ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Physics for Scientists and Engineers with modern Physics Volume I -Technology Update 10th Edition

دانلود کتاب فیزیک برای دانشمندان و مهندسان با فیزیک مدرن جلد اول - فناوری به روز رسانی نسخه دهم

Physics for Scientists and Engineers with modern Physics Volume I -Technology Update 10th Edition

مشخصات کتاب

Physics for Scientists and Engineers with modern Physics Volume I -Technology Update 10th Edition

دسته بندی: فیزیک
ویرایش: 10 
نویسندگان:   
سری:  
ISBN (شابک) : 1337553433, 9781337553438 
ناشر: Cengage 
سال نشر: 2019 
تعداد صفحات: 1370 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 108 مگابایت 

قیمت کتاب (تومان) : 32,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 11


در صورت تبدیل فایل کتاب Physics for Scientists and Engineers with modern Physics Volume I -Technology Update 10th Edition به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب فیزیک برای دانشمندان و مهندسان با فیزیک مدرن جلد اول - فناوری به روز رسانی نسخه دهم نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Cover
Brief Contents
Contents
About the Authors
Preface
To the Student
Part 1: Mechanics
	Chapter 1: Physics and Measurement
		1.1 Standards of Length, Mass, and Time
		1.2 Modeling and Alternative Representations
		1.3 Dimensional Analysis
		1.4 Conversion of Units
		1.6 Significant Figures
	Chapter 2: Motion in One Dimension
		2.1 Position, Velocity, and Speed of a Particle
		2.2 Instantaneous Velocity and Speed
		2.3 Analysis Model: Particle under Constant Velocity
		2.4 The Analysis Model Approach to Problem Solving
		2.5 Acceleration
		2.6 Motion Diagrams
		2.7 Analysis Model: Particle under Constant Acceleration
		2.8 Freely Falling Objects
		2.9 Kinematic Equations Derived from Calculus
	Chapter 3: Vectors
		3.1 Coordinate Systems
		3.2 Vector and Scalar Quantities
		3.3 Basic Vector Arithmetic
		3.4 Components of a Vector and Unit Vectors
	Chapter 4: Motion in Two Dimensions
		4.1 The Position, Velocity, and Acceleration Vectors
		4.2 Two-Dimensional Motion with Constant Acceleration
		4.3 Projectile Motion
		4.4 Analysis Model: Particle in Uniform Circular Motion
		4.5 Tangential and Radial Acceleration
		4.6 Relative Velocity and Relative Acceleration
	Chapter 5: The Laws of Motion
		5.1 The Concept of Force
		5.2 Newton's First Law and Inertial Frames
		5.3 Mass
		5.4 Newton's Second Law
		5.5 The Gravitational Force and Weight
		5.6 Newton's Third Law
		5.7 Analysis Models Using Newton's Second Law
		5.8 Forces of Friction
	Chapter 6: Circular Motion and Other Applications of Newton's Laws
		6.1 Extending the Particle in Uniform Circular Motion Model
		6.2 Nonuniform Circular Motion
		6.3 Motion in Accelerated Frames
		6.4 Motion in the Presence of Resistive Forces
	Chapter 7: Energy of a System
		7.1 Systems and Environments
		7.2 Work Done by a Constant Force
		7.3 The Scalar Product of Two Vectors
		7.4 Work Done by a Varying Force
		7.5 Kinetic Energy and the Work-Kinetic Energy Theorem
		7.6 Potential Energy of a System
		7.7 Conservative and Nonconservative Forces
		7.8 Relationship between Conservative Forces and Potential Energy
		7.9 Energy Diagrams and Equilibrium of a System
	Chapter 8: Conservation of Energy
		8.1 Analysis Model: Nonisolated System (Energy)
		8.2 Analysis Model: Isolated System (Energy)
		8.3 Situations Involving Kinetic Friction
		8.4 Changes in Mechanical Energy for Nonconservative Forces
		8.5 Power
	Chapter 9: Linear Momentum and Collisions
		9.1 Linear Momentum
		9.2 Analysis Model: Isolated System (Momentum)
		9.3 Analysis Model: Nonisolated System (Momentum)
		9.4 Collisions in One Dimension
		9.5 Collisions in Two Dimensions
		9.6 The Center of Mass
		9.7 Systems of Many Particles
		9.8 Deformable Systems
		9.9 Rocket Propulsion
	Chapter 10: Rotation of a Rigid Object about a Fixed Axis
		10.1 Angular Position, Velocity, and Acceleration
