دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 4 نویسندگان: Simon R. Cherry PhD, James A. Sorenson PhD, Michael E. Phelps PhD سری: ISBN (شابک) : 1416051988, 9781416051985 ناشر: Saunders سال نشر: 2012 تعداد صفحات: 546 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 47 مگابایت
در صورت تبدیل فایل کتاب Physics in Nuclear Medicine: Expert Consult - Online and Print, 4e به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فیزیک در پزشکی هسته ای: مشاوره متخصص - آنلاین و چاپ ، 4e نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
فیزیک در پزشکی هسته ای - توسط Drs. سایمون آر. چری، جیمز آ. سورنسون، و مایکل ای. فلپس - راهنمایی جامع و فعلی در مورد فیزیک زیربنای پزشکی هستهای مدرن و تصویربرداری با استفاده از ردیابهای برچسبگذاری شده رادیواکتیو ارائه میکند. این نسخه چهارم اصلاح شده و به روز شده دارای یک طرح بندی تمام رنگی جدید و همچنین آخرین اطلاعات در مورد ابزار دقیق و فناوری است. در مورد پیشرفت های حیاتی در تصویربرداری ترکیبی (PET/CT و SPECT/CT) و تصویربرداری از حیوانات کوچک در جریان باشید و از بخش جدید مدل سازی جنبشی ردیاب در تصویربرداری گیرنده عصبی بهره مند شوید. علاوه بر این، میتوانید درک خود را با انیمیشنهای گرافیکی آنلاین در www.expertconsult.com، همراه با متن کاملاً قابل جستجو و ابزارهای محاسبه، تقویت کنید.
مرجع یا کتاب درسی عالی برای بررسی جامع اصول فیزیک در پزشکی هسته ای.
Physics in Nuclear Medicine - by Drs. Simon R. Cherry, James A. Sorenson, and Michael E. Phelps - provides current, comprehensive guidance on the physics underlying modern nuclear medicine and imaging using radioactively labeled tracers. This revised and updated fourth edition features a new full-color layout, as well as the latest information on instrumentation and technology. Stay current on crucial developments in hybrid imaging (PET/CT and SPECT/CT), and small animal imaging, and benefit from the new section on tracer kinetic modeling in neuroreceptor imaging. What's more, you can reinforce your understanding with graphical animations online at www.expertconsult.com, along with the fully searchable text and calculation tools.
Tap into the expertise of Dr. Simon Cherry, who contributes his cutting-edge knowledge in nuclear medicine instrumentation.
The perfect reference or textbook to comprehensively review physics principles in nuclear medicine.
Front cover......Page 1
Expert Consult pin page......Page 2
Physics in Nuclear Medicine......Page 3
Copyright page......Page 6
Preface......Page 7
Table of Contents......Page 9
Graphing Tools......Page 19
b. The Power of Nuclear Medicine......Page 23
c. Historical Overview......Page 24
d. Current Practice of Nuclear Medicine......Page 26
Recommended texts that cover clinical nuclear medicine in detail are the following:......Page 28
2. Mass and Energy Units......Page 29
b. Radiation......Page 30
2. Electron Binding Energies and Energy Levels......Page 31
3. Atomic Emissions......Page 32
2. Terminology and Notation......Page 35
4. Forces and Energy Levels within the Nucleus......Page 36
6. Nuclear Binding Energy......Page 37
7. Characteristics of Stable Nuclei......Page 38
Recommended texts for in-depth discussions of topics in atomic and nuclear physics are the following:......Page 40
b. Chemistry and Radioactivity......Page 41
c. Decay by β− Emission......Page 42
D. Decay by (β−, γ ) Emission......Page 43
e. Isomeric Transition and Internal Conversion......Page 44
f. Electron Capture and (EC, γ ) Decay......Page 46
g. Positron (β+) and (β+, γ ) Decay......Page 47
i. Decay by α Emission and by Nuclear Fission......Page 48
k. Sources of Information on Radionuclides......Page 50
Bibliography......Page 52
2. Definition and Units of Activity......Page 53
1. The Decay Factor......Page 54
2. Half-Life......Page 55
Answer......Page 56
d. Image-Frame Decay Corrections......Page 57
Example 4-5......Page 58
e. Specific Activity......Page 59
f. Decay of a Mixed Radionuclide Sample......Page 60
1. The Bateman Equations......Page 61
2. Secular Equilibrium......Page 62
4. No Equilibrium......Page 63
Reference......Page 64
1. Reactor Principles......Page 65
2. Fission Fragments......Page 66
3. Neutron Activation......Page 67
2. Cyclotron Principles......Page 69
3. Cyclotron-Produced Radionuclides......Page 71
c. Radionuclide Generators......Page 72
1. Activation Cross-Sections......Page 75
2. Activation Rates......Page 76
Answer......Page 77
Answer......Page 78
2. Specific Considerations......Page 79
2. Labeling Strategies......Page 81
