دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: فیزیک ویرایش: 1 نویسندگان: Matthew French سری: Essentials of Physics Series ISBN (شابک) : 9780954978082, 2016935948 ناشر: Mercury Learning and Information سال نشر: 2016 تعداد صفحات: 300 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 16 مگابایت
کلمات کلیدی مربوط به کتاب آزمایشات آزمایشگاه فیزیک: آزمایشگاه، آزمایش
در صورت تبدیل فایل کتاب Physics Lab Experiments به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب آزمایشات آزمایشگاه فیزیک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب جدید هم تجربیان و هم نظریه پردازان را در دوره های آزمایشگاهی اجباری که بخشی از مدرک کارشناسی فیزیک است، راهنمایی می کند. این به دانشآموزان و خوانندگان علاقهمند ارزش و زیبایی را در یک آزمایش با دقت برنامهریزیشده و اجرا شده نشان میدهد و به آنها کمک میکند تا مهارتهای انجام آزمایشها را خودشان توسعه دهند.
This new book will guide both the experimentalist and theoretician through their compulsory laboratory courses forming part of an undergraduate physics degree. It shows students and interested readers the value and beauty within a carefully planned and executed experiment, and will help them to develop the skills to carry out experiments themselves.
Cover Half Title Title Copyright Contents About the Author List of Figures 1. The undergraduate laboratories at the University of Oxford.Left: condensed matter laboratory. Right: optics laboratory. 2. The undergraduate laboratories at the University of Bristol 3. Examples of simple low EMF power supplies.Usually the yellow outputs give AC.The black (negative) and red (positive) outputs give DC 4. Left: Low (electric) potential difference connectorswith exposed metal contacts. Right: High (electric)potential difference connectors with shielded metal contacts.The shielding automatically moves back as the plug is connectedinto a socket. Both leads can be piggy-backed to connectmultiple leads to the same place. 5. Examples of high EMF (EHT) power supplies 6. A bracket and belt anchoring a cylinder to the desk 7. A cart used to move gas cylinder. This carthas an extra set of wheels so the user doesn'thave to support part of the weight of the cylinderwhile moving the cylinder 8. A gas regulator. This one is for oxygen only: the knob islabeled and the crossed out symbol of an oil can ispresent in the pressure gauges 9. Left: A gas cylinder key. Right: The spindle on a gas bottle 10. A vacu-vin hand pump 11. A rotary pump 12. A turbomolecular pump backed with a rotary pump. 13. Phase diagram for Nitrogen. Nitrogen is a gas at STP(standard temperature and pressure) 14. A neoprene plastic bucket for storing liquid nitrogen. 15. Liquid Nitrogen Dewars. Left: a 25 liter “onion” Dewarwith a cart Right: a 10 liter Dewar 16. Phase diagram for Carbon Dioxide. Carbon Dioxide isa gas at STP (standard temperature and pressure). 17. Phase diagram for Helium-4. Helium-4 is a gas at STP(standard temperature and pressure) 18. Phase diagram for Oxygen. Oxygen is a gas at STP(standard temperature and pressure) 19. Phase diagram for Argon. Argon is a gas at STP(standard temperature and pressure) 20. Left panel: a lead lined wooden storage box andforceps. Right panel: inside the box and the source insidea metal cup holder 21. A Vernier Scale. The top is the main scale and thebottom in the traveling scale. The left panel shows areading of 0.0 mm; The middle panel shows areading of 0.1mm; The right panel shows a reading of 0.6 mm. 22. A digital calipers measuring; Left: the diameter of a wire andRight: the inside diameter of a pipe 23. A micrometer measuring a: 5.21 mm and b: 3.76 mm. 24. Two different multimeters 25. Simple diagram of a four-wire method of measuring thesample resistance. R1, R2, R3, and R4 are resistanceswhich represent the contact and lead resistances 26. Simple four-wire mounting configuration of a sample tomeasure resistance along in the direction of the current flow 27. Left panel shows a circuit layout of a resistor (typicallyRseries = 1k to 10 k) used as a constant current source.It is connected in series with the sample and the oscillatoroutput on a lock-in amplifier. Right panel shows a circuitdiagram of a (electric) potential difference controlled constantcurrent source. The opamp used is an Linear TechnologyLTC1150CN8#PBF (RS order number 5455629) 28. The front panel of a Stanford Research Systems (SRS)830 lock-in amplifier 29. Left panel shows the circuit setup for a normal 4-wiremeasurement configuration. Right panel shows the circuitsetup when setting the phase. Current is passed though thesample and a series resistor, R. The (electric) potentialdifference drop is measured across only the resistor 30. Inductive cross-talk between wires in two closedcircuits carrying AC signals 31. A signal generator 32. An CRT oscilloscope 33. A digital oscilloscope. 