		10.2 Analysis Model: Rigid Object under Constant Angular Acceleration
		10.3 Angular and Translational Quantities
		10.4 Torque
		10.5 Analysis Model: Rigid Object under a Net Torque
		10.6 Calculation of Moments of Inertia
		10.7 Rotational Kinetic Energy
		10.8 Energy Considerations in Rotational Motion
		10.9 Rolling Motion of a Rigid Object
	Chapter 11: Angular Momentum
		11.1 The Vector Product and Torque
		11.2 Analysis Model: Nonisolated System (Angular Momentum)
		11.3 Angular Momentum of a Rotating Rigid Object
		11.4 Analysis Model: Isolated System (Angular Momentum)
		11.5 The Motion of Gyroscopes and Tops
		11.1 The Vector Product and Torque
		11.2 Analysis Model: Nonisolated System (Angular Momentum)
		11.3 Angular Momentum of a Rotating Rigid Object
		11.4 Analysis Model: Isolated System (Angular Momentum)
		11.5 The Motion of Gyroscopes and Tops
	Chapter 12: Static Equilibrium and Elasticity
		12.1 Analysis Model: Rigid Object in Equilibrium
		12.2 More on the Center of Gravity
		12.3 Examples of Rigid Objects in Static Equilibrium
		12.4 Elastic Properties of Solids
	Chapter 13: Universal Gravitation
		13.1 Newton's Law of Universal Gravitation
		13.2 Free-Fall Acceleration and the Gravitational Force
		13.3 Analysis Model: Particle in a Field (Gravitational)
		13.4 Kepler's Laws and the Motion of Planets
		13.5 Gravitational Potential Energy
		13.6 Energy Considerations in Planetary and Satellite Motion
	Chapter 14: Fluid Mechanics
		14.1 Pressure
		14.2 Variation of Pressure with Depth
		14.3 Pressure Measurements
		14.4 Buoyant Forces and Archimedes's Principle
		14.5 Fluid Dynamics
		14.6 Bernoulli's Equation
		14.7 Flow of Viscous Fluids in Pipes
		14.8 Other Applications of Fluid Dynamics
Part 2: Oscillations and Mechanical Waves
	Chapter 15: Oscillatory Motion
		15.1 Motion of an Object Attached to a Spring
		15.2 Analysis Model: Particlein Simple Harmonic Motion
		15.3 Energy of the Simple Harmonic Oscillator
		15.4 Comparing Simple Harmonic Motion with Uniform Circular Motion
		15.5 The Pendulum
		15.6 Damped Oscillations
		15.7 Forced Oscillations
	Chapter 16: Wave Motion
		16.1 Propagation of a Disturbance
		16.2 Analysis Model: Traveling Wave
		16.3 The Speed of Waves on Strings
		16.4 Rate of Energy Transfer by Sinusoidal Waves on Strings
		16.5 The Linear Wave Equation
		16.6 Sound Waves
		16.7 Speed of Sound Waves
		16.8 Intensity of Sound Waves
		16.9 The Doppler Effect
	Chapter 17: Superposition and Standing Waves
		17.1 Analysis Model: Waves in Interference
		17.2 Standing Waves
		17.3 Boundary Effects: Reflection and Transmission
		17.4 Analysis Model: Waves under Boundary Conditions
		17.5 Resonance
		17.6 Standing Waves in Air Columns
		17.7 Beats: Interference in Time
		17.8 Nonsinusoidal Waveforms
Part 3: Thermodynamics
	Chapter 18: Temperature
		18.1 Temperature and the Zeroth Law of Thermodynamics
		18.2 Thermometers and the Celsius Temperature Scale
		18.3 The Constant-Volume Gas Thermometer and the Absolute Temperature Scale
		18.4 Thermal Expansion of Solids and Liquids
		18.5 Macroscopic Description of an Ideal Gas
	Chapter 19: The First Law of Thermodynamics
		19.1 Heat and Internal Energy
		19.2 Specific Heat and Calorimetry
		19.3 Latent Heat
		19.4 Work in Thermodynamic Processes
		19.5 The First Law of Thermodynamics
		19.6 Energy Transfer Mechanismsin Thermal Processes
	Chapter 20: The Kinetic Theory of Gases
		20.1 Molecular Model of an Ideal Gas
		20.2 Molar Specific Heat of an Ideal Gas
		20.3 The Equipartition of Energy
		20.4 Adiabatic Processes for an Ideal Gas
		20.5 Distribution of Molecular Speeds
	Chapter 21: Heat Engines, Entropy, and the Second Law
of Thermodynamics
		21.1 Heat Engines and the Second Law of Thermodynamics
		21.2 Heat Pumps and Refrigerators
		21.3 Reversible and Irreversible Processes
		21.4 The Carnot Engine
		21.5 Gasoline and Diesel Engines
		21.6 Entropy
		21.7 Entropy in Thermodynamic Systems
