دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Dr. Yong Zhang, Angelo Mascarenhas (auth.), Dr. Clifford M. Krowne, Dr. Yong Zhang (eds.) سری: Springer Series in Materials Science 98 ISBN (شابک) : 9783540721314, 9783540721321 ناشر: Springer-Verlag Berlin Heidelberg سال نشر: 2007 تعداد صفحات: 389 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 18 مگابایت
کلمات کلیدی مربوط به کتاب فیزیک مواد انکسار منفی و شاخص منفی: جنبههای نوری و الکترونیکی و رویکردهای متنوع: فیزیک ماده متراکم، مواد نوری و الکترونیکی، اپتیک، اپتوالکترونیک، پلاسمونیک و دستگاه های نوری، مهندسی، عمومی
در صورت تبدیل فایل کتاب Physics of Negative Refraction and Negative Index Materials: Optical and Electronic Aspects and Diversified Approaches به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فیزیک مواد انکسار منفی و شاخص منفی: جنبههای نوری و الکترونیکی و رویکردهای متنوع نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب به موضوع انکسار منفی نوری و الکترونیکی (NR) و مواد با شاخص منفی NIM می پردازد. رویکردهای مختلفی برای دستیابی به NR و NIM پوشش داده شده است، مانند استفاده از کریستال های فوتونی، بلورهای آوایی، تشدید کننده های حلقه شکاف (SRRs) و رسانه های پیوسته، تمرکز امواج، رفتار موج هدایت شده، و اثرات غیرخطی. موضوعات خاص مورد بررسی عبارتند از تئوری پلاریتون برای LHM ها (مواد چپ دست)، تمرکز امواج، رفتار موج هدایت شده، اثرات نوری غیرخطی، کامپوزیت های مغناطیسی LHM، تحقق میله های SRR، باندهای موج هدایت شده کم تلفات با استفاده از سلول های واحد SRR-rods به عنوان LHMها، NR امواج الکترومغناطیسی و الکترونیکی در رسانههای یکنواخت، توزیع میدان در ساختارهای موج هدایتشده LHM، ساختارهای ناهمسان دوبلور NR دیالکتریک و فروالکتریک، عدسیهای فوتونیک-کریستالی فراماده LH، فوکوس زیر موجی کریستالهای فوتونی LHM/NR با تمرکز و فوکوس NR NIMها و مواد شبه کریستالی LHM برای تمرکز.
This book deals with the subject of optical and electronic negative refraction (NR) and negative index materials NIM). Diverse approaches for achieving NR and NIM are covered, such as using photonic crystals, phononic crystals, split-ring resonators (SRRs) and continuous media, focusing of waves, guided-wave behavior, and nonlinear effects. Specific topics treated are polariton theory for LHMs (left handed materials), focusing of waves, guided-wave behavior, nonlinear optical effects, magnetic LHM composites, SRR-rod realizations, low-loss guided-wave bands using SRR-rods unit cells as LHMs, NR of electromagnetic and electronic waves in uniform media, field distributions in LHM guided-wave structures, dielectric and ferroelectric NR bicrystal heterostructures, LH metamaterial photonic-crystal lenses, subwavelength focusing of LHM/NR photonic crystals, focusing of sound with NR and NIMs, and LHM quasi-crystal materials for focusing.
