ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Physics of Cancer, Volume 1: Interplay between tumor biology, inflammation and cell mechanics

دانلود کتاب فیزیک سرطان، جلد 1: تعامل بین بیولوژی تومور، التهاب و مکانیک سلولی

Physics of Cancer, Volume 1: Interplay between tumor biology, inflammation and cell mechanics

مشخصات کتاب

Physics of Cancer, Volume 1: Interplay between tumor biology, inflammation and cell mechanics

دسته بندی: بیوفیزیک
ویرایش: 2 
نویسندگان:   
سری: Biophysical Society–IOP Series 
ISBN (شابک) : 0750317515, 9780750317511 
ناشر: IOP Publishing 
سال نشر: 2018 
تعداد صفحات: 543 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 39 مگابایت 

قیمت کتاب (تومان) : 41,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 5


در صورت تبدیل فایل کتاب Physics of Cancer, Volume 1: Interplay between tumor biology, inflammation and cell mechanics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب فیزیک سرطان، جلد 1: تعامل بین بیولوژی تومور، التهاب و مکانیک سلولی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

PRELIMS.pdf
	Preface
	Preface for second edition
	Acknowledgments
	Author biography
		Claudia Tanja Mierke
CH001.pdf
	Chapter 1 Initiation of a neoplasm or tumor
		Summary
		1.1 Initiation of a neoplasm, tumor growth and neoangiogenesis
			1.1.1 Initiation of a neoplasm and tumor growth
			1.1.2 The primary tumor changes from normoxia to hypoxia
			1.1.3 Neoangiogenesis
		1.2 Malignant progression of cancer (metastasis)
			1.2.1 Spreading of cancer cells and collective cell behavior
			1.2.2 Single-cell migration of cancer cells into the microenvironment
			1.2.3 Distinct features of the collective migration phenotype of cancer cells
			1.2.4 Transendothelial migration of cancer cells
			1.2.5 Secondary tumor in targeted tissues
		1.3 Hallmarks of cancer
		1.4 The impact of the mechanical properties of cancer cells on their migration
		References and further reading
CH002.pdf
	Chapter 2 Inflammation and cancer
		Summary
		2.1 Inflammation: acute and chronic
			2.1.1 Receptors involved in leukocyte activation
			2.1.2 Extravasation of inflammatory cells
		2.2 The dual relationship between inflammation and cancer
			2.2.1 Inflammation can cause cancer (pro-tumorigenic)
			2.2.2 Inflammation can inhibit cancer (anti-tumorigenic)
			2.2.3 Cancer induces inflammation
			2.2.4 Cancer inhibits inflammation
		References and further reading
CH003.pdf
	Chapter 3 Cellular stiffness and deformability
		Summary
		3.1 How can cellular stiffness and the deformability of cells be measured?
		3.2 Magnetic tweezers
			3.2.1 Bi-directional magnetic tweezers
			3.2.2 Microrheology
			3.2.3 Adhesion forces
			3.2.4 Overall cellular stiffness and fluidity
		3.3 Optical cell stretcher
			3.3.1 A short introduction to the historical development of the optical stretcher
			3.3.2 Does optical cell stretching affect the viability of stretched cells?
			3.3.3 Biomedical application of the optical cell stretcher
			3.3.4 The optical deformability of mouse fibroblasts
			3.3.5 The optical deformability of human breast carcinoma cells
		3.4 Optical tweezers
		3.5 Microfluidic filtration and mechanical deformability
		3.6 Real-time deformation cytometry
		References and further reading
CH004.pdf
	Chapter 4 Cell–cell and cell–matrix adhesion strength, local cell stiffness and forces
		Summary
		4.1 Atomic force microscopy
			4.1.1 Cellular stiffness
			4.1.2 Adhesion forces between cells
			4.1.3 Adhesion forces between a cell and the extracellular matrix
		4.2 Traction forces
			4.2.1 2D forces on planar substrates
			4.2.2 3D forces within a 3D collagen matrix scaffold
		4.3 Lipid drops as stress sensors
