دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: نورشناسی ویرایش: 2 نویسندگان: Shun Lien Chuang سری: ISBN (شابک) : 0470293195, 9780470293195 ناشر: Wiley سال نشر: 2009 تعداد صفحات: 841 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 32 مگابایت
کلمات کلیدی مربوط به کتاب فیزیک دستگاه های فوتونیک: فیزیک، اپتیک
در صورت تبدیل فایل کتاب Physics of Photonic Devices به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فیزیک دستگاه های فوتونیک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این ویرایش جدید فیزیک دستگاه های فوتونیک شامل پیشرفت های قابل توجهی در زمینه فوتونیک است که از زمان انتشار اولین نسخه (فیزیک دستگاه های اپتوالکترونیک) رخ داده است. موضوعات جدید پوشش داده شده شامل تاریخچه مختصری از اختراع لیزرهای نیمه هادی، روش دوقطبی لورنتس و پلاسمای فلزی، اپتیک ماتریس، موجبرهای پلاسمای سطحی، تشدید کننده های حلقه نوری، لیزرهای مدولاتور الکترو جذب یکپارچه و سلول های خورشیدی است. همچنین زمینه های تحقیقاتی جدید هیجان انگیزی را معرفی می کند: پلاسمونیک های سطحی و تشدید کننده های میکرو حلقه. تئوری بهره و جذب نوری در نقاط کوانتومی و سیم های کوانتومی و کاربرد آنها در لیزرهای نیمه هادی. و لیزرهای جدید ریزحفره و کریستال فوتونیک، لیزرهای آبشاری کوانتومی، و لیزرهای سبز آبی GaN در زمینه لیزرهای نیمه هادی پیشرفته.
فیزیک دستگاه های فوتونیک، ویرایش دوم اطلاعات جدیدی را ارائه می دهد که هنوز در دسترس نیست. فرم کتاب در جای دیگر بسیاری از مجموعههای مشکلات بهروزرسانی شدهاند، که پاسخهای آنها در یک راهنمای راهحلهای کاملاً جدید برای مدرسان موجود است. جامع، به موقع و کاربردی، فیزیک دستگاه های فوتونیک یک کتاب درسی ارزشمند برای دوره های پیشرفته کارشناسی و کارشناسی ارشد در فوتونیک و ابزاری ضروری برای محققانی است که در این زمینه به سرعت در حال رشد کار می کنند.
This new edition of Physics of Photonic Devices incorporates significant advancements in the field of photonics that have occurred since publication of the first edition (Physics of Optoelectronic Devices). New topics covered include a brief history of the invention of semiconductor lasers, the Lorentz dipole method and metal plasmas, matrix optics, surface plasma waveguides, optical ring resonators, integrated electroabsorption modulator-lasers, and solar cells. It also introduces exciting new fields of research such as: surface plasmonics and micro-ring resonators; the theory of optical gain and absorption in quantum dots and quantum wires and their applications in semiconductor lasers; and novel microcavity and photonic crystal lasers, quantum-cascade lasers, and GaN blue-green lasers within the context of advanced semiconductor lasers.
Physics of Photonic Devices, Second Edition presents novel information that is not yet available in book form elsewhere. Many problem sets have been updated, the answers to which are available in an all-new Solutions Manual for instructors. Comprehensive, timely, and practical, Physics of Photonic Devices is an invaluable textbook for advanced undergraduate and graduate courses in photonics and an indispensable tool for researchers working in this rapidly growing field.