4. Radiopharmaceuticals Labeled with Positron Emitters......Page 82
Further information on radionuclide production and radiopharmaceutical preparation can be found in the following:......Page 83
1. Charged-Particle Interaction Mechanisms......Page 85
2. Collisional Versus Radiation Losses......Page 86
Answer......Page 87
3. Charged-Particle Tracks......Page 88
4. Deposition of Energy Along a Charged-Particle Track......Page 89
5. The Cerenkov Effect......Page 90
Answer......Page 92
2. Beta Particles and Electrons......Page 93
Answer......Page 94
3. Compton Scattering......Page 96
4. Pair Production......Page 98
6. Deposition of Photon Energy in Matter......Page 99
1. Attenuation Coefficients......Page 100
2. Thick Absorbers, Narrow-Beam Geometry......Page 101
Answer......Page 105
4. Polyenergetic Sources......Page 106
A comprehensive tabulation of x-ray and γ-ray attenuation coefficients can be found in the following reference.......Page 107
2. Ionization Chambers......Page 109
3. Proportional Counters......Page 113
4. Geiger-Müller Counters......Page 114
b. Semiconductor Detectors......Page 118
1. Basic Principles......Page 119
2. Photomultiplier Tubes......Page 120
3. Photodiodes......Page 121
4. Inorganic Scintillators......Page 122
5. Considerations in Choosing an Inorganic Scintillator......Page 125
6. Organic Scintillators......Page 126
A detailed general reference for scintillation detectors is the following:......Page 128
a. Preamplifiers......Page 129
1. Amplification and Pulse-Shaping Functions......Page 132
2. Resistor-Capacitor Shaping......Page 133
3. Baseline Shift and Pulse Pile-Up......Page 134
2. Single-Channel Analyzers......Page 135
3. Timing Methods......Page 136
4. Multichannel Analyzers......Page 138
D. Time-to-Amplitude Converters......Page 140
1. Scalers, Timers, and Counters......Page 141
2. Analog Rate Meters......Page 142
F. Coincidence Units......Page 143
H. Nuclear Instrument Modules......Page 144
1. Cathode Ray Tube......Page 145
Basic nuclear electronics are discussed in the following:......Page 146
a. Types of Measurement Error......Page 147
1. The Poisson Distribution......Page 148
Answer......Page 149
C. Propagation of Errors......Page 150
4. More Complicated Combinations......Page 151
3. Significance of Differences Between Counting Measurements......Page 152
Answer......Page 153
7. Estimating Required Counting Times......Page 154
1. The χ2 Test......Page 155
2. The t-Test......Page 157
Answer......Page 159
Answer......Page 160
4. Linear Regression......Page 161
Additional discussion of nuclear counting statistics may be found in the following:......Page 162
a. Basic Principles......Page 163
1. The Ideal Pulse-Height Spectrum......Page 164
2. The Actual Spectrum......Page 165
3. Effects of Detector Size......Page 167
4. Effects of Counting Rate......Page 168
6. Energy Linearity......Page 169
7. Energy Resolution......Page 170
1. Semiconductor Detector Spectrometers......Page 173
2. Liquid Scintillation Spectrometry......Page 174
3. Proportional Counter Spectrometers......Page 175
A useful general reference for pulse-height spectrometry is the following:......Page 176
1. Components of Detection Efficiency......Page 177
Answer......Page 178
3. Intrinsic Efficiency......Page 180
4. Energy-Selective Counting......Page 181
a. Nonuniform Detection Efficiency......Page 182
b. Detection of Simultaneously Emitted Radiations in Coincidence......Page 184
c. Attenuation and Scatter of Radiation Outside the Detector......Page 185
6. Calibration Sources......Page 186
B. Problems in the Detection and Measurement of β Particles......Page 188
2. Mathematical Models......Page 190
4. Dead Time Correction Methods......Page 192
d. Quality Assurance for Radiation Measurement Systems......Page 193
References......Page 194
1. Detector Characteristics......Page 195
2. Detection Efficiency......Page 196
3. Sample Volume Effects......Page 197
5. Shielding and Background......Page 199
7. Multiple Radionuclide Source Counting......Page 200
9. Automated Multiple-Sample Systems......Page 201
1. General Characteristics......Page 204
3. Counting Vials......Page 206
5. Quench Corrections......Page 207
6. Sample Preparation Techniques......Page 209
9. Automated Multiple-Sample LS Counters......Page 210
1. Dose Calibrators......Page 211
1. System Components......Page 212
2. Applications......Page 213
