دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Brian R. Shmaefsky (editor)
سری:
ISBN (شابک) : 3030000982, 9783030000981
ناشر: Springer
سال نشر: 2020
تعداد صفحات: 371
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 7 مگابایت
در صورت تبدیل فایل کتاب Phytoremediation: In-situ Applications (Concepts and Strategies in Plant Sciences) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب گیاه پالایی: کاربردهای درجا (مفاهیم و راهبردها در علوم گیاهی) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface Contents 1 Principles of Phytoremediation 1.1 Introduction 1.1.1 Origins of Phytoremediation 1.1.2 History of Pollution Remediation 1.2 Traditional Methods of Removing Contaminants 1.2.1 Traditional Soil Remediation 1.2.2 Traditional Methods of Removing Water Contaminants 1.3 A Survey of Bioremediation 1.3.1 History of Bioremediation 1.3.2 Mechanisms of Bioremediation 1.4 A Survey of Phytoremediation 1.4.1 Phytoremediation Defined 1.4.2 History of Phytoremediation 1.4.3 Mechanisms of Phytoremediation 1.5 Genetic Modification and Phytoremediation 1.6 The Reality of Phytoremediation References 2 Phytoremediation of Agricultural Pollutants 2.1 Introduction 2.2 Agricultural Pollutants and Their Sources 2.2.1 Major Agricultural Pollutants 2.2.2 Mechanism and Sources of Organic and Inorganic Agricultural Pollutants 2.3 Strategies for the Removal of Agricultural Pollutants 2.4 Phytoremediation of Nitrates and Phosphorus 2.4.1 Phytoremediation of Nitrate 2.4.2 Phytoremediation of Phosphorus 2.5 Phytoremediation of Heavy Metals 2.5.1 Pytoextraction of HMs 2.5.2 Phytovolatilization of HMs 2.5.3 Phytostabilization of HMs 2.5.4 Rhizofiltration of HMs 2.5.5 Dendroremediation of HMs 2.6 Phytoremediation of Pesticides 2.6.1 Phytoaccumulation/Phytoextraction of Pesticides 2.6.2 Phytodegradation of Pesticides 2.6.3 Phytovolatilization of Pesticides 2.6.4 Rhizoremediation of Pesticides 2.7 Phytoremediation of Other Pollutants 2.8 Major Challenges to Phytoremediation 2.9 Overcoming the Challenges 2.10 Conclusions References 3 Phytoremediation of Soils Contaminated by Hydrocarbon 3.1 Introduction 3.2 Contaminated Soil and the Rhizosphere 3.2.1 The Role of the Microorganisms and the Rhizosphere in the Degradation of Hydrocarbons 3.3 Degradation of Hydrocarbons Through the Combination of Tree Species and Organic Fertilizers 3.4 Perspectives and Necessary Research 3.5 Conclusions Literature Cited 4 In Situ Phytoremediation of Metals 4.1 Introduction 4.2 What is In Situ Phytoremediation? 4.3 Mechanisms of In Situ Phytoremediation 4.3.1 Phytoextraction 4.3.2 Phytostabilization 4.3.3 Phytovolatilization 4.3.4 Phytodegradation 4.4 Advantages of In Situ Phytoremediation 4.5 Limitations of In Situ Phytoremediation 4.6 In Situ Phytoremediation of Some Important Metals 4.6.1 Nickel (Ni) 4.6.2 Arsenic (As) 4.6.3 Iron (Fe) 4.6.4 Cobalt (Co) 4.6.5 Copper (Cu) 4.6.6 Selenium (Se) 4.6.7 Lead (Pb) 4.6.8 Cadmium (Cd) 4.6.9 Chromium (Cr) 4.6.10 Mercury (Hg) 4.7 Conclusions and Future Recommendations References 5 In Situ Phytoremediation of Uranium Contaminated Soils 5.1 Introduction 5.1.1 Uranium—History, Discovery, Occurrence and Uses 5.1.2 Uranium and Human Health 5.1.3 Uranium as Source of Energy 5.1.4 Uranium Mining and Environment Contamination 5.1.5 Recent Publications Re U and Environmental Contamination 5.2 Aim and Objectives of This Review 5.3 Remediation Strategies for U-Contaminated Soils 5.3.1 Containment and Confinement Remediation Technique 5.3.2 Biobased In Situ Radioactive Isotopes (Uranium) Remediation Techniques 5.4 Mycorrhizal Fungi and Bioenergy Plants 5.5 Conclusion References 6 Phytoremediation of Metals by Aquatic Macrophytes 6.1 Introduction 6.2 Phytoremediation—A Site-Specific Green Technology for Environmental Clean-Up 6.3 Phytoremediation Techniques/Processes 6.3.1 Phytoextraction 6.3.2 Phytosequestration 6.3.3 Phytodegradation 6.3.4 Phytostabilization 6.3.5 Phytovolatilization 6.3.6 Rhizofiltration 6.3.7 Rhizodegradation 6.3.8 Rhizoremediation 6.4 Selection of Plants 6.5 Mechanism of Metal Uptake and Accumulation 6.5.1 