دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: بیوفیزیک ویرایش: 2 نویسندگان: Claudia Mierke سری: Biophysical Society–IOP Series ISBN (شابک) : 0750317515, 9780750317511 ناشر: IOP Publishing سال نشر: 2018 تعداد صفحات: 543 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 39 مگابایت
در صورت تبدیل فایل کتاب Physics of Cancer, Volume 1: Interplay between tumor biology, inflammation and cell mechanics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فیزیک سرطان، جلد 1: تعامل بین بیولوژی تومور، التهاب و مکانیک سلولی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
PRELIMS.pdf Preface Preface for second edition Acknowledgments Author biography Claudia Tanja Mierke CH001.pdf Chapter 1 Initiation of a neoplasm or tumor Summary 1.1 Initiation of a neoplasm, tumor growth and neoangiogenesis 1.1.1 Initiation of a neoplasm and tumor growth 1.1.2 The primary tumor changes from normoxia to hypoxia 1.1.3 Neoangiogenesis 1.2 Malignant progression of cancer (metastasis) 1.2.1 Spreading of cancer cells and collective cell behavior 1.2.2 Single-cell migration of cancer cells into the microenvironment 1.2.3 Distinct features of the collective migration phenotype of cancer cells 1.2.4 Transendothelial migration of cancer cells 1.2.5 Secondary tumor in targeted tissues 1.3 Hallmarks of cancer 1.4 The impact of the mechanical properties of cancer cells on their migration References and further reading CH002.pdf Chapter 2 Inflammation and cancer Summary 2.1 Inflammation: acute and chronic 2.1.1 Receptors involved in leukocyte activation 2.1.2 Extravasation of inflammatory cells 2.2 The dual relationship between inflammation and cancer 2.2.1 Inflammation can cause cancer (pro-tumorigenic) 2.2.2 Inflammation can inhibit cancer (anti-tumorigenic) 2.2.3 Cancer induces inflammation 2.2.4 Cancer inhibits inflammation References and further reading CH003.pdf Chapter 3 Cellular stiffness and deformability Summary 3.1 How can cellular stiffness and the deformability of cells be measured? 3.2 Magnetic tweezers 3.2.1 Bi-directional magnetic tweezers 3.2.2 Microrheology 3.2.3 Adhesion forces 3.2.4 Overall cellular stiffness and fluidity 3.3 Optical cell stretcher 3.3.1 A short introduction to the historical development of the optical stretcher 3.3.2 Does optical cell stretching affect the viability of stretched cells? 3.3.3 Biomedical application of the optical cell stretcher 3.3.4 The optical deformability of mouse fibroblasts 3.3.5 The optical deformability of human breast carcinoma cells 3.4 Optical tweezers 3.5 Microfluidic filtration and mechanical deformability 3.6 Real-time deformation cytometry References and further reading CH004.pdf Chapter 4 Cell–cell and cell–matrix adhesion strength, local cell stiffness and forces Summary 4.1 Atomic force microscopy 4.1.1 Cellular stiffness 4.1.2 Adhesion forces between cells 4.1.3 Adhesion forces between a cell and the extracellular matrix 4.2 Traction forces 4.2.1 2D forces on planar substrates 4.2.2 3D forces within a 3D collagen matrix scaffold 4.3 Lipid drops as stress sensors 4.4 Dual micropipette aspiration (DPA) 4.5 Förster resonance energy transfer (FRET)-based molecular tension sensors References and further reading CH005.pdf Chapter 5 Cell surface tension, the mobility of cell surface receptors and their location in specific regions Summary 5.1 Surface tension 5.2 The mobility of surface receptors 5.3 Specific membrane regions as a location for surface receptors 5.4 Role of the cortex confinement on membrane diffusion References and further reading CH006.pdf Chapter 6 Cytoskeletal remodeling dynamics Summary 6.1 Cytoskeletal remodeling dynamics within unperturbed cells 6.2 Cytoskeletal remodeling dynamics upon mechanical stretching 6.3 Dynamic cell-level responses derive from local physical cues 6.4 Cytoskeletal dynamics in 3D differ from those observed in 2D 6.5 Nano-scale particle tracking 6.6 FRAP References and further reading CH007.pdf Chapter 7 Role of the actin cytoskeleton during matrix invasion Summary 7.1 The actin cell cytoskeleton 7.2 The actin monomer 7.3 The actin filaments and polymerization 7.4 Actin structures: protrusions and cell–cell junctions 7.4.1 Filopodium 7.4.2 Lamellipodium 7.4.3 Microvilli 7.4.4 Invadopodium 7.5 Does so-called ‘cortical actin’ and an actin cortex exist? 7.6 The different stress-fiber types 7.7 Actin–myosin interaction during cell migration 7.7.1 Introduction to the superfamily of myosins 7.7.2 Myosin motors and their diverse functions 7.8 The effect of actin-bunding proteins on cell migration and invasion 7.9 The actin-binding proteins 7.9.1 DNAse I 7.9.2 Gelsolin 7.9.3 Profilin 7.9.4 The actin-depolymerizing factor (ADF)/cofilin 7.9.5 Arp2/3 7.9.6 G-actin-binding RPEL domain 7.9.7 The effect of small molecules on actin 7.9.8 Effect of pathogens on actin assembly 7.10 Actin-binding domains and their roles in de novo actin polymerization 7.10.1 The β-thymosin/WH2 domain 7.10.2 The FH2 domain 7.10.3 The WH2 domain and filament elongation 7.11 Microscopic visualization of F-actin in fixed cells and tissue samples 7.12 Microscopic visualization of F-actin for live-cell-imaging during migration and invasion of cells 7.12.1 GFP–actin derivatives for live-cell imaging 7.12.2 Actin-binding proteins for live-cell imaging References and further reading CH008.pdf Chapter 8 Intermediate filaments and nuclear deformability during matrix invasion Summary 8.1 Structure and assembly of intermediate filaments 8.2 Involvement of intermediate filaments in vesicular trafficking 8.3 Intermediate filaments play a crucial role in cellular mechanical properties and cellular motility 8.3.1 The assembly of the keratin intermediate filament network 8.3.2 The disassembly of keratin intermediate filaments 8.3.3 Regulation of the keratin cycle in space and time 8.4 Viscoelasticity of purified intermediate filaments in vitro 8.5 Functional role of intermediate filaments in mechanotransduction processes 8.6 The role of intermediate and actin filament interactions 8.7 The role of vimentin as a promotor of cell migration during cancer progression 8.7.1 Vimentin knock-out cells 8.7.2 Disruption of vimentin by drugs 8.7.3 The mutant desmin disrupts vimentin 8.8 The impact of keratins 8/18 on epithelial cell migration 8.9 Interaction between filamin A and vimentin in cellular motility The role of filamin A in vimentin phosphorylation and reorganization 8.10 The role of nuclear intermediate filaments in cell invasion 8.11 The role of cell division in cellular motility References and further reading