Physics of Photonic Devices --
Contents --
Preface --
Chapter 1. Introduction --
1.1 Basic Concepts of Semiconductor Band and Bonding Diagrams --
1.2 The Invention of Semiconductor Lasers --
1.3 The Field of Optoelectronics --
1.4 Overview of the Book --
Problems --
References --
Bibliography --
PART I FUNDAMENTALS --
Chapter 2. Basic Semiconductor Electronics --
2.1 Maxwell\'s Equations and Boundary Conditions --
2.2 Semiconductor Electronics Equations --
2.3 Generation and Recombination in Semiconductors --
2.4 Examples and Applications to Optoelectronic Devices --
2.5 Semiconductor p-N and n-P Heterojunctions --
2.6 Semiconductor n-N Heterojunctions and Metal-Semiconductor Junctions --
Problems --
References --
Chapter 3. Basic Quantum Mechanics --
3.1 Schrödinger Equation --
3.2 The Square Well --
3.3 The Harmonic Oscillator --
3.4 The Hydrogen Atom and Exciton in 2D and 3D --
3.5 Time-Independent Perturbation Theory --
3.6 Time-Dependent Perturbation Theory --
Appendix 3A: Löwdin\'s Renormalization Method --
Problems --
References --
Chapter 4. Theory of Electronic Band Structures in Semiconductors --
4.1 The Bloch Theorem and the k · p Method for Simple Bands --
4.2 Kane\'s Model for Band Structure: The k · p Method with the Spin-Orbit Interaction --
4.3 Luttinger-Kohn Model: The k · p Method for Degenerate Bands --
4.4 The Effective Mass Theory for a Single Band and Degenerate Bands --
4.5 Strain Effects on Band Structures --
4.6 Electronic States in an Arbitrary One-Dimensional Potential --
4.7 Kronig-Penney Model for a Superlattice --
4.8 Band Structures of Semiconductor Quantum Wells --
4.9 Band Structures of Strained Semiconductor Quantum Wells --
Problems --
References --
PART II PROPAGATION OF LIGHT --
Chapter 5. Electromagnetics and Light Propagation --
5.1 Time-Harmonic Fields and Duality Principle. 5.2 Poynting\'s Theorem and Reciprocity Relations --
5.3 Plane Wave Solutions for Maxwell\'s Equations in Homogeneous Media --
5.4 Light Propagation in Isotropic Media --
5.5 Wave Propagation in Lossy Media: Lorentz Oscillator Model and Metal Plasma --
5.6 Plane Wave Reflection from a Surface --
5.7 Matrix Optics --
5.8 Propagation Matrix Approach for Plane Wave Reflection from a Multilayered Medium --
5.9 Wave Propagation in Periodic Media --
Appendix 5A: Kramers-Kronig Relations --
Problems --
References --
Chapter 6. Light Propagation in Anisotropic Media and Radiation --
6.1 Light Propagation in Uniaxial Media --
6.2 Wave Propagation in Gyrotropic Media: Magnetooptic Effects --
6.3 General Solutions to Maxwell\'s Equations and Gauge Transformations --
6.4 Radiation and the Far-Field Pattern --
Problems --
References --
Chapter 7. Optical Waveguide Theory --
7.1 Symmetric Dielectric Slab Waveguides --
7.2 Asymmetric Dielectric Slab Waveguides --
7.3 Ray Optics Approach to Waveguide Problems --
7.4 Rectangular Dielectric Waveguides --
7.5 The Effective Index Method --
7.6 Wave Guidance in a Lossy or Gain Medium --
7.7 Surface Plasmon Waveguides --
Problems --
References --
Chapter 8. Coupled-Mode Theory --
8.1 Waveguide Couplers --
8.2 Coupled Optical Waveguides --
8.3 Applications of Optical Waveguide Couplers --
8.4 Optical Ring Resonators and Add-Drop Filters --
8.5 Distributed Feedback (DFB) Structures --
Appendix 8A: Coupling Coefficients for Parallel Waveguides --
Appendix 8B: Improved Coupled-Mode Theory --
