دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Pierre Marmier. Eric Sheldon
سری:
ناشر: Academic Press, Inc.
سال نشر: 1969
تعداد صفحات: 831
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 9 مگابایت
در صورت تبدیل فایل کتاب Physics of Nuclei and Particles به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فیزیک هسته ها و ذرات نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Title Page Foreword Contents SUMMARY OF CONTENTS - Volumes II and III 1. Historical Development of Nuclear Physics, The Size and Constitution of the Atomic Nucleus 1.1. The Present Status of Nuclear Physics 1.2. Brief History of the Development of Atomic, Nuclear, and Particle Physic 1.3. The Domain of Nuclear Physics 1.4. The Size of the Nucleus and Nuclear Constitution Exercises 2. Nuclear Radii and the Liquid Drop Model of the Nucleus 2.1. Energy Considerations 2.2. The Radius of Nuclei and the Liquid Drop Model 2.3. The Liquid Drop Model and the Semiempirical Mass Formula 2.4. Applications of the Mass Formula to Considerations of Stability Exercises 3. Interactions and Nuclear Cross Sections 3.1. Nuclear Force Characteristics 3.2. Classification of Interactions 3.3. Response of Particles to Strong, Electromagnetic, and Weak Interactions 3.4. Transition Probability 3.5. Reaction Probability and Cross Section 3.6. Transition Probability and Cross Section Exercises 4. Passage of Ionizing Radiation through Matter 4.1. Survey of Electromagnetic Interaction Processes 4.2. Thomson and Compton Scattering of Gamma Radiation 4.3. Rayleigh Scattering 4.4. Photoelectric Effect 4.5. Auger Effect 4.6. Pair Production 4.7. Nuclear Scattering of Gamma Rays 4.8. Total Attenuation Coefficient for Electromagnetic Radiation Passing through Matter 4.9. Interaction of Charged Particles with Matter 4.10. Energy Loss of Heavy Ions Exercises 5. Nuclei and Particles as Quantum-Mechanical Systerns 5.1. The Need to Treat Nuclei and Particles Quantum-Mechanically 5.2. Quantization of Angular Momentum 5.3. Quantum Numbers of Individual Particles 5.4. Quantum Properties of Nuclear States 5.5. Symmetries, Invariances, and Conservation Laws Exercises 6. Radioactivity 6.1. Mean Lifetime toward Radioactive Decay 6.2. Branching Ratios (Partial Widths) 6.3. Radioactive Decay: Daughter Activity 6.4. Decay Schemes of Widely Used Radioactive Sources 6.5. Parent-Daughter Relationships in Radioactive Dating 6.6. Nuclear Stability Limits according to the Liquid Drop Model Exercises 7. Alpha Decay 7.1. Introduction 7.2. Semiempirical Mass Formula Applied to alpha-Decay 7.3. Relation between alpha-Energy and Decay Half-Life 7.4 Penetration of Potential Barriers 7.5. Short- and Long-Range alpha-Radiation 7.6. Application of the Gamow Formula to alpha Decay Exercises 8. Beta Decay 8.1. Introduction 8.2. The Neutrino 8.3. Beta-Decay Theory 8.4. Classification of Beta Transitions 8.5. Electron Capture 8.6. Forms of Beta Interaction 8.7. Parity Nonconservation in Beta Decay 8.8. Beta Decay Coupling Strengths and Interaction Characteristics Exercises 9. Radiative Transitions in Nuclei 9.1. Multipole Character of Gamma Radiation 9.2. Multipole Transition Probability 9.3. Nuclear Level Scheme Compilation 9.4. Angular Distributions and Correlations 9.5. Recoil-Free Gamma Spectroscopy Exercises 10. Internal Conversion 10.1. Conversion Coefficients 10.2. Selection Rules 10.3. Conversion Distributions and Correlations (Particle Parameters) Exercises 11. Fundamental Characteristics of Nuclear Reactions 11.1. Reaction Energetics 11.2. General Features of Reaction Cross Sections 11.3. Detailed Balance Predictions for Inverse Reaction Cross Sections 11.4. Resonance Reactions 11.5. Formal Reaction Theory Exercises APPENDIX A. Kinematics of Relativistic Particles A.1. Lorentz Transformation A.2. Relativistic Mass, Momentum, and Energy A.3. \"Relativistic\" Particles A.4. Lifetimes of Relativistic Particles A.5. Speeds of Relativistic Charged Particles Exercises APPENDIX B.Transform.ation Relations between the Laboratory and Center-of-Mass Systerns for Elastic Collisions B.1. Characteristics of the Center-of-Mass System B.2. Nonrelativistic Elastic Collision of a Moving Particle with a Stationary Target B.3. Relativistic Elastic Collision of a Fast-Moving Particle with a Stationary Target Exercises APPENDIX C. The Dynamics of Decay and Reaction Processes C.1. Decay and Reaction Kinematics C.2. Energetics and Kinematics for Two-Particle Decay C.3. Scattering Kinematics C.4. Nonrelativistic Reaction Kinematic Formulae Exercises APPENDIX D. Wave Mechanics D.1. Schrödinger Equations D.2. Probability Density and Electron Probability Distribution D.3. Heisenberg Uncertainty Relations D.4. Klein-Gordon Equation for Spin-0 Particles D.5. Dirac Equation for Spin-1/2-Relativistic Particles D.6. Dirac Electron-Positron Theory D.7. Weyl Equation for Massless Particles (Two-Component Neutrino Theory) D.8. Wave Equations for Bosons Exercises APPENDIX E. Angular Momentum in Quantum Mechanics (Racah Algebra) E.1. Angular Momentum Operators E.2. Composition of Angular Momentum Wave Functions (Clebsch-Gordan Coefficients) E.3. Properties of Clebsch-Gordan Coefficients and Wigner 3-jSymbols E.4. Values of Simple 3-j Symbols E.5. Examples of Wave-Function Coupling E.6. Recoupling of Angular Momenta (Racah Coefficients and Wigner 6-j Symbols) E.7. Coupling of Four Angular Momenta (Wigner 9-j Symbols) E.8. Racah Functions in Angular Distribution and Correlation Theory Exercises APPENDIX F. Feynman Interaction Theory F.1. The Underlying Motivation behind a Field-Interaction Approach F.2. Interaction Matrix Elements F.3. Feynman Graphs APPENDIX G. Some Measurement Techniques in Nuclear Physics G.1. Introduction G.2. Beta Spectrometry G.3. Scintillation Counters G.4. Semiconductor Detectors G.5. Energy Scale in Low-Energy Nuclear Spectroscopy G.6. Coincidence Techniques Exercises APPENDIX H. Radiation Dosimetry H.1. Biological Effects of Radiation H.2. Dosimetry Units Exercises APPENDIX I. Constants and Conversion Factors in Atomic, Nuclear, and Particle Physics Text and Tables References Solutions to Exercises Subject Index