دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Arnt Inge Vistnes
سری: Undergraduate Texts in Physics
ISBN (شابک) : 3319723138, 9783319723136
ناشر: Springer
سال نشر: 2018
تعداد صفحات: 584
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 17 مگابایت
در صورت تبدیل فایل کتاب Physics of Oscillations and Waves: With use of Matlab and Python به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فیزیک نوسانات و امواج: با استفاده از Matlab و Python نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
در این کتاب درسی ترکیبی از ریاضیات استاندارد و روشهای عددی مدرن برای توصیف طیف گستردهای از پدیدههای موج طبیعی، مانند امواج صدا، نور و آب، بهویژه در زمینههای محبوب خاص، به عنوان مثال، استفاده شده است. رنگ ها یا آکوستیک آلات موسیقی. این کتاب خواننده را با اصول اولیه فیزیکی آشنا می کند که امکان توصیف حرکت نوسانی ماده و میدان های کلاسیک و همچنین مفاهیم حاصل از جمله تداخل، پراش و انسجام را فراهم می کند. روشهای عددی بینشهای علمی جدیدی ارائه میدهند و رسیدگی به موارد جالبی را که نمیتوان با استفاده از ریاضیات تحلیلی به آسانی به آنها پرداخت. این نه تنها برای حل مسئله بلکه برای توصیف پدیده ها نیز صادق است. پارامترهای فیزیکی اساسی بیشتر مورد توجه قرار می گیرند، به جای تمرکز بر جزئیات اینکه کدام ترفند ریاضی باید برای به دست آوردن یک راه حل خاص مورد استفاده قرار گیرد. خوانندگان یاد خواهند گرفت که چگونه تجزیه و تحلیل فرکانس حل شده با زمان، درک عمیق تری از تعامل بین فرکانس و زمان ارائه می دهد، که به بسیاری از پدیده های مربوط به نوسانات و امواج مربوط می شود. همچنین توجه به باورهای غلط رایج ناشی از استفاده غیرانتقادی از تبدیل فوریه جلب می شود. این کتاب یک راهنمای ایدهآل برای دانشجویان مقطع کارشناسی فیزیک ارائه میدهد و همچنین برای مدرسان فیزیک مفید خواهد بود. کدهای برنامه در Matlab و Python به همراه فایل های جالب برای استفاده در مشکلات، به عنوان مواد تکمیلی رایگان ارائه شده است.
In this textbook a combination of standard mathematics and modern numerical methods is used to describe a wide range of natural wave phenomena, such as sound, light and water waves, particularly in specific popular contexts, e.g. colors or the acoustics of musical instruments. It introduces the reader to the basic physical principles that allow the description of the oscillatory motion of matter and classical fields, as well as resulting concepts including interference, diffraction, and coherence. Numerical methods offer new scientific insights and make it possible to handle interesting cases that can’t readily be addressed using analytical mathematics; this holds true not only for problem solving but also for the description of phenomena. Essential physical parameters are brought more into focus, rather than concentrating on the details of which mathematical trick should be used to obtain a certain solution. Readers will learn how time-resolved frequency analysis offers a deeper understanding of the interplay between frequency and time, which is relevant to many phenomena involving oscillations and waves. Attention is also drawn to common misconceptions resulting from uncritical use of the Fourier transform. The book offers an ideal guide for upper-level undergraduate physics students and will also benefit physics instructors. Program codes in Matlab and Python, together with interesting files for use in the problems, are provided as free supplementary material.
Preface Origin Scope Content Intended Audience Computer Programs Acknowledgements Contents 1 1 Introduction 1.1 The Multifaceted Physics 1.2 Numerical Methods 1.2.1 Supporting Material 1.2.2 Supporting Literature 2 2 Free and Damped Oscillations 2.1 Introductory Remarks 2.2 Kinematics 2.3 Going from One Expression to Another 2.3.1 First Conversion 2.3.2 Second Conversion 2.3.3 Third Conversion 2.3.4 Fourth Conversion 2.4 Dynamical Description of a Mechanical System 2.5 Damped Oscillations 2.6 Superposition and Nonlinear Equations 2.7 Electrical Oscillations 2.8 Energy Considerations 2.9 Learning Objectives 2.10 Exercises 3 3 Forced Oscillations and Resonance 3.1 Introductory Remarks 3.2 Forced Vibrations 3.3 Resonance 3.3.1 Phasor Description 3.4 The Quality Factor Q 3.5 Oscillations Driven by a Limited-Duration Force 3.6 Frequency Response