2. Miniature γ-Ray and β Probes for Surgical Use......Page 214
The design and application of miniature γ probes for surgical use are reviewed in detail in the following:......Page 216
a. General Concepts of Radionuclide Imaging......Page 217
1. System Components......Page 218
2. Detector System and Electronics......Page 219
3. Collimators......Page 223
Answer......Page 225
4. Event Detection in a Gamma Camera......Page 226
c. Types of Gamma Cameras and Their Clinical Uses......Page 228
The principles of the gamma camera are discussed in greater detail in the following:......Page 230
1. Intrinsic Spatial Resolution......Page 231
3. Energy Resolution......Page 233
4. Performance at High Counting Rates......Page 235
1. Image Nonlinearity......Page 238
3. Nonuniformity Correction Techniques......Page 239
4. Gamma Camera Tuning......Page 241
2. Septal Thickness......Page 242
Answer......Page 243
Answer......Page 244
Answer......Page 245
d. Performance Characteristics of Converging, Diverging, and Pinhole Collimators......Page 247
e. Measurements of Gamma Camera Performance......Page 250
3. Spatial Linearity......Page 251
5. Counting Rate Performance......Page 252
References......Page 253
1. Factors Affecting Spatial Resolution......Page 255
2. Methods for Evaluating Spatial Resolution......Page 256
c. Contrast......Page 261
Answer......Page 262
2. Random Noise and Contrast-to-Noise Ratio......Page 265
Answer......Page 266
Answer......Page 267
Answer......Page 268
1. Contrast-Detail Studies......Page 269
2. Receiver Operating Characteristic Studies......Page 270
References......Page 273
chapter 16 Tomographic Reconstruction in Nuclear Medicine......Page 275
a. General Concepts, Notation, and Terminology......Page 276
1. Simple Backprojection......Page 278
2. Direct Fourier Transform Reconstruction......Page 280
3. Filtered Backprojection......Page 282
4. Multislice Imaging......Page 284
1. Effects of Sampling on Image Quality......Page 285
Answer......Page 287
3. Noise Propagation, Signal-to-Noise Ratio, and Contrast-to-Noise Ratio......Page 288
Answer......Page 290
Answer......Page 291
1. General Concepts of Iterative Reconstruction......Page 292
2. Expectation-Maximization Reconstruction......Page 294
1. Reconstruction of Fan-Beam Data......Page 295
2. Reconstruction of Cone-Beam and Pinhole Data......Page 296
3. 3-D PET Reconstruction......Page 297
References......Page 298
1. Gamma Camera SPECT Systems......Page 301
2. SPECT Systems for Brain Imaging......Page 302
3. SPECT Systems for Cardiac Imaging......Page 303
4. SPECT Systems for Small-Animal Imaging......Page 305
B. Practical Implementation of SPECT......Page 307
1. Attenuation Effects and Conjugate Counting......Page 309
2. Attenuation Correction......Page 315
3. Transmission Scans and Attenuation Maps......Page 316
4. Scatter Correction......Page 318
C. Performance Characteristics of SPECT Systems......Page 321
2. Volume Sensitivity......Page 323
4. Quality Assurance in SPECT......Page 324
D. Applications of SPECT......Page 325
References......Page 328
1. Annihilation Coincidence Detection......Page 329
2. Time-of-Flight PET......Page 331
3. Spatial Resolution: Detectors......Page 332
4. Spatial Resolution: Positron Physics......Page 334
5. Spatial Resolution: Depth-of-Interaction Effect......Page 338
6. Spatial Resolution: Sampling......Page 340
8. Sensitivity......Page 341
9. Event Types in Annihilation Coincidence Detection......Page 344
1. Block Detectors......Page 346
2. Modified Block Detectors......Page 347
3. Whole-Body PET Systems......Page 348
4. Specialized PET Scanners......Page 352
5. Small-Animal PET Scanners......Page 353
2. Three-Dimensional Data Acquisition......Page 354
Answer......Page 356
1. Normalization......Page 357
2. Correction for Random Coincidences......Page 358
3. Correction for Scattered Radiation......Page 359
4. Attenuation Correction......Page 360
6. Absolute Quantification of PET Images......Page 361
E. Performance Characteristics of Pet Systems......Page 362
F. Clinical and Research Applications of Pet......Page 363
References......Page 364
Bibliography......Page 365
A. Motivation for Hybrid Systems......Page 367
1. X-ray Tube......Page 368
2. X-ray Detectors......Page 369
4. CT Reconstruction......Page 370
1. Clinical SPECT/CT Scanners......Page 372
2. Small-Animal SPECT/CT Scanners......Page 374
1. Clinical PET/CT Scanners......Page 376