34. A PASCO Science WorkShop 500 Interface boxconnected to a photogate 35. Choosing a sensor in PASCO DataStudio 36. Using PASCO DataStudio to measure the velocity in a photogate 37. Using PASCO DataStudio to produce a distance time graph 38. A Data Harvest QAdvanced Datalogger with aLight Level probe connected to input 39. A screen shot of the Data Harvest EasySense softwareshowing a graph of Light Level against time 40. Illustration of chromatic aberation of a lens. Red light(the dashed line) is refracted less than blue light (the dotted line) 41. Illustration of spherical aberation of a lens 42. Left: Electron diffraction pattern from Gold. Right:A dark field image of islands of Gold 43. Creating a new VI in LabVIEW 44. The LabVIEW program. On the left is the “blockdiagram” window and on the right is the “front panel” window 45. Inserting a “GPIB Read” component in LabVIEW. 46. A LabVIEW program which reads data and produces a graph 47. A LabVIEW program within a “while” loop 48. Photograph of a graticule using a microscope 49. Using ScanIt to set the axis 50. Targets illustrating the differences between the termsaccurate and precise. The center of the target correspondsto the true value. The stars are the individual measurements 51. Graphs illustrating the differences between the termsaccurate and precise. The vertical line corresponds to thetrue value. The vertical axis is a probability distribution(or the number of measurements) and horizontal axis isthe magnitude of the quantity being measured 52. Number lines comparing the spread of data 53. Histogram of the measurements of the current flowingthrough a bulb given in the text 54. Histogram of the measurements of a quantity when thenumber of measurements tends to infinity 55. Plotting an “XY Scatter” graph with Excel 2003 56. Selecting the data series with Excel 2003 57. Adding a polynomial trend line of order 2 to the dataand ensuring the equation is displayed on the chart. 58. Adding X axis error bars. They have a fixed size of ± 0.25.139 59. Plotting a graph with Excel 2010 60. Selecting the data series with Excel 2010 61. Adding axis titles with Excel 2010 62. Adding a linear trend line to the data and ensuring theequation is displayed on the chart 63. Adding X axis error bars. They have a fixed size of ± 1. 64. Switching between editing X and Y error bars 65. Plotting a graph with Kaleidagraph 66. Selecting data for a graph with Kaleidagraph 68. The fit parameters box in Kaleidagraph 67. Adding a Trendline with Kaleidagraph 69. Adding error bars in Kaleidagraph 70. A simple MATLAB graph 71. A MATLAB graph showing two lines and axes labels. 72. A MATLAB graph with vertical error bars 74. The different triangles involved in a two parameter version of theNelder-Mead function minimization algorithm. 73. An Excel trendline, showing the equation of the straightlineand the R2 value are given by Equations 84, 85, and 86 75. A graph showing the maximum and minimum gradientsconsistent with the error bars 76. The Microsoft Excel 2003 Regression Window 77. The Microsoft Excel 2003 Regression package output. 78. Entering the data ranges into Fourier Analysis window. 79. Filling in the FFT Frequency column. 80. Graph of FFT Frequency against FFT Magnitude. 81. Fast Fourier transform of a sine wave with frequency10 Hz. Left panel shows leakage with no windowing functionpresent. Right panel shows leakage reducedwith a windowing function 82. Good and bad scaling of axes 83. Good and bad lines on graphs 84. Always add x and y error bars where possible 85. The Equation Tool Bar in Microsoft Word 2003 86. Inserting an Equation in Microsoft Word 2010 87. The Equation Tool Bar in Microsoft Word 2010 88. Inserting Greek characters in Microsoft Word 2010. 89. Inserting an Equation in Open Office Writer 90. Example poster 1. Based on a final year project 91. Example poster 2. Based on early work towards a PhD. 92. Example presentation slides 93. Moment of inertia of a pendulum 94. Faucault method diagram 95. Reflection from the fixed mirror as the rotatingmirror changes angle 96. Considering the virtual image of the fixed mirror List of Tables 1. Chemical Hazard Symbols. Usually the border is redand the diagram is black 2. Non-Chemical Hazard Symbols. Usually the text, borderand diagram is black and the background is yellow. 