.2.2 Butterfly Valve
			18.2.3 Plug Valve
		18.3 Self‐Actuated Valves
			18.3.1 Check Valve
			18.3.2 Relief Valve
		18.4 Control Valves
		18.5 Valve Loss Coefficients
		References
		Further Reading
	Chapter 19 Threaded Fittings
		19.1 Reducers: Contracting
		19.2 Reducers: Expanding
		19.3 Elbows
		19.4 Tees
		19.5 Couplings
		19.6 Valves
		Reference
		Further Reading
Part III Flow Phenomena
	Chapter 20 Cavitation
		20.1 The Nature Of Cavitation
		20.2 Pipeline Design
		20.3 Net Positive Suction Head
		20.4 Example Problem: Core Spray Pump Npsh
			20.4.1 New, Clean Steel Pipe
			20.4.2 Moderately Corroded Steel Pipe
		20.5 Example Problem: Pipe Entrance Cavitation
			20.5.1 Input Parameters
			20.5.2 Calculations And Results
		Reference
		Further Reading
	Chapter 21 Flow‐Induced Vibration
		21.1 Steady Internal Flow
		21.2 Steady External Flow
		21.3 Water Hammer\Sf \Textrm 4
		21.4 Column Separation
		References
		Further Reading
	Chapter 22 Temperature Rise
		22.1 Head Loss
		22.2 Pump Temperature Rise
		22.3 Example Problem: Reactor Heat Balance
		22.4 Example Problem: Vessel Heat‐Up
		22.5 Example Problem: Pumping System Temperature
		References
	Chapter 23 Flow To Run Full
		23.1 Open Flow
		23.2 Full Flow
		23.3 Submerged Flow
		23.4 Example Problem: Reactor Application
		Further Reading
	Chapter 24 Jet Pump Performance
		24.1 Performance Characteristics
		24.2 Mixing Section Model
			24.2.1 Momentum Balance
			24.2.2 Drive Flow Mixing Coefficient
			24.2.3 Suction Flow Mixing Coefficient
			24.2.4 Discharge Flow Density
			24.2.5 Discharge Flow Viscosity
		24.3 Component Flow Losses
			24.3.1 Surface Friction
			24.3.2 Loss Coefficients
		24.4 Hydraulic Performance Flow Paths
			24.4.1 Drive Flow Path
			24.4.2 Suction Flow Path
		24.5 Flow Model Validation
		24.6 Example Problem: Water–Water Jet Pump
			24.6.1 Flow Conditions
			24.6.2 Jet Pump Geometry
			24.6.3 Preliminary Calculations
			24.6.4 Loss Coefficients
			24.6.5 Predicted Performance
		24.7 Parametric Studies
			24.7.1 Surface Finish Differences
			24.7.2 Nozzle To Throat Area Ratio Variation
			24.7.3 Density Differences
			24.7.4 Viscosity Differences
			24.7.5 Straight Line And Parabolic Performance Representations
		24.8 Epilogue
		References
		Further Reading
	Appendix A Physical Properties Of Water At 1 Atmosphere
	Appendix B Pipe Size Data
	Appendix C Physical Constants And Unit Conversions
	Appendix D Compressibility Factor Equations
		D.1 The Redlich–Kwong Equation
		D.2 The Lee–Kesler Equation
		D.3 Important Constants For Selected Gases
		D.4 Compressibility Chart
	Appendix E Adiabatic Compressible Flow With Friction Using Mach Number As A Parameter
		E.1 Solution When Static Pressure And Static Temperature Are Known
		E.2 Solution When Static Pressure And Total Temperature Are Known
		E.3 Solution When Total Pressure And Total Temperature Are Known
		E.4 Solution When Total Pressure And Static Temperature Are Known
		References
	Appendix F Velocity Profile Equations
		F.1 Benedict Velocity Profile Derivation
		F.2 Street, Watters, And Vennard Velocity Profile Derivation
		References
	Appendix G Speed Of Sound In Water
	Appendix H Jet Pump Performance Program
	INDEX
Eula




نظرات کاربران