E. Attenuation and Scatter Correction Using CT......Page 378
1. Computing Attenuation Correction Factors from CT Scans......Page 379
2. Possible Sources of Artifacts for CT-Based Attenuation Correction......Page 380
F. Hybrid PET/MRI and Spect/MRI......Page 382
The following is an informative general review on hybrid imaging:......Page 383
chapter 20 Digital Image Processing in Nuclear Medicine......Page 385
1. Basic Characteristics and Terminology......Page 386
2. Spatial Resolution and Matrix Size......Page 387
Answer......Page 388
4. Acquisition Modes......Page 389
1. Image Visualization......Page 391
2. Regions and Volumes of Interest......Page 394
5. Edge Detection and Segmentation......Page 395
6. Co-Registration of Images......Page 397
C. Processing Environment......Page 398
BIBLIOGRAPHY......Page 400
A. Basic Concepts......Page 401
1. Definition of a Tracer......Page 402
3. Distribution Volume and Partition Coefficient......Page 404
4. Flux......Page 405
5. Rate Constants......Page 406
6. Steady State......Page 407
1. Blood Flow, Extraction, and Clearance......Page 408
Answer......Page 410
2. Transport......Page 411
D. Formulation of A Compartmental Model......Page 412
2. Blood Flow Models......Page 414
3. Blood Flow: Trapped Radiotracers......Page 415
4. Blood Flow: Clearance Techniques......Page 416
5. Enzyme Kinetics: Glucose Metabolism......Page 418
6. Receptor Ligand Assays......Page 423
F. Summary......Page 425
References......Page 426
Additional discussion of the theory, mathematical formulation, and application of compartmental modeling, including mathematical techniques in estimation theory for modeling, can be found in the following:......Page 427
A. Radiation Dose and Equivalent Dose: Quantities and Units......Page 429
1. Basic Procedure and Some Practical Problems......Page 430
2. Cumulated Activity,......Page 431
Example 22-2......Page 432
Answer......Page 433
3. Equilibrium Absorbed Dose Constant, Δ......Page 434
4. Absorbed Fraction, ϕ......Page 435
5. Specific Absorbed Fraction, ϕ, and the Dose Reciprocity Theorem......Page 436
6. Mean Dose per Cumulated Activity, S......Page 437
Answer......Page 438
7. Whole-Body Dose and Effective Dose......Page 439
8. Limitations of the MIRD Method......Page 446
Society of Nuclear Medicine (MIRD) and ICRP publications, along with data available from references 6 and 9, provide the basic data for calculating absorbed doses:......Page 447
Recommended textbooks on basic radiation biology are the following:......Page 448
chapter 23 Radiation Safety and Health Physics......Page 449
2. Exposure and Air Kerma......Page 450
3. Dose Limits......Page 453
6. Record-Keeping Requirements......Page 454
1. The ALARA Concept......Page 455
2. Reduction of Radiation Doses from External Sources......Page 456
Answer......Page 457
3. Reduction of Radiation Doses from Internal Sources......Page 459
5. Procedures for Handling Spills......Page 460
1. Survey Meters and Laboratory Monitors......Page 461
2. Personnel Dosimeters......Page 462
The International Atomic Energy Agency website is at www.iaea.org [accessed October 14, 2011] and has several publications relevant to nuclear medicine that can be downloaded from the website: For example:......Page 463
The United Nations Scientific Committee on the Effects of Atomic Radiation website is at www.unscear.org/ [accessed October 14, 2011). Two comprehensive publications of interest are:......Page 464
appendix A Unit Conversions......Page 465
appendix B Properties of the Naturally Occurring Elements......Page 467
appendix C Decay Characteristics of Some Medically Important Radionuclides......Page 471
appendix D Mass Attenuation Coefficients for Water, NaI(Tl), Bi4Ge3O12, Cd0.8Zn0.2Te, and Lead......Page 498
appendix E Effective Dose Equivalent (mSv/MBq) and Radiation Absorbed Dose Estimates (mGy/MBq) to Adult Subjects from Selected Internally Administered Radiopharmaceuticals......Page 500
B. Calculating FOURIER TRANSFORMS......Page 503
C. Some Properties of FOURIER TRANSFORMS......Page 505
D. Some Examples of Fourier Transforms......Page 508
References......Page 510
appendix G Convolution......Page 511
References......Page 514
A......Page 515
B......Page 517
C......Page 518
D......Page 521
E......Page 523
F......Page 525
G......Page 526
I......Page 528
L......Page 529
M......Page 530
N......Page 531
P......Page 533
R......Page 537
S......Page 540
T......Page 543
Z......Page 545