3. Compressed gas cylinder colors 4. Conversion factors for common pressure units 6. Table of temperature and vapor pressures for He-3 5. Table of temperature and vapor pressures for He-4 7. The new laser classifications. 8. The old laser classifications 9. List of common radioactive sources. Protactiniumand Radon are listed with radiation given out by thedecay chain which generates them from Uranium-238and Thorium-232 respectively 10. The SI units 11. The SI prefixes 12. Resistor color codes 13. Thermocouples, Compositions, TemperatureRanges and Sensitivities 14. Effect of changing PID values 15. Relationships for setting PID values 16. Common plugs and sockets 17. Example data for calculation of the mean and variance. 18. Probability that a given measurement is within “z”standard deviations of the mean. 20. Example calculations for a regression line 19. Example data for a regression line 21. Example data for Nelder-Mead method 22. Commonly used LaTeX symbols 23. Papers Sizes Chapter 1 Introduction 1.1 Characteristics of the Laboratory 1.2 Demonstrating Undergraduate Physics Laboratory Chapter 2 Safety 2.1 Hazard Symbols 2.2 Electrical 2.3 High Voltages 2.4 Gas Cylinders 2.5 Vacuum Pumps 2.5.1 Pressure Units 2.5.2 Hand Pumps and Vacu-vins 2.5.3 Diaphragm Pump 2.5.4 Rotary Pump 2.5.5 Diffusion Pump 2.5.6 Turbomolecular Pump 2.6 Cryogenics 2.6.1 Liquid Nitrogen 2.6.2 Dry Ice 2.6.3 Liquid Helium 2.6.4 Helium-3 2.6.5 Liquid Oxygen 2.6.6 Argon 2.6.7 Cryogen Free Cooling 2.7 Lasers 2.8 Ionizing Radiation Chapter 3 Making Measurements 3.1 SI Units 3.2 SI Prefixes 3.3 Vernier Calipers 3.4 Digital Calipers 3.5 Micrometer 3.6 Balances 3.7 Ammeters 3.8 Voltmeters 3.9 Resistor Color Codes 3.10 Multimeters 3.11 Further Ideas on Measurement of Resistance 3.12 Constant Current Sources 3.13 Lock-in Amplifers 3.14 Further Ideas on Reducing Noise in Electrical Measurements 3.15 Signal Generator 3.15.1 TTL 3.16 Oscilloscopes 3.17 Light Gates 3.17.1 Velocity with One Light Gate 3.17.2 Velocity with Two Light Gates 3.17.3 Acceleration with Two Light Gates 3.17.4 Acceleration with One Light Gate 3.18 PASCO Science Workshop Interface 3.19 Data Harvest 3.20 Pressure Gauges 3.21 Temperature Measurement 3.21.1 Near Room Temperature 3.21.2 Low Temperatures 3.21.3 High Temperatures 3.22 PID and Temperature Control 3.23 Kaye and Laby Tables 3.24 Microscopes 3.24.1 Optical Microscopes 3.24.2 Transmission Electron Microscope 3.24.3 Other Microscopes 3.25 Spectroscopes 3.26 Computers 3.26.1 Plugs, Sockets, and Connectors 3.26.2 Computer Data Logging 3.26.3 Still Cameras and Scanners 3.27 Video Cameras 3.28 Other Researcher's Data 3.29 Wii Controllers 3.30 Traditional Photographs Chapter 4 Data Analysis and Errors 4.1 Accuracy and Precision 4.2 Measurement Errors 4.2.1 Random Error 4.2.2 Systematic Error 4.2.3 Zero Error 4.3 Uncertainty 4.4 Resolution 4.5 Tolerance 4.6 Sensitivity 4.7 Response Time 4.8 The Mean of the Sample 4.9 Variance and Standard Deviation of the Sample 4.10 Measurement Distributions 4.11 Standard Error on a Single Measurement 4.12 Standard Error on the Mean 4.13 Estimation of Errors 4.14 Gaussian Error Distribution 4.15 Combination or Propagation of Errors 4.15.1 Linear 4.15.2 Products and Quotients 4.15.3 General Functions 4.15.4 Appropriate Significant Figures in FinalAnswers and Errors 4.16 Plotting Appropriate Graphs 4.16.1 Drawing Lines of Best Fit and Finding Gradients 4.16.2 Error Bars on Graphs 4.16.3 Straight Line Graphs 4.16.4 Log Graphs 4.17 Graph Drawing Software 4.17.1 Excel 2003 and Prior Versions 4.17.2 Excel 2010 4.17.3 Kaleidagraph 4.17.4 MATLAB 4.18 Least Squares Fitting 4.18.1 Regression line of y on x 4.18.2 Steepest Descent 4.18.3 Gauss-Newton 4.18.4 Levenberg-Marquardt Method 4.18.5 Nelder-Mead Method 4.18.6 Distribution Testing 4.19 Uncertainty in Gradients and Intercepts of Graphs 4.20 Fourier Transform 4.20.1 Window Functions Chapter 5 Presenting Results 5.1 Lab Book 5.2 Reports 5.2.1 Software 5.2.2 Structure 5.2.3 Graphs, Tables, and Diagrams 5.2.4 Referencing 5.2.5 Equations 5.2.6 Special Characters 5.3 Posters 5.3.1 Software 5.3.2 Paper Sizes 5.4 Presentations 5.4.1 Software Chapter 6 Common Experiments 6.1 Example Experiments 6.1.1 Measuring Acceleration due to Gravity 6.1.2 Measuring the Speed of Light 6.2 Example Reports 6.2.1 Example Report: Charge Mass Ratio of an Electron 6.2.2 Example Report: Investigating Radioactivity 6.2.3 Example Report: Latent Heat of Vaporizationof Liquid Nitrogen Index