		21.8 Entropy and the Second Law
Part 4: Electricity and
Magnetism
	Chapter 22: Electric Fields
		22.1 Properties of Electric Charges
		22.2 Charging Objects by Induction
		22.3 Coulomb's Law
		22.4 Analysis Model: Particle in a Field (Electric)
		22.5 Electric Field Lines
		22.6 Motion of a Charged Particle in a Uniform Electric Field
		22.1 Properties of Electric Charges
		22.2 Charging Objects by Induction
		22.3 Coulomb's Law
		22.4 Analysis Model: Particle in a Field (Electric)
		22.5 Electric Field Lines
		22.6 Motion of a Charged Particle in a Uniform Electric Field
	Chapter 23: Continuous Charge Distributions and Gauss's Law
		23.1 Electric Field of a Continuous Charge Distribution
		23.2 Electric Flux
		23.3 Gauss's Law
		23.4 Application of Gauss's Law to Various Charge Distributions
	Chapter 24: Electric Potential
		24.1 Electric Potential and Potential Difference
		24.2 Potential Difference in a Uniform Electric Field
		24.3 Electric Potential and Potential Energy Due to Point Charges
		24.4 Obtaining the Value of the Electric Field from the Electric Potential
		24.5 Electric Potential Due to Continuous Charge Distributions
		24.6 Conductors in Electrostatic Equilibrium
	Chapter 25: Capacitance and Dielectrics
		25.1 Definition of Capacitance
		25.2 Calculating Capacitance
		25.3 Combinations of Capacitors
		25.4 Energy Stored in a Charged Capacitor
		25.5 Capacitors with Dielectrics
		25.6 Electric Dipole in an Electric Field
		25.7 An Atomic Description of Dielectrics
		25.1 Definition of Capacitance
		25.2 Calculating Capacitance
		25.3 Combinations of Capacitors
		25.4 Energy Stored in a Charged Capacitor
		25.5 Capacitors with Dielectrics
		25.6 Electric Dipole in an Electric Field
		25.7 An Atomic Description of Dielectrics
	Chapter 26: Current and Resistance
		26.1 Electric Current
		26.2 Resistance
		26.3 A Model for Electrical Conduction
		26.4 Resistance and Temperature
		26.5 Superconductors
		26.6 Electrical Power
	Chapter 27: Direct-Current Circuits
		27.1 Electromotive Force
		27.2 Resistors in Series and Parallel
		27.3 Kirchhoff's Rules
		27.4 RC Circuits
		27.5 Household Wiring and Electrical Safety
	Chapter 28: Magnetic Fields
		28.1 Analysis Model: Particle in a Field (Magnetic)
		28.2 Motion of a Charged Particle in a Uniform Magnetic Field
		28.3 Applications Involving Charged Particles Moving in a Magnetic Field
		28.4 Magnetic Force Acting on a Current-Carrying Conductor
		28.5 Torque on a Current Loop in a Uniform Magnetic Field
		28.6 The Hall Effect
	Chapter 29: Sources of the Magnetic Field
		29.1 The Biot-Savart Law
		29.2 The Magnetic Force between Two Parallel Conductors
		29.3 Ampere's Law
		29.4 The Magnetic Field of a Solenoid
		29.5 Gauss's Law in Magnetism
		29.6 Magnetism in Matter
	Chapter 30:  Faraday's Law
		30.1 Faraday's Law of Induction
		30.2 Motional emf
		30.3 Lenz's Law
		30.4 The General Form of Faraday's Law
		30.5 Generators and Motors
		30.6 Eddy Currents
	Chapter 31: Inductance
		31.1 Self-Induction and Inductance
		31.2 RL Circuits
		31.3 Energy in a Magnetic Field
		31.4 Mutual Inductance
		31.5 Oscillations in an LC Circuit
		31.6 The RLC Circuit
	Chapter 32: Alternating-Current Circuits
		32.1 AC Sources
		32.2 Resistors in an AC Circuit
		32.3 Inductors in an AC Circuit
		32.4 Capacitors in an AC Circuit
		32.5 The RLC Series Circuit
		32.6 Power in an AC Circuit
		32.7 Resonance in a Series RLC Circuit
		32.8 The Transformer and Power Transmission
	Chapter 33: Electromagnetic Waves
		33.1 Displacement Current and the General Form of Ampere's Law
		33.2 Maxwell's Equations and Hertz's Discoveries
		33.3 Plane Electromagnetic Waves
		33.4 Energy Carried by Electromagnetic Waves
		33.5 Momentum and Radiation Pressure
		33.6 Production of Electromagnetic Waves by an Antenna
		33.7 The Spectrum of Electromagnetic Waves
Part 5: Light and Optics
	Chapter 34: The Nature of Light and the Principles
of Ray Optics