Problems --
References --
PART III GENERATION OF LIGHT --
Chapter 9. Optical Processes in Semiconductors --
9.1 Optical Transitions Using Fermi\'s Golden Rule --
9.2 Spontaneous and Stimulated Emissions --
9.3 Interband Absorption and Gain of Bulk Semiconductors --
9.4 Interband Absorption and Gain in a Quantum Well. 9.5 Interband Momentum Matrix Elements of Bulk and Quantum-Well Semiconductors --
9.6 Quantum Dots and Quantum Wires --
9.7 Intersubband Absorption --
9.8 Gain Spectrum in a Quantum-Well Laser with Valence-Band Mixing Effects --
Appendix 9A: Coordinate Transformation of the Basis Functions and the Momentum Matrix Elements --
Problems --
References --
Chapter 10. Fundamentals of Semiconductor Lasers --
10.1 Double-Heterojunction Semiconductor Lasers --
10.2 Gain-Guided and Index-Guided Semiconductor Lasers --
10.3 Quantum-Well Lasers --
10.4 Strained Quantum-Well Lasers --
10.5 Strained Quantum-Dot Lasers --
Problems --
References --
Chapter 11. Advanced Semiconductor Lasers --
11.1 Distributed Feedback Lasers --
11.2 Vertical Cavity Surface-Emitting Lasers --
11.3 Microcavity and Photonic Crystal Lasers --
11.4 Quantum-Cascade Lasers --
11.5 GaN-Based Blue-Green Lasers and LEDs --
11.6 Coupled Laser Arrays --
Appendix 11A: Hamiltonian for Strained Wurtzite Crystals --
Appendix 11B: Band-Edge Optical Transition Matrix Elements --
Problems --
References --
PART IV Modulation of Light --
Chapter 12. Direct Modulation of Semiconductor Lasers --
12.1 Rate Equations and Linear Gain Analysis --
12.2 High-Speed Modulation Response with Nonlinear Gain Saturation --
12.3 Transport Effects on Quantum-Well Lasers: Electrical versus Optical Modulation --
12.4 Semiconductor Laser Spectral Linewidth and the Linewidth Enhancement Factor --
12.5 Relative Intensity Noise Spectrum --
Problems --
References --
Chapter 13. Electrooptic and Acoustooptic Modulators --
13.1 Electrooptic Effects and Amplitude Modulators --
13.2 Phase Modulators --
13.3 Electrooptic Effects in Waveguide Devices --
13.4 Scattering of Light by Sound: Raman-Nath and Bragg Diffractions --
13.5 Coupled-Mode Analysis for Bragg Acoustooptic Wave Couplers --
Problems --
References. Chapter 14. Electroabsorption Modulators --
14.1 General Formulation for Optical Absorption Due to an Electron-Hole Pair --
14.2 Franz-Keldysh Effect: Photon-Assisted Tunneling --
14.3 Exciton Effect --
14.4 Quantum Confined Stark Effect (QCSE) --
14.5 Electroabsorption Modulator --
14.6 Integrated Electroabsorption Modulator-Laser (EML) --
14.7 Self-Electrooptic Effect Devices (SEEDs) --
Appendix 14A: Two-Particle Wave Function and the Effective Mass Equation --
Appendix 14B: Solution of the Electron-Hole Effective-Mass Equation with Excitonic Effects --
Problems --
References --
PART V DETECTION OF LIGHT AND SOLAR CELLS --
Chapter 15. Photodetectors and Solar Cells --
15.1 Photoconductors --
15.2 p-n Junction Photodiodes --
15.3 p-i-n Photodiodes --
15.4 Avalanche Photodiodes --
15.5 Intersubband Quantum-Well Photodetectors --
15.6 Solar Cells --
Problems --
References --
Appendix A. Semiconductor Heterojunction Band Lineups in the Model-Solid Theory --
Appendix B. Optical Constants of GaAs and InP --
Appendix C. Electronic Properties of Si, Ge, and a Few Binary, Ternary, and Quaternary Compounds --
Appendix D. Parameters for InN, GaN, A1N, and Their Ternary Compounds --
Index.