دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Abolfazl Eslami
سری:
ISBN (شابک) : 0081027664, 9780081027660
ناشر: Butterworth-Heinemann
سال نشر: 2019
تعداد صفحات: 376
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 12 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Piezocone and Cone Penetration Test (CPTu and CPT) Applications in Foundation Engineering به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کاربردهای تست نفوذ پیزوکون و مخروط (CPTu و CPT) در مهندسی فونداسیون نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
آزمایشهای نفوذ پیزوکون و مخروط (CPTu و CPT) در مهندسی فونداسیون شامل رویکردهای مختلف برای تعیین ظرفیت باربری پیهای کم عمق، همراه با روشهایی برای تعیین ظرفیت باربری شمع و مفاهیم نشست میباشد. استفاده از شبکه های عصبی محاسبات نرم (GMDH) مربوط به سوابق CPT و پارامترهای ژئوتکنیکی نیز مورد بحث قرار می گیرد. علاوه بر این، موارد مختلفی در مورد رفتار عملکرد پی با استفاده از سوابق موردی، مانند پی کم عمق، اصلاح عمیق خاک، طبقهبندی رفتار خاک (SBC) و ظرفیت باربری نیز گنجانده شده است.
Piezocone and cone penetration tests (CPTu and CPT) applications in foundation engineering includes different approaches for determining the bearing capacity of shallow foundations, along with methods for determining pile bearing capacity and settlement concepts. The use of soft computing (GMDH) neural networks related to CPT records and Geotechnical parameters are also discussed. In addition, different cases regarding the behavior of foundation performance using case records, such as shallow foundation, deep soil improvement, soil behavior classification (SBC), and bearing capacity are also included.
Cover Piezocone and Cone Penetration Test (CPTu and CPT) Applications in Foundation Engineering Copyright Preface Acknowledgment 1. Geotechnical engineering 1.1 Introduction 1.2 Topics in geotechnical engineering 1.3 Geotechnical investigations: assessments, aims, and applications 1.3.1 Assessments 1.3.2 Aims 1.3.3 Applications 1.4 Steps of performing geotechnical investigations 1.5 Extent of geotechnical investigation in foundation engineering 1.5.1 Number and spacing of borings 1.5.2 Depth of investigations 1.6 Sources of geotechnical data 1.6.1 Maps and technical literature review 1.6.2 Site visit 1.6.3 On-surface in situ testing 1.6.4 Geophysical test 1.6.5 Drilling operations 1.6.6 Element laboratory testing 1.6.7 Physical modeling or medium-scale testing 1.6.8 Full-scale testing in the field 1.6.9 Instrumentation and monitoring 1.7 In situ penetration tests 1.8 Geotechnical reports 1.9 Remarks 1.10 Book organization and scope References 2. Background to foundation engineering 2.1 Introduction 2.2 Foundation analysis and design considerations 2.3 Foundation classification 2.4 Intermediate trends 2.4.1 Semideep foundations 2.4.2 Ground modification approaches 2.4.3 Earthworks 2.4.4 Densification 2.4.5 Physical and chemical modification 2.4.6 Hydraulic modification 2.4.7 Reinforcement 2.5 Overall step-by-step procedure for foundation design 2.6 Basic soil mechanics for foundation engineering 2.6.1 Origin of soils 2.6.2 Soil identification and classification 2.6.3 Water in soil 2.6.4 Stresses in soil 2.6.4.1 Horizontal stress 2.6.4.2 Induced stress 2.6.5 Compressibility and settlement 2.6.6 Shear strength of soils 2.7 Uncertainty in foundation engineering 2.8 The role of CPT in reduction of uncertainty or increasing reliability References 3. CPT equipment, performance, and records 3.1 Introduction and background 3.2 Electrical cones 3.3 Piezocone penetration test 3.4 Equipment 3.5 Data presentation 3.5.1 Measured parameters 3.5.2 Calculated parameters 3.5.3 Graphical presentation 3.6 Factors influencing CPT measurements and interpretation 3.7 Special cones 3.7.1 Dual range penetrometer, Brecone 3.7.2 Acoustic cone 3.7.3 Lateral stress cone 3.7.4 Resistivity cone 3.7.5 Piezocone with additional sensors 3.7.6 Seismic cone 3.7.7 Cone pressuremeter 3.7.8 Piezovibrocone and Vibrocone 3.7.9 Ultraviolet-induced fluorescence