		34.1 The Nature of Light
		34.2 The Ray Approximation in Ray Optics
		34.3 Analysis Model: Wave under Reflection
		34.4 Analysis Model: Wave under Refraction
		34.5 Huygens's Principle
		34.6 Dispersion
		34.7 Total Internal Reflection
	Chapter 35: Image Formation
		35.1 Images Formed by Flat Mirrors
		35.2 Images Formed by Spherical Mirrors
		35.3 Images Formed by Refraction
		35.4 Images Formed by Thin Lenses
		35.5 Lens Aberrations
		35.6 Optical Instruments
	Chapter 36: Wave Optics
		36.1 Young's Double-Slit Experiment
		36.2 Analysis Model: Waves in Interference
		36.3 Intensity Distribution of the Double-Slit Interference Pattern
		36.4 Change of Phase Due to Reflection
		36.5 Interference in Thin Films
		36.6 The Michelson Interferometer
	Chapter 37: Diffraction Patterns and Polarization
		37.1 Introduction to Diffraction Patterns
		37.2 Diffraction Patterns from Narrow Slits
		37.3 Resolution of Single-Slit and Circular Apertures
		37.4 The Diffraction Grating
		37.5 Diffraction of X-Rays by Crystals
		37.6 Polarization of Light Waves
Part 6: Modern Physics
	Chapter 38: Relativity
		38.1 The Principle of Galilean Relativity
		38.2 The Michelson-Morley Experiment
		38.3 Einstein's Principle of Relativity
		38.4 Consequences of the Special Theory of Relativity
		38.5 The Lorentz Transformation Equations
		38.6 The Lorentz Velocity Transformation Equations
		38.7 Relativistic Linear Momentum
		38.8 Relativistic Energy
		38.9 The General Theory of Relativity
	Chapter 39: Introduction to Quantum Physics
		39.1 Blackbody Radiation and Planck's Hypothesis
		39.2 The Photoelectric Effect
		39.3 The Compton Effect
		39.4 The Nature of Electromagnetic Waves
		39.5 The Wave Properties of Particles
		39.6 A New Model: The Quantum Particle
		39.7 The Double-Slit Experiment Revisited
		39.8 The Uncertainty Principle
	Chapter 40: Quantum Mechanics
		40.1 The Wave Function
		40.2 Analysis Model: Quantum Particle under Boundary Conditions
		40.3 The Schrodinger Equation
		40.4 A Particle in a Well of Finite Height
		40.5 Tunneling through a Potential Energy Barrier
		40.6 Applications of Tunneling
		40.7 The Simple Harmonic Oscillator
	Chapter 41: Atomic Physics
		41.1 Atomic Spectra of Gases
		41.2 Early Models of the Atom
		41.3 Bohr's Model of the Hydrogen Atom
		41.4 The Quantum Model of the Hydrogen Atom
		41.5 The Wave Functions for Hydrogen
		41.6 Physical Interpretation of the Quantum Numbers
		41.7 The Exclusion Principle and the Periodic Table
		41.8 More on Atomic Spectra: Visible and X-Ray
		41.9 Spontaneous and Stimulated Transitions
		41.10 Lasers
	Chapter 42: Molecules and Solids
		42.1 Molecular Bonds
		42.2 Energy States and Spectra of Molecules
		42.3 Bonding in Solids
		42.4 Free-Electron Theory of Metals
		42.5 Band Theory of Solids
		42.6 Electrical Conduction in Metals, Insulators, and Semiconductors
		42.7 Semiconductor Devices
	Chapter 43: Nuclear Physics
		43.1 Some Properties of Nuclei
		43.2 Nuclear Binding Energy
		43.3 Nuclear Models
		43.4 Radioactivity
		43.5 The Decay Processes
		43.6 Natural Radioactivity
		43.7 Nuclear Reactions
		43.8 Nuclear Fission
		43.9 Nuclear Reactors
		43.10 Nuclear Fusion
		43.11 Biological Radiation Damage
		43.12 Uses of Radiation from the Nucleus
		43.13 Nuclear Magnetic Resonance and Magnetic Resonance Imaging
	Chapter 44: Particle Physics and Cosmology
		44.1 Field Particles for the Fundamental Forces in Nature
		44.2 Positrons and Other Antiparticles
		44.3 Mesons and the Beginning of Particle Physics
		44.4 Classification of Particles
		44.5 Conservation Laws
		44.6 Strange Particles and Strangeness
		44.7 Finding Patterns in the Particles
		44.8 Quarks
		44.9 Multicolored Quarks
		44.10 The Standard Model
		44.11 The Cosmic Connection
		44.12 Problems and Perspectives
Appendix A: Tables
Appendix B: Mathematics Review
Appendix C: Periodic Table of the Elements
Appendix D: SI Units
Index




نظرات کاربران