of Systems Driven by Temporary Forces 3.7 Example: Hearing 3.8 Learning Objectives 3.9 Exercises Reference 4 4 Numerical Methods 4.1 Introductory Remarks 4.2 Introduction 4.3 Basic Idea Behind Numerical Methods 4.4 Euler\'s Method and Its Variants 4.5 Runge–Kutta Method 4.5.1 Description of the Method 4.6 Partial Differential Equations 4.7 Example of Numerical Solution: Simple Pendulum 4.8 Test of Implementation 4.9 Reproducibility Requirements 4.10 Some Hints on the Use of Numerical Methods 4.11 Summary and Program Codes 4.11.1 Suggestions for Further Reading 4.12 Learning Objectives 4.13 Exercises 4.13.1 An Exciting Motion (Chaotic) 5 5 Fourier Analysis 5.1 Introductory Examples 5.1.1 A Historical Remark 5.1.2 A Harmonic Function 5.1.3 Two Harmonic Functions 5.1.4 Periodic, Nonharmonic Functions 5.1.5 Nonharmonic, Nonperiodic Functions 5.2 Real Values, Negative Frequencies 5.3 Fourier Transformation in Mathematics 5.3.1 Fourier Series 5.4 Frequency Analysis 5.5 Discrete Fourier Transformation 5.5.1 Fast Fourier Transform (FFT) 5.5.2 Aliasing/Folding 5.6 Important Concrete Details 5.6.1 Each Single Point 5.6.2 Sampling Theorem 5.7 Fourier Transformation of Time-Limited Signals 5.8 Food for Thought 5.9 Programming Hints 5.9.1 Indices; Differences Between Matlab and Python 5.9.2 Fourier Transformation; Example of a Computer Program 5.10 Appendix: A Useful Point of View 5.10.1 Program for Visualizing the Average of Sin–Cos Products 5.10.2 Program Snippets for Use in the Problems 5.11 Learning Objectives 5.12 Exercises References 6 6 Waves 6.1 Introduction 6.2 Plane Waves 6.2.1 Speed of Waves 6.2.2 Solution of the Wave Equation? 6.2.3 Which Way? 6.2.4 Other Waveforms 6.2.5 Sum of Waves 6.2.6 Complex Form of a Wave 6.3 Transverse and Longitudinal 6.4 Derivation of Wave Equation 6.4.1 Waves on a String 6.4.2 Waves in Air/Liquids 6.4.3 Concrete Examples 6.4.4 Pressure Waves 6.5 Learning Objectives 6.6 Exercises 7 7 Sound 7.1 Reflection of Waves 7.1.1 Acoustic Impedance * 7.1.2 Ultrasonic Images 7.2 Standing Waves, Musical Instruments, Tones 7.2.1 Standing Waves 7.2.2 Quantized Waves 7.2.3 Musical Instruments and Frequency Spectra 7.2.4 Wind Instruments 7.2.5 Breach with Tradition 7.2.6 How to Vary the Pitch 7.2.7 Musical Intervals 7.3 Sound Intensity 7.3.1 Multiple Simultaneous Frequencies 7.3.2 Audio Measurement: The Decibel Scale dB(SPL) 7.3.3 Sound Intensity Perceived by the Human Ear, dB(A) 7.3.4 Audiogram 7.4 Other Sound Phenomena You Should Know 7.4.1 Beats 7.4.2 Sound Intensity Versus Distance and Time 7.4.3 Doppler Effect 7.4.4 Doppler Effect for Electromagnetic Waves 7.4.5 Shock Waves * 7.4.6 An Example: Helicopters * 7.4.7 Sources of Nice Details About Music and Musical Instruments 7.5 Learning Objectives 7.6 Exercises References 8 8 Dispersion and Waves on Water 8.1 Introduction 8.2 Numerical Study of the Time Evolution of a Wave 8.2.1 An Example Wave 8.3 Dispersion: Phase Velocity and Group Velocity 8.3.1 Why Is the Velocity of Light in Glass Smaller Than That in Vacuum? 8.3.2 Numerical Modelling of Dispersion 8.4 Waves in Water 8.4.1 Circle Description 8.4.2 Phase Velocity of Water Waves 8.4.3 Group Velocity of Water Waves 8.4.4 Wake Pattern for Ships, an Example 8.4.5 Capillary Waves 8.5 Program Details and Listing 8.6 References 8.7 Learning Objectives 8.8 Exercises References 9 9 Electromagnetic Waves 9.1 Introduction 9.2 Maxwell\'s Equations in Integral Form 9.3 Differential Form 9.4 Derivation of the Wave Equation 9.5 A Solution of the Wave Equation 9.6 Interesting Details 9.7 The Electromagnetic Spectrum 9.8 Energy Transport 9.8.1 Poynting Vector 9.9 Radiation Pressure 9.10 Misconceptions 9.10.1 Near Field and Far Field 9.10.2 The Concept of the Photon 9.10.3 A Challenge 9.11 Helpful Material 9.11.1 Useful Mathematical Relations 9.11.2 Useful Relations and Quantities in Electromagnetism 9.12 Learning Objectives 9.13 Exercises Reference 10 10 Reflection, Transmission and Polarization 10.1 Introduction 10.2 Electromagnetic Wave Normally Incident on An Interface 10.3 Obliquely Incident Waves 10.3.1 Snel\'s Law of Refraction 10.3.2 Total Reflection 