Bioactivation of Trace Metals in the Rhizosphere 6.5.2 Uptake into the Root 6.5.3 Translocation of Metals 6.5.4 Distribution, Detoxification and Sequestration of Metal Ion 6.6 Aquatic Macrophytes Suitable for Phytoremediation 6.6.1 Eichhornia crassipes (Water Hyacinth) 6.6.2 Pistia stratiotes (Water Lettuce) 6.6.3 Lemna Minor (Duckweed) 6.6.4 Limnocharis flava (L.) Buch (Velvet leaf) 6.6.5 Hydrilla verticillata (L.F.) Royle (Hydrilla or Star Vine) 6.6.6 Monochoria vaginalis (Burm.F.) (Oval Leaf Pondweed) 6.6.7 Nelumbo nucifera Gaertn (Indian Lotus) 6.6.8 Nymphaea nouchali (Water Lilly) 6.6.9 Trapa natans (Water Chestnut) 6.6.10 Scirpus grossus L. (Giant Bulrush) 6.6.11 Bacopa monnieri (Water Hyssop) 6.6.12 Hydrocotyle asiatica (Asiatic Pennywort) 6.6.13 Phragmites australis (Common Reed) 6.6.14 Azolla Sp. (Water Velvet) 6.6.15 Colocasia esculenta L. (Wild Taro) 6.6.16 Echinochloa colona (Jungle Rice L.) 6.6.17 Vallisneria natans Lour (Eel Grass) 6.6.18 Ipomoea aquatica Forssk (Water Spinach) 6.6.19 Nymphoides indica L. (Marshwort) 6.6.20 Salvinia molesta D.S. Mitch. (Kariba Weed) 6.7 Disposal of Phytoremediated Biomass 6.8 Merits and Demerits of Phytoremediation 6.8.1 Merits 6.8.2 Demerits 6.9 Future Thrust 6.10 Conclusion References 7 Phytoremediation Using Aquatic Plants 7.1 Water Contamination and Water Security 7.2 Aquatic Phytoremediation 7.2.1 Macronutrients 7.2.2 Micronutrients/Metals 7.2.3 Organic Pollutants 7.2.4 Microbial Pollutants 7.3 Macrophytes Used in Aquatic Phytoremediation 7.3.1 Macronutrients 7.3.2 Metals 7.3.3 Organic Pollutants 7.3.4 Microbial Pollutants 7.4 Macrophyte Phytoremediation Communities 7.5 Issues in Utilising Invasive Macrophytes 7.6 Macrophyte Planting Systems 7.6.1 Constructed Wetlands 7.6.2 Wild Macrophyte Harvesting 7.6.3 Floating Treatment Wetlands 7.7 Translocation and Element Storage in Macrophytes 7.8 The Role of Microbial Activity in Aquatic Phytoremediation 7.9 Added Value of Aquatic Phytoremediation 7.9.1 Ecosystem Services 7.9.2 Resource Recovery 7.10 Summary and Future Perspectives References 8 Phytoremediation of Explosives 8.1 Explosive Compounds 8.1.1 The Explosives Issue 8.1.2 Sources 8.1.3 Types of Explosive Compounds 8.1.4 Compound Behavior in the Environment 8.2 Explosives and Vegetation 8.2.1 Contaminant Uptake 8.2.2 Phytotoxicity 8.2.3 Phytoremediation of Explosives 8.2.4 Transgenic and Wild-Type Species 8.3 Field Applications 8.3.1 Suggested Species 8.3.2 Field Knowledge 8.3.3 Phytoremediation Potential and Future Directions Literature Cited 9 Phytoremediation Using Native Plants 9.1 Introduction 9.2 Mechanisms of Phytoremediation 9.3 Inorganic (Heavy Metal and Metalloid) Contaminated Sites 9.3.1 Current Application of Native Plants in Phytoremediation of Inorganic (Heavy Metal and Metalloid) Contaminated Sites 9.4 Organic (POPs) Contaminated Sites 9.4.1 Current Application of Native Plants in Phytoremediation of Organic (POPs) Contaminated Sites 9.4.2 A Case Study on PAH-Contaminated Soil Using a Native Plant from the Niger Delta, Nigeria 9.5 Prospects and Challenges of Native Plants in Phytoremediation 9.5.1 Future Development of Native Plants in Phytoremediation 9.5.2 Conclusion References 10 Municipal and Industrial Wastewater Treatment Using Constructed Wetlands 10.1 Introduction 10.1.1 Phytoremediation: A Green Technology 10.1.2 Ramsar Convention for Conservation of Natural Wetlands 10.1.3 Flora in Natural Wetlands 10.1.4 Biogeochemical Cycles in Natural Wetlands 10.2 Constructed Wetlands: Decentralized Wastewater Treatment Technology 10.2.1 Merits and Demerits of Constructed Wetlands 10.2.2 Mechanisms of Pollutant Removal in Constructed Wetlands 10.2.3 General Design Considerations for Constructed Wetlands 10.2.4 Potential Plants for Wastewater Treatment 10.2.5 Textile Wastewater Treatment in Constructed Wetlands 10.2.6 Landfill Leachate Treatment in Constructed Wetlands 10.2.7 Treatment of Organic Pollutants in Constructed Wetlands 10.2.8 Metal Removal in Constructed Wetlands 10.3 Recent Development of Constructed Wetlands in India 10.4 Conclusion References