Contents......Page 9
1.1.1 Negative Refraction......Page 18
1.1.2 Negative Refraction with Spatial Dispersion......Page 20
1.1.3 Negative Refraction with Double Negativity......Page 21
1.1.4 Negative Refraction Without Left-Handed Behavior......Page 22
1.1.6 From Negative Refraction to Perfect Lens......Page 23
1.2 Conditions for Realizing Negative Refraction and Zero Reflection......Page 25
1.3 Conclusion......Page 32
References......Page 33
2.1.1 Introduction......Page 36
2.1.2 Anisotropic Green’s Function Based Upon LHM or DNM Properties......Page 38
2.1.3 Determination of the Eigenvalues and Eigenvectors for LHM or DNM......Page 49
2.1.4 Numerical Calculations of the Electromagnetic Field for LHM or DNM......Page 59
2.1.5 Conclusion......Page 82
2.2.1 Introduction......Page 83
2.2.4 Beam Steering and Control Component Action......Page 84
2.2.5 Electromagnetic Fields......Page 86
2.2.6 Surface Current Distributions......Page 87
References......Page 89
3.1 Introduction......Page 91
3.2 Description of \"Left-Handed\" Electromagnetic Waves: The Effect of the Imaginary Wave Vector......Page 92
3.3 Electromagnetic Wave Propagations in Homogeneous Magnetic Materials......Page 94
3.4.1 \"Left-Handed\" Characteristic of Electromagnetic Wave Propagation in Uniaxial Anisotropic \"Left-Handed\" Media......Page 96
3.4.2 Characteristics of Refraction of Electromagnetic Waves at the Interfaces of Isotropic Regular Media and Anisotropic \"Left-Handed\" Media......Page 101
3.5 Multilayer Structures Left-Handed Material: An Exact Example......Page 104
References......Page 109
4.1 Introduction......Page 111
4.2.1 Mandelstam and Negative Refraction......Page 113
4.2.2 Cherenkov Radiation......Page 116
4.3.1 Dielectric Tensor......Page 118
4.3.2 Isotropic Systems with Spatial Inversion......Page 121
4.3.3 Connection to Microscopics......Page 122
4.3.4 Isotropic Systems Without Spatial Inversion......Page 126
4.4.1 Excitons with Negative Effective Mass in Nonchiral Media......Page 127
4.4.2 Chiral Systems in the Vicinity of Excitonic Transitions......Page 130
4.4.3 Chiral Systems in the Vicinity of the Longitudinal Frequency......Page 132
4.4.4 Surface Polaritons......Page 134
4.5 Magnetic Permeability at Optical Frequencies......Page 137
4.5.1 Magnetic Moment of a Macroscopic Body......Page 138
4.6.1 Generation of Harmonics from a Nonlinear Material with Negative Refraction......Page 143
4.6.2 Ultra-Short Pulse Propagation in Negative Refraction Materials......Page 144
4.7 Concluding Remarks......Page 145
References......Page 146
5.1 Introduction......Page 149
5.2 Materials with Negative Refraction......Page 150
5.3.1 Metallic PC in Parallel-Plate Waveguide......Page 151
5.3.2 Numerical Simulation of TM Wave Scattering......Page 156
5.3.3 Metallic PC in Free Space......Page 157
5.3.4 High-Order Bragg Waves at the Surface of Metallic Photonic Crystals......Page 160
5.4 Conclusion and Perspective......Page 161
References......Page 162
6.1 Introduction......Page 164
6.2 Negative Refraction and Subwavelength Imaging of TM Polarized Electromagnetic Waves......Page 165
6.3 Negative Refraction and Point Focusing of TE Polarized Electromagnetic Waves......Page 169
6.4 Negative Refraction and Focusing Analysis for a Metallodielectric Photonic Crystal......Page 172
6.5 Conclusion......Page 177
References......Page 178
7.1 Introduction......Page 181
7.2 Negative Refraction by High-Symmetric Quasicrystal......Page 182
7.3 Focus and Image by High-Symmetric Quasicrystal Slab......Page 186
7.4 Negative Refraction and Focusing of Acoustic Wave by High-Symmetric Quasiperiodic Phononic Crystal......Page 193