10.3.3 More Thorough Analysis of Reflection 10.3.4 Brewster Angle Phenomenon in Practice 10.3.5 Fresnel\'s Equations 10.4 Polarization 10.4.1 Birefringence 10.4.2 The Interaction of Light with a Calcite Crystal 10.4.3 Polarization Filters 10.4.4 Polariometry 10.4.5 Polarization in Astronomy 10.5 Evanescent Waves 10.6 Stereoscopy 10.7 Learning Objectives 10.8 Exercises References 11 11 Measurements of Light, Dispersion, Colours 11.1 Photometry 11.1.1 Lumen Versus Watt 11.2 Dispersion 11.3 ``Colour\'\'. What Is It? 11.3.1 Colourimetry 11.3.2 Colours on a Mobile Phone or Computer Display 11.3.3 Additive Versus Subtractive Colour Mixing 11.4 Colour Temperature, Adaptation 11.4.1 Other Comments 11.5 Prismatic Spectra 11.5.1 A Digression: Goethe\'s Colour Theory 11.6 References 11.7 Learning Objectives 11.8 Exercises References 12 12 Geometric Optics 12.1 Light Rays 12.2 Light Through a Curved Surface 12.3 Lens Makers\' Formula 12.4 Light Ray Optics 12.4.1 Sign Rules for the Lens Formula 12.5 Description of Wavefront 12.6 Optical Instruments 12.6.1 Loupe 12.6.2 The Telescope 12.6.3 Reflecting Telescope 12.6.4 The Microscope 12.7 Optical Quality 12.7.1 Image Quality 12.7.2 Angle of View 12.7.3 Image Brightness, Aperture, f-Stop 12.8 Optics of the Eye 12.9 Summary 12.10 Learning Objectives 12.11 Exercises References 13 13 Interference—Diffraction 13.1 The Nature of Waves—At Its Purest 13.2 Huygens\'s Principle 13.3 Interference: Double-Slit Pattern 13.3.1 Interference Filters, Interference from a Thin Film 13.4 Many Parallel Slits (Grating) 13.4.1 Examples of Interference from a Grating 13.5 Diffraction from One Slit 13.6 Combined Effect 13.7 Physical Mechanisms Behind Diffraction 13.8 Diffraction, Other Considerations 13.8.1 The Arrow of Time 13.9 Numerical Calculation of Diffraction 13.9.1 The Basic Model 13.9.2 Different Solutions 13.10 Diffraction from a Circular Hole 13.10.1 The Image of Stars in a Telescope 13.10.2 Divergence of a Light Beam 13.10.3 Other Examples * 13.10.4 Diffraction in Two and Three Dimensions 13.11 Babinet\'s Principle 13.12 Matlab Code for Diverse Cases of Diffraction 13.13 Learning Objectives 13.14 Exercises 14 14 Wavelet Transform 14.1 Time-Resolved Frequency Analysis 14.2 Historical Glimpse 14.3 Brief Remark on Mathematical Underpinnings 14.3.1 Refresher on Fourier Transformation 14.3.2 Formalism of Wavelet Transformation 14.3.3 ``Discrete Continuous\'\' Wavelet Transformation 14.3.4 A Far More Efficient Algorithm 14.4 Example 14.5 Important Details 14.5.1 Phase Information and Scaling of Amplitude 14.5.2 Frequency Resolution Versus Time Resolution 14.5.3 Border Distortion 14.6 Optimization 14.6.1 Optimization of Frequency Resolution (Programming Techniques) 14.6.2 Optimization of Time Resolution (Programming Techniques) 14.7 Examples of Wavelet Transformation 14.7.1 Cuckoo\'s ``coo-coo\'\' 14.7.2 Chaffinch\'s Song 14.7.3 Trumpet Sound, Harmonic in Logarithmic Scale 14.8 Matlab Code for Wavelet Transformation 14.9 Wavelet Resources on the Internet 14.10 Learning Objectives 14.11 Exercises Reference 15 15 Coherence, Dipole Radiation and Laser 15.1 Coherence, a Qualitative Approach 15.1.1 When Is Coherence Important? 15.1.2 Mathematical/Statistical Treatment of Coherence 15.1.3 Real Physical Signals 15.2 Finer Details of Coherence 15.2.1 Numerical Model Used 15.2.2 Variegated Wavelet Diagram 15.2.3 Sum of Several Random Signals; Spatial Coherence * 15.3 Demonstration of Coherence 15.4 Measurement of Coherence Length for Light 15.5 Radiation from an Electric Charge 15.5.1 Dipole Radiation 15.6 Lasers 15.6.1 Population Inversion 15.7 A Matlab Program for Generating Noise in a Gaussian Frequency Band 15.8 Original and New Work, Hanbury Brown and Twiss 15.9 Learning Objectives 15.10 Exercises Reference 16 16 Skin Depth and Waveguides 16.1 Do You Remember …? 16.2 Skin Depth 16.2.1 Electromagnetic Waves Incident on a Metal Surface 16.2.2 Skin Depth at Near Field 16.3 Waveguides 16.3.1 Wave Patterns in a Rectangular Waveguide 16.4 Single-Mode Optical Fibre 16.5 Learning Objectives 16.6 Exercises References Appendix A Front Figure Details Index