CPT 3.8 Mini-cone and CPT in physical modeling 3.9 Codes, standards and software References 4. Geotechnical parameters from CPT records 4.1 Introduction 4.1.1 Group I: most geotechnical parameters applied in foundation engineering 4.1.2 Group II: related soil parameters 4.2 Unit weight 4.3 Relative density 4.3.1 Internal friction angle 4.4 Undrained shear strength 4.5 Over consolidation ratio 4.6 Stiffness 4.7 Constrained modulus 4.8 Shear wave velocity and shear modulus at small strain 4.9 Sensitivity 4.10 CPT correlations with SPT 4.11 Permeability 4.12 Liquefaction 4.12.1 Step 1. CSR—Cyclic Stress Ratio computations 4.12.2 Step 2 overburden stress tip resistance correction 4.12.3 Step 3. Fines Content correction of tip resistance 4.12.4 Step 4. CRR—Cyclic Resistance Ratio 4.12.5 Section one. Sandy soil 4.12.6 Section two: fine grained soil References 5. Soil behavior classification (SBC) using CPT and CPTu records 5.1 Introduction 5.2 Brief survey of soil profiling methods 5.3 The Eslami–Fellenius CPTu profiling and soil type classification method 5.4 Comparison between the Eslami–Fellenius and Robertson (1990) methods 5.5 Comments on current methods 5.6 UniCone 5.7 Problematic soils evaluation via SBC 5.8 Case records for problematic soils 5.9 Analysis and comparison 5.10 Triangular chart References 6. CPT in foundation engineering; scale effect and bearing capacity 6.1 Scale effect in correlation between pile, foundation, and CPT 6.2 CPT and pile scale effect for toe capacity 6.2.1 Embedment depth 6.2.2 Influence zone 6.2.3 Nonhomogeneous condition 6.2.4 Data processing and averaging 6.2.5 Diameter 6.2.6 Penetration rate and mechanism 6.2.7 Ultimate capacity condition 6.3 Scale effect in estimation of shaft capacity 6.4 Bearing capacity of shallow foundations 6.4.1 CPT indirect methods for bearing capacity of footings 6.4.2 Empirical direct CPT methods for bearing capacity of footings 6.5 Analytical approach for shallow foundation bearing capacity: direct CPT method 6.6 Comparison of direct CPT methods via databases References 7. CPT and CPTu applications for deep foundation–bearing capacity 7.1 Introduction 7.2 Pile design 7.3 CPT records for pile installation 7.4 Bearing capacity of deep foundations 7.5 Pile axial–bearing capacity from indirect CPT–based approaches 7.5.1 Pile unit toe resistance 7.5.2 Pile unit shaft resistance 7.6 Commonly used direct CPT–based methods for pile axial–bearing capacity 7.6.1 Nottingham (1975) and Schmertmann (1978). 7.6.2 LCPC (Bustamante and Gianeselli, 1982) 7.6.3 Meyerhof (1976, 1983) 7.6.4 Tummay and Fakhroo (1982) 7.6.5 Price and Wardle (1982) 7.6.6 Penpile 7.6.7 Eslami and Fellenius (1997) 7.6.7.1 UniCone 7.6.8 Takesue et al. (1998) 7.6.9 NGI (Clausen et al., 2005) 7.6.10 UWA (Lehane et al., 2005) 7.6.11 ICP (Jardine et al., 2005) 7.6.12 Fugro (Kolk et al., 2005) 7.6.13 Togliani (2008) 7.6.14 German 7.6.15 Enhanced UniCone (Niazi and Mayne, 2016) 7.6.16 Summary of the CPT-based methods 7.7 Piles under uplift loading 7.8 Comments on the methods Toe capacity Shaft capacity 7.9 Case study: Urmia Lake causeway (Eslami et al., 2011) References 8. CPT and CPTu for foundation settlement and load–displacement (P-Δ) estimation 8.1 Introduction 8.2 Basic equations for settlement estimation 8.3 Background to Janbu (1967) approach 8.4 Modified stress exponent and modulus number (Malekdoost and Eslami, 2011) 8.5 CPT-based nonlinear stress–strain approach to evaluate foundation settlement (Valikhah and Eslami, 2019) 8.5.1 Case study records 8.5.2 Scale effect realization 8.5.3 Stress exponent related to CPT results 8.6 Pile group settlement 8.7 CPT-based load–displacement behavior of foundations (Valikhah et al., 2018; Valikhah, 2019) 8.7.1 First case study: short driven steel pile (9m long) 8.7.2 Second case study: medium driven concrete pile (15m long) 8.7.3 Third case study: long driven concrete pile (38m long) 8.7.4 Fourth case study: shallow foundation (1m width) References 9. CPT & CPTu for ground modification 9.1 Introduction 9.2 General description, function, and application of the methods 9.3 CPT and CPTu application in ground improvement practice 9.4 Quantitative analysis of soil geotechnical parameters 9.4.1 Case No. 1: hydraulic modification in Treasure Island—the United States (Rollins et al., 2004) 9.4.2 Case No. 2: compaction modification in map Ta Put Port—Thailand (Bergado et al., 1996) 9.4.3 Case No. 3: vibro replacement in Putrajaya Boulevard—Malaysia (Raju et al., 1998) 9.5 Comparison of pre- and postmodification 9.5.1 Case No. 4: explosive compaction for liquefaction mitigation (Eslami, 2015; Eslami et al., 2015) 9.5.2 Case No. 5: vibro compaction in Hong Kong Airport—Chek Lap Kok (Massarsch and Fellenius, 2002) 9.6 Soil behavior classification approach 9.6.1 Case No. 6: Ground improvement and foundation practice for Persian Gulf Bridge—Iran (Asadi et al., 2017) 9.6.2 Case No. 7: explosive compaction project (Eslami, 2015; Eslami et al., 2015) 9.6.3 Case No. 8: Crude oil contaminated clayey sand behavior using CPT data (Soroush Hagh, 2019) References 10. CPT-based soft computing implementations in foundation engineering 10.1 Introduction 10.2 Review of GMDH-type neural network method 10.3 Review of support vector machine method 10.4 Case Study: pile-bearing capacity 10.4.1 Case Study No. 1: pile-bearing capacity—GMDH method 10.4.2 Case Study No. 2: pile-bearing capacity—support vector regression method 10.4.3 Case Study No. 3: pile shaft bearing capacity 10.5 Case Study No. 4: shallow foundation settlement 10.6 Case Study No. 5: friction angle, cohesion, and shear stress 10.7 Case Study: liquefaction potential assessment 10.7.1 Case Study No. 6: CRR prediction using polynomial model 10.7.2 Case Study No. 7: evolutionary-based approach 10.7.3 Case Study No. 8: Triangular chart mapping and SVM References 11. Uncertainty and reliability in foundation engineering: CPT-Based approach 11.1 Introduction 11.2 Uncertainty sources in geotechnical engineering 11.3 Principles: random analysis techniques in geotechnical engineering 11.3.1 Methods for determining the reliability index 11.3.2 First-order second moment method 11.3.3 First-order reliability method 11.3.4 Monte Carlo simulation 11.4 Case studies 11.4.1 Case study No. 1: loading uncertainty effects on shallow foundation failure (application of MCS) 11.4.2 Case study No. 2: CPT production considering soil inherent variability 11.4.2.1 CPT-based soil classification 11.4.2.2 Soil stratification 11.4.2.3 Nonstationary realization of CPT data 11.4.3 Case study No. 3: statistical and probabilistic assessment of model uncertainty for prediction of pile foundation–bearing c ... 11.4.3.1 Model parameter 11.4.3.2 Database and pile-bearing capacity prediction 11.4.3.3 Statistical and probabilistic assessment of axial pile–bearing capacity 11.4.4 Case study No. 4: investigation of the effect of various uncertainty sources on a CPT-based axial pile–bearing capacity pre ... 11.5 LRFD application for pile design (new approach) 11.5.1 Case study No. 5: application of the proposed algorithm/practical application of the proposed algorithm References 12. CPT and CPTu databases in foundation engineering 12.1 Introduction 12.2 Databases of soil parameters and CPTu 12.3 Databases for shallow foundations and CPT 12.4 Databases for pile and CPT 12.5 AUT: GEO-CPT&Pile database 12.5.1 Establishment 12.5.2 Updates and accessibility 12.5.3 Organization 12.6 Implementation of the developed database 12.6.1 Comparison of load–displacement interpretation criteria 12.6.2 Risk analysis and optimum safety factor 12.6.3 Nonstationary reproduction of CPT data 12.6.4 Statistical and probabilistic assessment 12.6.5 Reliability-based assessment of pile capacity 12.6.6 Displacement-based bearing capacity 12.6.7 Capacity assessment of special piles 12.6.7.1 Helical piles 12.6.7.2 Drilled displacement piles References Index A B C D E F G I J L M N O P Q R S T U V Back Cover