7.5 Summary......Page 194
References......Page 195
8.1 Introduction......Page 197
8.2 A Simple Model......Page 200
8.3 An Example of Negative Mass......Page 204
8.4 Acoustic Double-Negative Material......Page 207
8.4.1 Construction of Double-Negative Material by Mie Resonances......Page 211
8.6 Focusing by Uniaxial Effective Medium Slab......Page 219
References......Page 229
9.1 Introduction......Page 230
9.2 Theory......Page 232
9.3 FDTD Simulations in an Ideal Negative Index Medium......Page 233
9.4 Simulations and Experiments with Split-Ring Resonators and Wire Arrays......Page 236
9.5 Split-Ring Resonator Arrays as a 2D Photonic Crystal......Page 239
9.6 Hexagonal Disk Array 2D Photonic Crystal Simulations: Focusing......Page 244
9.7 Modeling Refraction Through the Disk Medium......Page 249
9.8 Hexagonal Disk Array Measurements – Transmission and Focusing......Page 253
9.9 Hexagonal Disk Array Measurements – Refraction......Page 255
References......Page 261
10.1 Introduction......Page 264
10.2 Metamaterial Representation......Page 265
10.3 Guiding Structure......Page 268
10.4 Numerical Results......Page 270
10.5 Conclusions......Page 271
References......Page 272
11.1 Electromagnetic Negative Index Materials......Page 273
11.1.1 The Physics of NIMs......Page 274
11.1.2 Design of the NIM Unit Cell......Page 276
11.1.3 Origin of Losses in Left-Handed Materials......Page 278
11.1.4 Reduction in Transmission Due to Polarization Coupling......Page 282
11.1.6 NIM Indefinite Media and Negative Refraction......Page 284
11.2 Demonstration of the NIM Existence Using Snell\'s Law......Page 289
11.3 Retrieval of ε[sub(eff)] and μ[sub(eff)] from the Scattering Parameters......Page 293
11.3.1 Homogeneous Effective Medium......Page 294
11.3.2 Lifting the Ambiguities......Page 295
11.3.3 Inversion for Lossless Materials......Page 298
11.3.4 Periodic Effective Medium......Page 299
11.3.5 Continuum Formulation......Page 300
11.4.1 Measurement of NIM Losses......Page 301
11.4.2 Experimental Confirmation of Negative Phase Shift in NIM Slabs......Page 302
11.5.1 NIM Lenses and Their Properties......Page 307
11.5.2 Aberration Analysis of Negative Index Lenses......Page 308
11.6 Design and Characterization of Cylindrical NIM Lenses......Page 311
11.6.1 Cylindrical NIM Lens in a Waveguide......Page 312
11.7.1 Characterization of the Empty Aperture......Page 317
11.7.2 Design and Characterization of the PIM lens......Page 319
11.7.3 Design and Characterization of the NIM Lens......Page 320
11.7.4 Design and Characterization of the GRIN Lens......Page 323
11.7.5 Comparison of Experimental Data for Empty Aperture, PIM, NIM, and GRIN Lenses......Page 326
11.7.6 Comparison of Simulated and Experimental Aberrations for the PIM, NIM, and GRIN Lenses......Page 329
11.8 Conclusion......Page 339
References......Page 340
12.1 Introduction......Page 342
12.2 Nonlinear Response of Metamaterials......Page 344
12.2.1 Nonlinear Magnetic Permeability......Page 345
12.2.2 Nonlinear Dielectric Permittivity......Page 347
12.2.3 FDTD Simulations of Nonlinear Metamaterial......Page 348
12.2.4 Electromagnetic Spatial Solitons......Page 351
12.3.1 Nonlinear Surface Waves......Page 354
12.3.2 Nonlinear Pulse Propagation and Surface-Wave Solitons......Page 360
12.3.3 Nonlinear Guided Waves in Left-Handed Slab Waveguide......Page 362
12.4.1 Second-Harmonics Generation......Page 366
12.4.2 Enhanced SHG in Double-Resonant Metamaterials......Page 374
12.4.3 Nonlinear Quadratic Flat Lens......Page 378
12.5 Conclusions......Page 380
References......Page 381
C......Page 383
F......Page 384
M......Page 385
Q......Page 386
T......Page 387
Z......Page 388