		4.4 Dual micropipette aspiration (DPA)
		4.5 Förster resonance energy transfer (FRET)-based molecular tension sensors
		References and further reading
CH005.pdf
	Chapter 5 Cell surface tension, the mobility of cell surface receptors and their location in specific regions
		Summary
		5.1 Surface tension
		5.2 The mobility of surface receptors
		5.3 Specific membrane regions as a location for surface receptors
		5.4 Role of the cortex confinement on membrane diffusion
		References and further reading
CH006.pdf
	Chapter 6 Cytoskeletal remodeling dynamics
		Summary
		6.1 Cytoskeletal remodeling dynamics within unperturbed cells
		6.2 Cytoskeletal remodeling dynamics upon mechanical stretching
		6.3 Dynamic cell-level responses derive from local physical cues
		6.4 Cytoskeletal dynamics in 3D differ from those observed in 2D
		6.5 Nano-scale particle tracking
		6.6 FRAP
		References and further reading
CH007.pdf
	Chapter 7 Role of the actin cytoskeleton during matrix invasion
		Summary
		7.1 The actin cell cytoskeleton
		7.2 The actin monomer
		7.3 The actin filaments and polymerization
		7.4 Actin structures: protrusions and cell–cell junctions
			7.4.1 Filopodium
			7.4.2 Lamellipodium
			7.4.3 Microvilli
			7.4.4 Invadopodium
		7.5 Does so-called ‘cortical actin’ and an actin cortex exist?
		7.6 The different stress-fiber types
		7.7 Actin–myosin interaction during cell migration
			7.7.1 Introduction to the superfamily of myosins
			7.7.2 Myosin motors and their diverse functions
		7.8 The effect of actin-bunding proteins on cell migration and invasion
		7.9 The actin-binding proteins
			7.9.1 DNAse I
			7.9.2 Gelsolin
			7.9.3 Profilin
			7.9.4 The actin-depolymerizing factor (ADF)/cofilin
			7.9.5 Arp2/3
			7.9.6 G-actin-binding RPEL domain
			7.9.7 The effect of small molecules on actin
			7.9.8 Effect of pathogens on actin assembly
		7.10 Actin-binding domains and their roles in de novo actin polymerization
			7.10.1 The β-thymosin/WH2 domain
			7.10.2 The FH2 domain
			7.10.3 The WH2 domain and filament elongation
		7.11 Microscopic visualization of F-actin in fixed cells and tissue samples
		7.12 Microscopic visualization of F-actin for live-cell-imaging during migration and invasion of cells
			7.12.1 GFP–actin derivatives for live-cell imaging
			7.12.2 Actin-binding proteins for live-cell imaging
		References and further reading
CH008.pdf
	Chapter 8 Intermediate filaments and nuclear deformability during matrix invasion
		Summary
		8.1 Structure and assembly of intermediate filaments
		8.2 Involvement of intermediate filaments in vesicular trafficking
		8.3 Intermediate filaments play a crucial role in cellular mechanical properties and cellular motility
			8.3.1 The assembly of the keratin intermediate filament network
			8.3.2 The disassembly of keratin intermediate filaments
			8.3.3 Regulation of the keratin cycle in space and time
		8.4 Viscoelasticity of purified intermediate filaments in vitro
		8.5 Functional role of intermediate filaments in mechanotransduction processes
		8.6 The role of intermediate and actin filament interactions
		8.7 The role of vimentin as a promotor of cell migration during cancer progression
			8.7.1 Vimentin knock-out cells
			8.7.2 Disruption of vimentin by drugs
			8.7.3 The mutant desmin disrupts vimentin
		8.8 The impact of keratins 8/18 on epithelial cell migration
		8.9 Interaction between filamin A and vimentin in cellular motility
		The role of filamin A in vimentin phosphorylation and reorganization
		8.10 The role of nuclear intermediate filaments in cell invasion
		8.11 The role of cell division in cellular motility
		References and further reading




نظرات کاربران